Skip to main content
Log in

Risks and Benefits of Therapies for Apnoea in Premature Infants

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Apnoea in infants can result from a wide range of causes, and requires thorough evaluation before deciding on appropriate treatment. Continuous monitoring of premature infants with apnoea is mandatory in order to define the pathophysiology and type of apnoea; selection of treatment involves careful assessment of aetiology, as well as efficacy and tolerability in each individual case. The objective of treatment is to prevent the deleterious consequences of apnoeas that last >20 seconds and/or are associated with bradycardia, cyanosis or pallor, and occur more often than once an hour over a 12-hour period.

Apnoea management involves both pharmacological and nonpharmacological treatment. We suggest methylxanthines as first-line therapy for idiopathic apnoeas; evidence suggests that caffeine is better tolerated and as efficacious as theophylline (since it is particularly efficacious against the ‘central’ component of idiopathic apnoea of prematurity). If treatment fails, additional measures such as doxapram may be appropriate when hypoventilation is present, or nasal continuous positive airway pressure when upper airway instability or obstructive apnoeas are predominant. Apnoea prophylaxis is an additional reason to advocate prenatal maturation with betamethasone. Weaning from treatment is attempted 4 to 5 days after complete resolution of apnoea, beginning with the last treatment introduced. Monitoring should be maintained for 4 to 5 days to detect any relapse of recurrent and severe apnoeas, which would lead to the resumption of the most recently withdrawn treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1

Similar content being viewed by others

References

  1. Marchal F, Bairam A, Vert P. Neonatal apnea and apneic syndromes. Clin Perinat 1987; 509-29

  2. Cheung PY, Barrington KJ, Finer NN, et al. Early childhood neurodevelopment in very low birth weight infant with predischarge apnea. Pediatr Pulmonol 1999; 27: 14–20

    PubMed  CAS  Google Scholar 

  3. Deykin A, Bauman ML, Kelly DH, et al. Apnea of infancy and subsequent neurologic, cognitive, and behavioral status. Pediatrics 1984; 73: 638–45

    PubMed  CAS  Google Scholar 

  4. Martin RJ, Fanaroff AA. Neonatal apnea, bradycardia, or desaturation: Does it matter? J Pediatr 1998; 132: 758–9

    PubMed  CAS  Google Scholar 

  5. Hascoët JM, Boutroy MJ. Traitement des apnées du prématuré. Arch Pediatr 1998; 5: 546–52

    PubMed  Google Scholar 

  6. Gaultier C, Curzi-Dascalova L. Apnées et bradycardies du prématuré In: Relier JP, editor. Progres en néonatalogie. Paris: Karger, 1996; 16: 33–42

    Google Scholar 

  7. Gaultier C. Physiopathologie des bradycardies du nourrisson. Arch Pediatr 1994; 1: 389–91

    PubMed  CAS  Google Scholar 

  8. Martin RJ, DiFiore JM, Jana L, et al. Persistence of the biphasic ventilatory response to hypoxia in preterm infants. J Pediatr 1998; 132: 960–64

    PubMed  CAS  Google Scholar 

  9. Adams JA, Zabaleta IA, Sackner MA. Hypoxemic events in spontaneously breathing premature infants: etiologic basis. Pediatr Res 1997; 42: 463–71

    PubMed  CAS  Google Scholar 

  10. Hascoet JM, Parker RA, Lindstrom DP, et al. Short apnea status in the thriving preterm newborn: effect on cerebral circulation [abstract]. Pediatr Res 1989; 25: 1288 A

    Google Scholar 

  11. Jenni OG, Wolf M, Hengartner M, et al. Impact of central, obstructive and mixed apnea on cerebral hemodynamics in preterm infants. Biol Neonate 1996; 70: 91–100

    PubMed  CAS  Google Scholar 

  12. Perlman J, Volpe J. Episodes of apneoa and bradycardia in the preterm newborn: impact on cerebral circulation. Pediatrics 1985; 76: 333–8

    PubMed  CAS  Google Scholar 

  13. Saliba E, Favre A, Lac L, et al. Retentissement des apnées et bradycardies du prématuré sur l’hemodynamique cérébrale et l’EEG. In: Relier JP, editor. Progrès en néonatalogie. Paris: Karger, 1996; 16: 43–51

    Google Scholar 

  14. Urlesberger B, Kaspirek A, Pichler G, et al. Apnoea of prematurity and changes in cerebral oxygenation and cerebral blood volume. Neuropediatrics 1999; 30: 29–33

    PubMed  CAS  Google Scholar 

  15. Miller MJ, Petrie TG, Difiore JM. Changes in resistance and ventilatory timing that accompany apnea in premature infants. J Appl Physiol 1993; 75: 720–3

    PubMed  CAS  Google Scholar 

  16. Poets CF, Stebbens VA, Samuels MP, et al. The relationship between bradycardia, apnea and hypoxemia in preterm infants. Pediatr Res 1993; 34: 144–7

    PubMed  CAS  Google Scholar 

  17. Idiong N, Lemke RP, Lin YJ, et al. Airway closure during mixed apneas in preterm infants: is respiratory effort necessary? J Pediatr 1998; 133: 509–12

    PubMed  CAS  Google Scholar 

  18. Upton CJ, Milner AD, Stokes GM. Upper airway patency during apnoea of prematurity. Arch Dis Child 1992; 67: 419–24

    PubMed  CAS  Google Scholar 

  19. Finer NN, Barrington K. Respiratory effort with airway closure during mixed apneas. J Pediatr 1999; 134: 796–97

    PubMed  CAS  Google Scholar 

  20. Idiong N, Rigatto H. Respiratory effort with airway closure during mixed apneas. J Pediatr 1999; 134: 797–98

    PubMed  Google Scholar 

  21. Hanam S, Ingram DM, Milner AD. A possible role for the Hering-Breuer deflation reflex in apnea of prematurity. J Pediatr; 132: 35–9

  22. Moriette G. Apnees du nouveau-né. In: iRelier JP, Laugier J, Salle BL, editors. Medecine Perinatale. Paris: Flammarion Medecine-Sciences, 1990: 329–34

    Google Scholar 

  23. Lindgren C, Grogaard J. Reflex apnea response and inflammatory mediators in infants with respiratory tract infection. Acta Paediatr 1996; 85: 798–803

    PubMed  CAS  Google Scholar 

  24. Saxena A, Sharma M, Kothari SS, et al. Prostaglandin E1 in infants with congenital heart disease: Indian experience. Indian Pediatr 1998; 35: 1063–9

    PubMed  CAS  Google Scholar 

  25. Tudehope DI, Rogers Y. Clinical spectrum of neonatal apnoea in very low birthweight infants. Aust Paediatr J 1984; 20: 131–5

    PubMed  CAS  Google Scholar 

  26. Sheikh S, Stephen TC, Sisson B. Prevalence of gastrooesophageal reflux in infants with recurrent brief apneic episodes. Can Respr J 1999; 6: 401–4

    CAS  Google Scholar 

  27. Marcus CL, Hamer A. Significance of isolated bradycardia detected by home monitoring. J Pediatr 1999; 135: 321–6

    PubMed  CAS  Google Scholar 

  28. Benz RL, Pressman MR, Hovick ET, et al. A preliminary study of the effects of correction of anemia with recombinant human erythropoietin therapy on sleep, sleep disorders, and daytime sleepiness in hemodialysis patients. Am J Kidney Dis 1999; 34: 1089–95

    PubMed  CAS  Google Scholar 

  29. Sasidharan P, Heimler R. Transfusion-induced changes in the breathing pattern of healthy preterm anemic infants. Pediatr Pulmonol 1992; 12: 170–3

    PubMed  CAS  Google Scholar 

  30. Lander J, Brady-Fryer B, Metcalfe JB, et al. Comparison of ring block, dorsal penile nerve block, and topical anesthesia for neonatal circumcision: a randomized controlled trial. JAMA 1997; 278: 2157–62

    PubMed  CAS  Google Scholar 

  31. Coit AK. Necrotizing enterocolitis. J Perinat Neonatal Nurs 1999; 12: 53–66

    PubMed  CAS  Google Scholar 

  32. Gunn TR, Tonkin SL, Hadden W, et al. Neonatal micrognathia is associated with small upper airways on radiographic measurement. Acta Paediatr 2000; 89: 82–7

    PubMed  CAS  Google Scholar 

  33. Kahn A, Groswasser J, Sottiaux M, et al. Mechanisms of obstructive sleep apneas in infants. Biol Neonate 1994; 65: 235–9

    PubMed  CAS  Google Scholar 

  34. Avanzini A, Colombo T, Vitali GM, et al. Peristent bradycardia and apnea due to hypothyroidism in a very low birth weight newborn infant. Minerva Pediatr 1991; 43: 461–4

    PubMed  CAS  Google Scholar 

  35. Martinez-Bermejo A, Roche C, Lopez-Martin V, et al. Clinical significance of episodes of apnea in babies. Rev Neurol 1997; 25: 545–7

    PubMed  CAS  Google Scholar 

  36. Gerchanik JJ, Levkoff AH; Duncan R. The association of hypocalcemia and recurrent apnea in premature infants. Am J Obstet Gynecol 1972; 113: 646–52

    Google Scholar 

  37. Daily WJR, Klaus M, Meyer HBP. Apnea in premature infants: monitoring incidence, heart rate changes and an effect of environmental temperature. Pediatrics 1969; 43: 510–8

    PubMed  CAS  Google Scholar 

  38. Koons AH. Neurodevelopmental outcome in infants with apnea. N J Med 1992; 89: 688–90

    PubMed  CAS  Google Scholar 

  39. American Academy of Pediatrics. Task force on prolonged apnoea: prolonged infantile apnoea 1985. Pediatrics 1985; 76: 129–31

    Google Scholar 

  40. Razi NM, Humphreys J, Pandit PB, et al. Predischarge monitoring of preterm infants. Pediatr Pulmonol 1999; 27: 113–6

    PubMed  CAS  Google Scholar 

  41. Vogl A. Euphyllin. Wien Klin Wochenschr 1927; 40: 105–8

    Google Scholar 

  42. Kuzemko JA, Paala J. Apnoeic attacks in the newborn treated with aminophylline. Arch Dis Child 1973; 48: 404–6

    PubMed  CAS  Google Scholar 

  43. Maxwell DL, Fuller RW, Conradson TB, et al. Contrasting effects of two xanthines, theophylline and enprofylline, on the cardio-respiratory stimulation of infused adenosine in man. Acta Physiol Scand 1987; 131: 459–65

    PubMed  CAS  Google Scholar 

  44. Davi MJ, Sankaran K, Simons KJ, et al. Physiologic changes induced by theophylline in the treatment of apnea in preterm infants. J Pediatr 1978; 92: 91–5

    PubMed  CAS  Google Scholar 

  45. Shannon DC, Gotay F, Stein IM, et al. Prevention of apnea and bradycardia in low-birthweight infants. Pediatrics 1975; 55:589–94

    PubMed  CAS  Google Scholar 

  46. Uauy R, Shapiro DL, Smith B, et al. Treatment of severe apnea in prematures with orally administered theophylline. Pediatrics 1975; 55: 595–8

    PubMed  CAS  Google Scholar 

  47. Bednarek EJ, Roloff DW. Treatment of apnea of prematurity with aminophylline. Pediatrics 1975; 58: 335–9

    Google Scholar 

  48. Peabody JL, Neese AL; Alister GS, et al. Transcutaneous oxygen monitoring in aminophylline-treated apneic infants. Pediatrics 1978; 62: 698–701

    PubMed  CAS  Google Scholar 

  49. Peliowski A, Finer NN. A blinded, randomized, placebo-controlled trial to compare theophylline and doxapram for the treatment of apnea of prematurity. J Pediatr 1990; 116: 648–53

    PubMed  CAS  Google Scholar 

  50. Aranda JV. Methylxanthines in apnea of prematurity. Clin Perinatol 1979; 6: 87–108

    PubMed  CAS  Google Scholar 

  51. Aranda JV, Gorman W, Bergsteinsson H, et al. Efficacy of caffeine in treatment of apnea in the low-birthweight infant. J Pediatr 1977; 90: 467–72

    PubMed  CAS  Google Scholar 

  52. Gunn TR. Sequelae of caffeine treatment in preterm infants with apnea. J Pediatr 1979; 94: 106–9

    PubMed  CAS  Google Scholar 

  53. Bairam A, Boutroy MJ, Badonnel Y, et al. Theophylline versus caffeine: comparative effects of treatment of idiopathic apnea in the preterm infant. J Pediatr 1987; 110: 636–9

    PubMed  CAS  Google Scholar 

  54. Scanlon JEM, Chin KC, Morgan MEI, et al. Caffeine or theophylline for neonatal apnea? Am J Dis Child 1992; 67: 425–8

    CAS  Google Scholar 

  55. Aranda JV, Cook CE, Gorman W, et al. Pharmacokinetic profile of caffeine in the premature newborn infant with apnea. J Pediatr 1979; 94: 663–8

    PubMed  CAS  Google Scholar 

  56. Fuglsang G, Nielsen K, Kjoer Nielsen L, et al. The effect of caffeine compared with theophylline in the treatment of idiopathic apnea in premature infants. Acta Paediatr Scand 1989; 78: 786–8

    PubMed  CAS  Google Scholar 

  57. Lee TC, Charles B, Steer P, et al. Population pharmacokinetics of intravenous caffeine in neonates with apnea of prematurity. Clin Pharmacol Ther 1997; 61: 628–40

    PubMed  CAS  Google Scholar 

  58. Stephenson T. Caffeine for neonates. Paed Perinat Drug Ther 1997; 1: 46–9

    Google Scholar 

  59. Boutroy MJ, Vert P, Royer RJ, et al. Caffeine, a metabolite of theophylline during the treatment of apnea in the premature infant. J Pediatr 1979; 94: 996–8

    PubMed  CAS  Google Scholar 

  60. Gorodischer R, Karplus M. Pharmacokinetic aspects of caffeine in premature infants with apnea. Eur J Clin Pharmacol 1982; 22: 47–52

    PubMed  CAS  Google Scholar 

  61. Walther FJ; Erickson R, Sims ME. Cardiovascular effects of caffeine therapy in preterm infants. Am J Dis Child 1990; 144: 1164–6

    PubMed  CAS  Google Scholar 

  62. Skopnick H, Koch G, Heimann G. Effects of methylxanthines on periodic respiration and acid gastro-oesophageal reflux in newborn infants. Monatschr Kinderheilkd 1990; 138: 123–7

    Google Scholar 

  63. Vandenplas Y, De Wolf D, Sacre L. Influence of xanthines in gastrooesophageal reflux in infants at risk for sudden death syndrom. Pediatrics 1986; 77: 807–10

    PubMed  CAS  Google Scholar 

  64. Novicki PT. Methylxanthines and necrotizing enterocolitis revisited. J Pediatr Gastro Enterol Nutr 1989; 9: 137–8

    Google Scholar 

  65. Kulkarni PB, Dorand RD. Caffeine toxicity in a neonate. Pediatrics 1979; 64: 254–5

    PubMed  CAS  Google Scholar 

  66. Banner W, Czajka PA. Acute caffeine overdose in the neonate. Arch Dis Child 1980; 134: 495–8

    Google Scholar 

  67. Van Den Anker JN, Jongejan HT, Saver PJJ. Severe caffeine intoxication in a preterm neonate. Eur J Pediatr 1992; 151: 466–8 L

    PubMed  Google Scholar 

  68. Bory C, Balthassat P, Porthault M, et al. Metabolism of theophylline to caffeine in premature newborn infants. J Pediatr 1979; 94: 988–92

    PubMed  CAS  Google Scholar 

  69. Wechsler RL, Kleiss LM, Kety SS. The effects of intravenous administered aminophylline on cerebral circulation and metabolism in man. J Clin Invet 1950; 29: 28–30

    CAS  Google Scholar 

  70. Cameron OG, Modell JG, Hariharan M. Caffeine and human cerebral blood flow: a position emission tomography study. Life Sci 1990; 47: 1141–6

    PubMed  CAS  Google Scholar 

  71. Lundstrom KE, Larsen PS, Brendstrup L, et al. Cerebral blood flow and left ventricular output in spontaneously breathing, newborn preterm infants treated with caffeine or theophylline. Acta Paediatr 1995; 84: 6–9

    PubMed  CAS  Google Scholar 

  72. Saliba E, Autret E, Gold F, et al. Caffeine and cerebral blood flow velocity in preterm infants. Dev Pharmacol Ther 1989; 13: 134–8

    PubMed  CAS  Google Scholar 

  73. Van Bel F, Van de Bor M, Stijnen T, et al. Does caffeine affect cerebral blood flow in preterm infant? Acta Paediatr Scand 1989; 78: 205–9

    PubMed  Google Scholar 

  74. Rubio R, Berne R, Bockman EL, et al. Relationship between adenosine concentration and oxygen supply in rat brain. Am J Physiol 1975; 228: 1896–1902

    PubMed  CAS  Google Scholar 

  75. Daval JL, Nicolas F. Opposite effects of cyclohexyladenosine and theophylline on hypoxic damage in cultured neurons. Neurosci Lett 1994; 175: 114–6

    PubMed  CAS  Google Scholar 

  76. Barnes AR, Hebron BS, Smith J. Stability of caffeine oral formulations for neonatal use. J Clin Pharmacol Ther 1994; 19: 391–6

    CAS  Google Scholar 

  77. Burki NK. Ventilatory effects of doxapram in conscious human subjects. Chest 1984; 85: 604–8

    Google Scholar 

  78. Tay-Uyboco J, Kwiatkowski K, Cates D, et al. Clinical and physiological responses to prolonged nasogastric administration of doxapram for apnea of prematurity. Biol Neonate 1991; 59: 190–200

    PubMed  CAS  Google Scholar 

  79. Bairam A, Faulon M, Monin P, et al. Doxapram for the initial treatment of idiopathic apnea of prematurity. Biol Neonate 1992; 61: 1209–13

    Google Scholar 

  80. Wasserman AJ, Richardson DW. Human cardiopulmonary effects of doxapram, a cardiorespiratory stimulant. Clin Pharmacol Ther 1963; 4: 321–5

    PubMed  CAS  Google Scholar 

  81. Kato H, Buckley JP. Possible sites of action of the respiratory stimulant effect of doxapramhydrochloride. J Pharmacol Exp Ther 1964; 144: 260–4

    PubMed  CAS  Google Scholar 

  82. Funderburk WH, Alphin RS. Electrical changes in the CNS produced by a new respiratory stimulant AHR-619. Fed Proc 1962; 21: 324–6

    Google Scholar 

  83. Bairam A, Blanchard PW, Mullahoo K, et al. Pharmacodynamic effects and pharmacokinetic profiles of keto-doxapram and doxapram in newborn lambs. Pediatr Res 1990; 28: 142–6

    PubMed  CAS  Google Scholar 

  84. Sasaki KI, Furusawa S, Takayanagi G. Effect of doxapram on the action of the other drugs and the hepatic drug-metabolizing system in mice. Japan J Pharmacol 1982; 32: 699–707

    CAS  Google Scholar 

  85. Ishikawa M, Osaki M, Takayanagi Y, et al. Induction of hepatic P450 and drug metabolism by doxapram in the mouse. Res Com Chem Pathol Pharmacol 1991; 72: 109–12

    CAS  Google Scholar 

  86. Jamali F, Coutts RT, Malek F, et al. Lack of a pharmacokinetic interaction between doxapram and theophylline in apnea of prematurity. Dev Pharmacol Ther 1991; 16: 78–82

    PubMed  CAS  Google Scholar 

  87. Polleri JO, Zambosco AL, Muchada R. Dopram as a pharmacological ventilator in respiratory depression in newborn. Dia Med Uruguayo 1969; 36: 439–40

    Google Scholar 

  88. Gupta PK, Moore J. The use of doxapram in the newborn. J Obstet Gynaecol Br Comm 1973; 80: 1002–6

    CAS  Google Scholar 

  89. Burnard ED, Moore RG, Nichol H. A trial of doxapram in the recurrent apnea of prematurity. In: Stern L, Oh W, Friis-Hansen B, editors. Intensive care in the newborn II. New York (NY): Masson Press, 1978: 143–8

    Google Scholar 

  90. Hunt CE, Inwood RJ, Shannon DC. Respiratory and non respiratory effects of doxapram in congenital central hypoventilation syndrome. Am Rev Respir Dis 1979; 119: 263–6

    PubMed  CAS  Google Scholar 

  91. Barrington KJ, Finer NN, Peters KL, et al. Physiologic effects of doxapram in idiopathic apnea of prematurity. J Pediatr 1986; 108: 125–9

    Google Scholar 

  92. Hayakawa F, Hakakawa S, Kuno K, et al. Doxapram in the treatment of idiopathic apnea of prematurity: desirable dosage and serum concentration. J Pediatr 1986; 109: 138–40

    PubMed  CAS  Google Scholar 

  93. Barrington KJ, Finer NN, Torok-Both, et al. Dose-response relationship of doxapramin the therapy for refractory idiopathic apnea of prematurity. Pediatrics 1987; 80: 22–7

    PubMed  CAS  Google Scholar 

  94. Huon C, Rey E, Mussat P, et al. Low-dose doxapram for treatment of apnoea following early weaning in very low birthweight infants: a randomized, double-blind study. Acta Pædiatr 1998; 87: 1180–4

    PubMed  CAS  Google Scholar 

  95. Barrington KJ, Muttit SC. Randomized, controlled, blinded trial of doxapram for extubation of the very low birthweight infant. Acta Paediatr 1998; 87: 191–4

    PubMed  CAS  Google Scholar 

  96. Jamali F, Barringon KJ, Finer NN, et al. Doxapram dosage regimen in apnea of prematurity based on pharmacokinetic data. Dev Pharmacol Ther 1988; 11: 253–7

    PubMed  CAS  Google Scholar 

  97. Kumita H, Mizuno S, Shinohara M, et al. Low-dose doxapram therapy in premature infants and its CSF and serum concentrations. Acta Paediatr Scand 1991; 80: 786–91

    PubMed  CAS  Google Scholar 

  98. Sagi E, Eyal F, Alpan G, et al. Idiopathic apnoea of prematurity treated with doxapram and aminophylline. Arch Dis Child 1984; 59: 281–3

    PubMed  CAS  Google Scholar 

  99. Dear PRF, Wheeler D. Doxapram and neonatal apnoea. Arch Dis Child 1984; 59: 903–4

    PubMed  CAS  Google Scholar 

  100. Beaudry M, Bradley JM, Gramlich LM, et al. Pharmacokinetics of doxapram in idiopathic apnea of prematurity. Dev Pharmacol Ther 1988; 11: 65–72

    PubMed  CAS  Google Scholar 

  101. Barbé F, Hansen C, Badonnel Y, et al. Severe side effects and drug plasma concentrations in preterm infants treated with doxapram. Ther Drug Monitor 1999; 21: 547–52

    Google Scholar 

  102. Boutroy MJ, Dalati M, Barbé F, et al. Doxapram per os: an alternative to IV infusion in treating apnea of prematurity? [abstract]. Pediatr Res 1994; 35(4): 82A

    Google Scholar 

  103. De Villiers GS, Walele A, Van der Merwe PL, et al. Second degree atrioventicular heart block after doxapram administration. J Pediatr 1998; 133: 149–50

    PubMed  Google Scholar 

  104. Poets C, Darraj S, Bohnhorst B. Effect of doxapramon episodes of apnoea, bradycardia and hypoxemia in preterm infants. Biol Neonate 1999; 76: 207–13

    PubMed  CAS  Google Scholar 

  105. Bairam A, Akramoff-Gershan L, Beharry K, et al. Gastrointestinal absorption of doxapram in neonates. Am J Perinatol 1991; 8: 110–3

    PubMed  CAS  Google Scholar 

  106. Bairam A, Beharry K, Laudignon N, et al. Doxapram metabolism in human fetal hepatic organ culture. Clin Pharmacol Ther 1991; 50: 32–8

    PubMed  CAS  Google Scholar 

  107. Robson RH, Prescott LF. Rapid gas-liquid chromatographic estimation of doxapram in plasma. J Chromatogr 1977; 143: 527–9

    PubMed  CAS  Google Scholar 

  108. Gershanik JJ, Boeder G, Ensley H, et al. The gasping syndrome and benzyl alcohol poisoning. N Engl J Med 1982; 307: 1384–8

    PubMed  CAS  Google Scholar 

  109. Jackson D. Reply to: Doxapram and potential benzyl alcohol toxicity: a moratorium on clinical investigation? [letter]. Pediatrics 1986; 78: 541

    Google Scholar 

  110. Weesner KM, Boyle RJ. Successful management of central sleep hypoventilation in an infant using enteral doxapram. J Pediatr 1985; 106: 513–5

    PubMed  CAS  Google Scholar 

  111. Jordan GD, Themelis NJ, Messerly SO, et al. Doxapram and potential benzyl alcohol toxicity: a moratorium on clinical investigation? Pediatrics 1986; 78: 540–1

    PubMed  CAS  Google Scholar 

  112. Angell C, Carbine T, Hiatt M, et al. Prenatal betamethasone and apnea in preterm infants [abstract]. Pediatr Res 1997; 41: 136A

    Google Scholar 

  113. Winchester PD, Secory A. Prenatal betamethasone effects on postmenstrual age at last apnea and discharge in preterm infants [abstract]. Pediatr Res 1999; 45: 233A

    Google Scholar 

  114. Amorim MM, Santos LC, Faundes A. Corticosteroid therapy for prevention of respiratory distress syndrome in severe preeclampsia. Am J Obstet Gynecol 1999; 180: 1283–8

    PubMed  CAS  Google Scholar 

  115. Baud O, Foix-L’Helias L, Kaminski M, et al. Antenatal glucocorticoid treatment and cystic periventricular leukomalacia in very premature infants. N Engl J Med 1999; 341: 1190–6

    PubMed  CAS  Google Scholar 

  116. Elimina A, Verma U, Canterino J, et al. Effectiveness of antenatal steroids in obstetric subgroups. Obstet Gynecol 1999; 93: 174–9

    Google Scholar 

  117. Pratt L, Waschbusch L, Ladd W, et al. Multiple vs single betamethasone therapy. Neonatal and maternal effect. J Reprod Med 1999; 44: 257–64

    PubMed  CAS  Google Scholar 

  118. Jobe AH, Newnham J, Willet K, et al. Fetal versus maternal and gestational age effects of repetitive antenatal glucocorticoids. Pediatrics 1998; 102: 1116–25

    PubMed  CAS  Google Scholar 

  119. Yunis KA, Bitar FF, Hayek P, et al. Transient hypertrophic cardiomyopathy in the newborn following multiple doses of antenatal corticosteroids. Am J Perinatol 1999; 16: 17–21

    PubMed  CAS  Google Scholar 

  120. Cordoba E, Gerhardt T, Rojas M, et al. Comparison of the effects of acetazolamide and aminophylline on apnea incidence and on ventilatory response to CO2 in preterm infants. Pediatr Pulmonol 1994; 17: 291–5

    PubMed  CAS  Google Scholar 

  121. Miller CA, Gaylord M, Lorch M, et al. The use of primidone in neonates with theophylline-resistant apnea. Am J Dis Child 1993; 147: 183–186

    PubMed  CAS  Google Scholar 

  122. Sapin Jl, Riviero JJ, Grover WD. Efficacy of primidone for seizure control in neonates and young infants. Pediatr Neurol 1988; 4: 292–5

    PubMed  CAS  Google Scholar 

  123. Blond MH, Luksenberg S, Rondeau-Desperiez C, et al. Apnées, bradycardies et malaises précoces du nouveau-né prématuré. In: Relier JP, editor. Progrès en néonatalogie. Paris: Karger, 1996; 16: 52–65

    Google Scholar 

  124. Agence du médicament, direction de l’Evaluation. Information des prescripteurs sur l’utilisation du Prantal®. Arch Pediatr 1997; 4: 78–80

    Google Scholar 

  125. Bennasr S, Baumann C, Casadevall I, et al. Bloc auriculo-ventriculaire compliquant l’utilisation du diphémanil (Prantal) chez deux nouveau-nés prématurés. Arch Fr Pediatr 1993; 50: 413–5

    PubMed  CAS  Google Scholar 

  126. Kattwinkel J, Fanaroff AA, Klaus MH. Bradycardia in preterm infants: indications and hazards of atropine therapy. Pediatrics 1976; 58: 494–9

    PubMed  CAS  Google Scholar 

  127. Pariente-Khayat A, Vidal AM, Cheron G, et al. Pharmacokinetics of diphemanil methylsulfate in neonates and in premature infants. Eur J Clin Pharmacol 1996; 50(5): 429–30

    PubMed  CAS  Google Scholar 

  128. Wagaman MJ, Shutack JG, Moomjian AS. Improved oxygenation and lung compliance with prone positioning of neonates. J Pediatr 1979; 94: 787–91

    PubMed  CAS  Google Scholar 

  129. Hewitt VM. Effect of posture on the presence of fat in tracheal aspirate in neonates. Aust Paediatr J 1976; 12: 267–71

    PubMed  CAS  Google Scholar 

  130. Goto K, Mirmira M, Adam M, et al. More awakenings and heart rate variability during supine sleep in preterm infants. Pediatrics 1999; 103: 603–9

    PubMed  CAS  Google Scholar 

  131. Jenni OG, von Siebenthal K, Wolf M, et al. Effect of nursing in the head elevated tilt position (15°) on the incidence of bradycardic and hypoxemic episodes in preterm infants. Pediatrics 1997; 100: 622–5

    PubMed  CAS  Google Scholar 

  132. Keene DJ, Wimmer JE, Mathew OP. Does supine positioning increase apnea, bradycardia, and desaturation in preterm infants J Perinatol 2000; 1: 17–20

    Google Scholar 

  133. Berterottiere D, D’Allest AM, Dehan M, et al. Effects of increase in body temperature on the breathing pattern in premature infants. J Dev Physiol 1990; 13: 303–8

    PubMed  CAS  Google Scholar 

  134. Kumada M, Dampey RA, Reis DJ. The trigeminal depressor response: a novel vasodepressor response originating from the trigeminal system. Brain Res 1977; 119: 305–26

    PubMed  CAS  Google Scholar 

  135. Mac Culloch PF, Faber KM, Panneton WM. Electrical stimulation of the anterior ethmoidal nerve produces the diving response. Brain Res 1999; 830: 24–31

    Google Scholar 

  136. Kattwinkel J, Nearman HS, Fanaroff AA, et al. Apnea of prematurity. Comparative therapeutic effects of cutaneous stimulation and nasal continuous positive airway pressure. J Pediatr 1975; 86: 588–92

    PubMed  CAS  Google Scholar 

  137. Andreasson B, Lindroth M, Svenningsen NW, et al. Effects on respiration of CPAP immediately after extubation in the very preterm infant. Pediatr Pulmonol 1988; 4: 213–8

    PubMed  CAS  Google Scholar 

  138. Robertson NJ, Hamilton PA. Randomised trial of elective continuous positive airway pressure (CPAP) compared with rescue CPAP after extubation. Arch Dis Child Fetal Neonatal Ed 1998; 79: F58–F60

    PubMed  CAS  Google Scholar 

  139. Jonsson B, Katz-Salamon M, Faxelius G, et al. Neonatal care of very-low-birthweight infants in special-care units and neonatal intensive-care units in Stockholm. Early nasal continuous positive airway pressure versus mechanical ventilation: gains and losses. Acta Paediatr 1997; 419: 4–10

    CAS  Google Scholar 

  140. Roberton NR. Early nasal CPAP reduces the need for intubation in VLBM infants. Eur J Pediatr 1998; 157: 438

    PubMed  CAS  Google Scholar 

  141. Tapia JL, Bancalari A, Gonzalez A, et al. Does continuous positive airway pressure during weaning from intermittent mandatory ventilation in very low birth weight infants have risks or benefits? A controlled trial. Pediatr Pulmonol 1995; 19: 269–74

    PubMed  CAS  Google Scholar 

  142. Kurz H. Influence of nasopharyngeal CPAP on breathing pattern and incidence of apnoeas in preterm infants. Biol Neonate 1999; 76: 129–33

    PubMed  CAS  Google Scholar 

  143. Miller MJ, Carlo WA, Martin RJ. Continuous positive airway pressure selectively reduces obstructive apnea in preterm infants. J Pediatr 1985; 106: 91–4

    PubMed  CAS  Google Scholar 

  144. Mac Namara F, Sullivan CE. Obstructive sleep apnea in infants and its management with nasal continuous positive airway pressure. Chest 1999; 116: 10–6

    Google Scholar 

  145. Hagan R, Bryan AC, Bryan M, et al. Neonatal chest wall afferents and regulation of respiration. J Appl Physiol 1977; 42: 362–6

    PubMed  CAS  Google Scholar 

  146. Miller RW, Pollack MM, Murphy TM, et al. Effectiveness of continuous positive airway pressure in the treatment of bronchomalacia in infants: a bronchoscopic documentation. Crit Care Med 1986; 14: 125–7

    PubMed  Google Scholar 

  147. Durand M, Mc Cann E, Brady JP. Effect of continuous positive airway pressure on the ventilatory response to CO2 in preterm infants. Pediatrics 1983; 71: 634–8

    PubMed  CAS  Google Scholar 

  148. Moa G, Nilsson K. Nasal continuous positive airway pressure: experiences with a new technical approach. Acta Paediatr 1993; 82: 210–11

    PubMed  CAS  Google Scholar 

  149. Marshall TA, Deeder R, Pai S, et al. Physiologic changes associated with endotracheal intubation in preterm infants. Crit Care Med 1984; 12: 501–3

    PubMed  CAS  Google Scholar 

  150. Jarreau PH, Farhat M, Desfrere L, et al. Nouvelles modalites d’utilisation de la PEP nasale In: Relier JP, editor. Progres en neonatalogie. Paris: Karger, 1996; 16: 110–118

    Google Scholar 

  151. Klausner JF, Lee AY, Hutchinson AA. Decreased imposed work with a new nasal continuous positive airway pressure device. Pediatr Pulmonol 1996; 22: 188–94

    PubMed  CAS  Google Scholar 

  152. Ahluwalia JS, White DK, Morley CJ. Infant flow driver or single prong nasal continuous positive airway pressure: short-term physiological effects. Acta Paediatr 1998; 87: 325–27

    PubMed  CAS  Google Scholar 

  153. Telenko T, Peliowski A, Hudson-Mason A. CPAP in the treatment of apnea of prematurity: comparison of 2 CPAP delivery systems [abstract]. Pediatr Res 1999; 45: 288A

    Google Scholar 

  154. Roberton NR. Does CPAP work when it really matters? Acta Paediatr 1993; 82: 206–7

    PubMed  CAS  Google Scholar 

  155. Locke RG, Wolfson MR, Shaffer TH, et al. Inadvertent administration of positive end-distending pressure during nasal cannula flow. Pediatrics 1993; 91: 135–8

    PubMed  CAS  Google Scholar 

  156. Alpan G, Goder K, Glick B, et al. Pneumopericardium during continuous positive airway pressure in respiratory distress syndrome. Crit Care Med 1984; 12: 1080–1

    PubMed  CAS  Google Scholar 

  157. Hall RT, Rhodes PG. Pneumothorax and pneumomediastinum in infants with idiopathic respiratory distress syndrome receiving continuous airway pressure. Pediatrics 1975; 55: 493–6

    PubMed  CAS  Google Scholar 

  158. Wong W, Fok TF, Ng PC, et al. Vascular air embolism: a rare complication of nasal CPAP. J Paediatr Child Health 1997; 33: 444–5

    PubMed  CAS  Google Scholar 

  159. Hsu HS, Chen W, Wang NK. Effect of continuous positive airway pressure on cardiac output in neonates. Chung Hua Min Kuo Hsiao Erh Ko I Hsueh Hui Tsa Chih 1996; 37: 353–6

    PubMed  CAS  Google Scholar 

  160. Loftus BC, Ahn J, Haddad J Jr. Neonatal nasal deformities secondary to nasal continuous positive airway pressure. Laryngoscope 1994; 104: 1019–22

    PubMed  CAS  Google Scholar 

  161. Moloney G, Tudehope DI. Severe choanal stenosis complicating nasopharyngeal CPAP. J Paediatr Child Health 1993; 29: 72

    PubMed  CAS  Google Scholar 

  162. Abdel-Hady H, Mohareb S, Khashaba M, et al. Randomized controlled trial of discontinuation of nasal-CPAP in stable preterm infants breathing room air. Acta Paediatr 1998; 87: 82–7

    PubMed  CAS  Google Scholar 

  163. Claris O, Salle BL, Lapillonne A, et al. Nouvelle technique de pression positive continue par voie nasale en neonatologie. Arch Pediatr 1996; 3: 452–6

    PubMed  CAS  Google Scholar 

  164. Jaile JC, Levin T, Wung JT, et al. Benign gaseous distension of the bowel in premature infants treated with nasal continuous airway pressure: a study of contributing factors. AJR Am J Roentgenol 1992; 158: 125–7

    PubMed  CAS  Google Scholar 

  165. Svenningsen NW, Andreasson B, Lindroth M. Diuresis and urine concentration during CPAP in newborn infants. Acta Paediatr Scand 1984; 73: 727–32

    PubMed  CAS  Google Scholar 

  166. Tulassay T, Machay T, Kiszel J, Varga J. Effect of continuous positive airway pressure on renal function in prematures. Biol Neonate 1983; 43: 152–7

    PubMed  CAS  Google Scholar 

  167. Cowan F, Thoresen M. The effects of intermittent positive pressure ventilation on cerebral arterial and venous blood velocities in the newborn infant. Acta Paediatr Scand 1987; 76: 239–47

    PubMed  CAS  Google Scholar 

  168. Harding JE, Miles FKI, Becroft DMO, et al. Chest physiotherapy may be associated with brain damage in extremely premature infants. J Pediatr 1998; 132: 440–4

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Michel Hascoet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hascoet, JM., Hamon, I. & Boutroy, MJ. Risks and Benefits of Therapies for Apnoea in Premature Infants. Drug-Safety 23, 363–379 (2000). https://doi.org/10.2165/00002018-200023050-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-200023050-00002

Keywords

Navigation