Skip to main content
Log in

Utility of Acetylcysteine in Treating Poisonings and Adverse Drug Reactions

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

As recognition of the role of free radicals and reactive toxins in the pathogenesis of disease, poisoning, and adverse drug reactions has evolved, interest in the use of acetylcysteine as a modulator of these effects has steadily increased in recent years. Acetylcysteine is commonly thought to serve as a glutathione precursor and consequently can increase or sustain intracellular glutathione which scavenges reactive oxygen species caused by toxins or subsequent tissue injury. At least 10 additional mechanisms of action for acetylcysteine have been demonstrated in various laboratory models, but a unifying framework of its actions is still to be proposed.

This paper reviews the current experimental and therapeutic status of acetylcysteine for the treatment of poisonings and adverse drug reactions. Of the 45 potential uses of acetylcysteine that were identified for the treatment of poisonings or adverse drug reactions, 14 of the toxic effects have little support for its use while promising results have been demonstrated for 27 toxicities. Currently, treatment of acute paracetamol (acetaminophen) poisoning is the only widely accepted clinical indication for acetylcysteine as a treatment for poisoning or adverse drug reactions. In many clinical situations acetylcysteine is used empirically utilising modifications of dosage regimens employed for paracetamol poisoning.

Often it is difficult to determine the benefit of therapy with acetylcysteine owing to the nature of the toxicity being treated, the use of other therapies, the presence of comorbid conditions, and the small number of patients studied. The diverse and positive nature of the investigations suggest that there is considerable promise in acetylcysteine as a research tool and pharmacological agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Table II
Fig. 2
Table III

Similar content being viewed by others

References

  1. Halliwell B. Introduction: free radicals and human disease - trick or treat? In: Thomas CE, Balaraman K, editors. Oxygen radicals and the disease process. Amsterdam: Harwood Academic Publishers, 1997: 1–14

    Google Scholar 

  2. Bast A, Haenen RMM, Doelman CJA. Oxidants and antioxidants: state of the art. Am J Med 1991: 91Suppl. 3c: 2–13

    Google Scholar 

  3. Ruffman R, Wendel A. GSH rescue by N-acetylcysteine. Klin Wochenschr 1991; 69: 857–62

    Google Scholar 

  4. Flanagan RJ. The role of acetylcysteine in clinical toxicology. Med Toxicol 1987; 2: 93–104

    PubMed  CAS  Google Scholar 

  5. Flanagan RJ, Meredith TJ. Use of N-acetylcysteine in clinical toxicology. Am J Med 1991: 91Suppl. 3c: 131–9

    Google Scholar 

  6. Coccini T, Randine MG, Baiardi P, et al. Hepatic glutathione depletion induced by α-amanitin poisoning: study in laboratory animals [abstract]. 19th International Congress of the European Association of Poisons Centres and Clinical Toxicologists: 1999 Jun 22-25; Dublin

  7. Locatelli C, Butera R, Gandini C, et al. Intravenous N-acetyl-L-cysteine in the treatment of amanita phalloides poisoning [abstract]. 19th International Congress of the European Association of Poisons Centres and Clinical Toxicologists: 1999 Jun 22-25; Dublin

  8. Schneider SM, Vanscoy GJ, Michelson EA. Failure of N-acetylcysteine to reduce alpha amanitin toxicity [abstract]. Vet Human Toxicol 1989; 31: 359

    Google Scholar 

  9. Nelson BS, Heischober B. Betel nut: a common drug used by naturalized citizens from India, Far East Asia, and the South Pacific Islands. Ann Emerg Med 1999; 34: 238–43

    PubMed  CAS  Google Scholar 

  10. Chatterjee A, Deb S. Genotoxic effect of arecoline given either by the peritoneal or oral route in murine bone marrow cells and the influence of N-acetylcysteine. Cancer Lett 1999; 139: 23–31

    PubMed  CAS  Google Scholar 

  11. Oikawa S, Yamada K, Yamashita N, et al. N-acetylcysteine, a cancer chemopreventive agent, causes oxidative damage to cellular and isolated DNA. Carcinogenesis 1999; 20: 1485–90

    PubMed  CAS  Google Scholar 

  12. Shum S, Skarbovig J, Habersang R. Acute lethal arsenite poisoning in mice: effect of treatment with n-acetylcysteine, d-penicillamine and dimercaprol on survival time. Vet Human Toxicol 1981; 23Suppl. 1: 39–42

    CAS  Google Scholar 

  13. Henderson P, Hale TW, Shum S. N-acetylcysteine therapy of acute heavy metal poisoning in mice. Vet Human Toxicol 1985; 27: 522–5

    CAS  Google Scholar 

  14. Martin DS, Willis SE, Cline DM. N-acetylcysteine in the treatment of human arsenic poisoning. J Am Board Fam Pract 1990; 3: 293–5

    PubMed  CAS  Google Scholar 

  15. Banner Jr W, Koch M, Capin DM, et al. Experimental chelation therapy in chromium, lead, and boron intoxication with N-acetylcysteine and other compounds. Toxicol Appl Pharmacol 1986; 83: 142–7

    PubMed  CAS  Google Scholar 

  16. Ottenwalder H, Simon P. Differential effect of N-acetylcysteine on excretion of the metals Hg, Cd, Pb, and Au [letter]. Arch Toxicol 1987; 60: 401–2

    PubMed  CAS  Google Scholar 

  17. Wispriyono B, Matsuoka M, Igisu H, et al. Protection from cadmium cytotoxicity by N-acetylcysteine in LLC-PK1 cells. J Pharmacol Exp Ther 1998; 287: 344–51

    PubMed  CAS  Google Scholar 

  18. Shaikh ZA, Vu TT, Zaman K. Oxidative stress as a mechanism of chronic cadmium-induced hepatotoxicity and renal toxicity and protection by antioxidants. Toxicol Appl Pharmacol. 1999; 154: 256–63

    PubMed  CAS  Google Scholar 

  19. Shaikh ZA, Zaman K, Tang W, et al. Treatment of chronic cadmium nephrotoxicity by N-acetyl cysteine. Toxicol Lett 1999; 104(1-2): 137–42

    PubMed  CAS  Google Scholar 

  20. Howard RJMW, Blake DR, Pall H, et al. Allopurinol/N-acetylcysteine for carbon monoxide poisoning [letter]. Lancet 1987; II: 628–9

    Google Scholar 

  21. Fleming LE, Hodgson M, Ambre J, et al. Carbon tetrachloride toxicity: Agency for Toxic Substances and Disease Registry. Am Fam Physician 1992; 46: 1199–207

    Google Scholar 

  22. Valles EG, de Castro CR, Castro JA. N-acetylcysteine is an early but also a late preventive agent against carbon tetrachloride-induced liver necrosis. Toxicol Lett 1994; 71: 87–95

    PubMed  CAS  Google Scholar 

  23. Ruprah M, Mant TG, Flanagan RJ. Acute carbon tetrachloride poisoning in 19 patients: implications for diagnosis and treatment. Lancet 1985; I: 1027–9

    Google Scholar 

  24. Mathieson PW, Williams G, MacSweeney JE. Survival after massive ingestion of carbon tetrachloride treated by intravenous infusion of acetylcysteine. Hum Toxicol 1985; 4: 627–31

    PubMed  CAS  Google Scholar 

  25. Liu AJ, Richardson MA. Effects of N-acetylcysteine on experimentally induced esophageal lye injury. Ann Otol Rhinol Laryngol 1985; 94: 477–82

    PubMed  CAS  Google Scholar 

  26. Brown SI, Hook CW. Treatment of corneal destruction with collagenase inhibitors. Trans Am Acad Ophthalmol Otolaryngol 1971: 75: 1199–207

    PubMed  CAS  Google Scholar 

  27. Vasallo S, Howland MA. Severe dichromate poisoning: survival after therapy with intravenous N-acetylcysteine and hemodialysis [abstract]. Vet Human Toxicol 1988; 30: 347

    Google Scholar 

  28. Endo A, Watanabe T. Analysis of protective activity of N-acetylcysteine against teratogenicity of heavy metals. Reprod Toxicol 1988; 2: 141–4

    PubMed  CAS  Google Scholar 

  29. Appenroth D, Winnefeld K, Heinz S, et al. Beneficial effect of acetylcysteine on cisplatin nephrotoxicity in rats. J Appl Toxicol 1993; 13: 189–98

    PubMed  CAS  Google Scholar 

  30. Sugihara K, Nakano S, Gemba M. Effect of cisplatin on in vitro production of lipid peroxides in rat kidney cortex. Jpn J Pharmacol 1987; 44: 71–6

    PubMed  CAS  Google Scholar 

  31. Miyajima A, Nakashima J, Yoshioka K, et al. Role of reactive oxygen species in cis-dichlorodiammineplatinum-induced cytotoxicity on bladder cancer cells. Br J Cancer 1997; 76: 206–10

    PubMed  CAS  Google Scholar 

  32. Miyajima A, Nakashima J, Tachibana M, et al. N-acetylcysteine modifies cis-dichlorodiammineplatinum-induced effects in bladder cancer cells. Jpn J Cancer Res 1999; 90: 565–70

    PubMed  CAS  Google Scholar 

  33. Roller A, Weller M. Antioxidants specifically inhibit cisplatin cytotoxicity of human malignant glioma cells. Anticancer Res 1998; 18(6A): 4493–8

    PubMed  CAS  Google Scholar 

  34. Sheikh-Hamad D, Timmins K, Jalali Z. Cisplatin-induced renal toxicity: possible reversal by N-acetylcysteine treatment. J Am Soc Nephrol 1997; 8: 1640–5

    PubMed  CAS  Google Scholar 

  35. Gerson SL, Arce C, Meltzer HY. N-desmethylclozapine: a clozapine metabolite that suppresses haemopoiesis. Br J Haematol 1994; 86: 555–61

    PubMed  CAS  Google Scholar 

  36. Pirmohamed M, Park K. Mechanism of clozapine-induced agranulocytosis: current status of research and implications for drug development. CNS Drugs 1997; 7: 139–58

    CAS  Google Scholar 

  37. Williams DP, Pirmohamed M, Naisbitt DJ, et al. Neutrophil cytotoxicity of the chemically reactive metabolite(s) of clozapine: possible role in agranulocytosis. J Pharmacol Exp Ther 1997; 283: 1375–82

    PubMed  CAS  Google Scholar 

  38. Walmsley SL, Khorasheh S, Singer J, et al. A randomized trial of N-acetylcysteine for prevention of trimethoprim-sulfamethoxazole hypersensitivity reactions in Pneumocystis carinii pneumonia prophylaxis. J Acquir Immune Defic Syndr Hum Retrovirol 1998; 19: 498–505

    PubMed  CAS  Google Scholar 

  39. Akerlund B, Tynell E, Bratt G, et al. N-acetylcysteine treatment and the risk of toxic reactions to trimethoprim-sulphamethoxazole in primary Pneumocystis carinii prophylaxis in HIV-infected patients. J Infect 1997; 35(2): 143–7

    PubMed  CAS  Google Scholar 

  40. Bhattacharya R, Rao PV. Cyanide induced DNA fragmentation in mammalian cell cultures. Toxicol 1997; 124: 207–15

    Google Scholar 

  41. Clarke L, Waxman DJ. Oxidative metabolism of cyclophosphamide: identification of the hepatic monooxygenase catalysts of drug activation. Cancer Res 1989; 49: 2344–50

    PubMed  CAS  Google Scholar 

  42. Le Balnc GA, Wasman DJ. Mechanisms of cyclophosphamide action on hepatic P-450 expression. Cancer Res 1984; 44: 4615–21

    Google Scholar 

  43. Weltin D, Aupeix K, Iltis C, et al. N-acetylcysteine protects lymphocytes from nitrogen mustard-induced apoptosis. Biochem Pharmacol 1996; 51: 1123–9

    PubMed  CAS  Google Scholar 

  44. Berrigan MJ, Marinello AJ, Pavelic Z, et al. Protective role of thiols in cyclophosphamide-induced urotoxicity and depression of hepatic drug metabolism. Cancer Res 1982; 42: 3688–95

    PubMed  CAS  Google Scholar 

  45. McClure MT, Stupans I. Investigation of the mechanism by which cyclophosphamide alters cytochrome P450 in male rats. Biochem Pharmacol 1992; 43: 2655–8

    PubMed  CAS  Google Scholar 

  46. Tariq M, Morais C, Sobki S, et al. N-acetylcysteine attenuates cyclosporin-induced nephrotoxicity in rats. Nephrol Dial Transplant 1999; 14: 923–9

    PubMed  CAS  Google Scholar 

  47. Sawyer DB, Fukazawa R, Arstall MA, et al. Daunorubicin-induced apoptosis in rat cardiac myocytes is inhibited by dexrazoxane. Circ Res 1999; 84: 257–65

    PubMed  CAS  Google Scholar 

  48. Meyers C, Bonow R, Palmeri S, et al. A randomized controlled trial assessing the prevention of doxorubicin cardiomyopathy in N-acetylcysteine. Semin Oncol 1983; 10: 53–5

    Google Scholar 

  49. Villani F, Galimberti M, Monti E, et al. Effect of GSH and N-acetylcysteine on in vitro and in vivo cardiac toxicity of doxorubin. Free Radic Res Commun 1990; 11: 145–51

    PubMed  CAS  Google Scholar 

  50. Doroshow JH, Locker GY, Irfrim I, et al. Prevention of doxorubicin cardiac toxicity in the mouse by N-acetylcysteine. Clin Invest 1981; 68: 1053–64

    CAS  Google Scholar 

  51. Mallery SR, Clark YM, Ness GM, et al. Thiol redox modulation of doxorubicin mediated cytotoxicity in cultured AIDS-related Kaposi’s sarcoma cells. J Cell Biochem 1999; 73: 259–77

    PubMed  CAS  Google Scholar 

  52. Szabo S, Trier JS, Frankel P. Sulfhydryl compounds may mediate gastric cytoprotection. Science 1981; 214: 200–2

    PubMed  CAS  Google Scholar 

  53. Lu SC, Kuhlenham J, Robert A, et al. Role of glutathione status in protection against ethanol-induced gastric lesions. Pharmacol 1989; 38: 57–60

    CAS  Google Scholar 

  54. Lopez RA, Tornwall MS, Henagan JM, et al. N-acetyl-cysteine: protective agent or promoter of gastric damage? Proc Soc Exp Biol Med 1991; 197: 273–8

    PubMed  CAS  Google Scholar 

  55. Wallace JL. Increased resistance of the rat gastric mucosa to hemorrhagic damage after exposure to an irritant: role of the “mucoid cap” and prostaglandin synthesis. Surgery 1990; 108: 467–74

    Google Scholar 

  56. Barreto JC, Smith GS, Tornwall MS, et al. Protective action of oral N-acetylcysteine against gastric injury: role of hypertonic saline. Am J Physiol 1993; 264: G422–6

    PubMed  CAS  Google Scholar 

  57. Puddy IB, Beilen LJ, Vandongen R, et al. Evidence for a direct effect of alcohol consumption on blood pressure in normotensive men: a randomized controlled trial. Hypertension 1985; 7: 707–13

    Google Scholar 

  58. Vasdev S, Gupta IP, Sampson CA, et al. Ethanol induced hypertension in rats: reversibility and role of intracellular cytosolic calcium. Artery 1993; 20: 19–43

    PubMed  CAS  Google Scholar 

  59. Vasdev S, Mian T, Longerich L, et al. N-acetylcysteine attenuates ethanol induced hypertension in rats. Artery 1995; 21: 312–36

    PubMed  CAS  Google Scholar 

  60. Lorber A, Baumgartner WA, Bovy RA, et al. Clinical application for heavy metal-complexing potential of N-acetylcysteine. J Clin Pharmacol 1973; 13: 332–6

    PubMed  CAS  Google Scholar 

  61. Godfrey NF, Peter A, Simon TM, et al. Intravenous N-acetylcysteine treatment of hematologic reactions to chrysotherapy. Rheumatology 1982; 9: 519–26

    CAS  Google Scholar 

  62. Vreugdenhill G, Swaak AJG. Effects of oral N-acetylcysteine on gold levels in rheumatoid arthritis [letter]. Br J Rheumatol 1990; 29: 404–5

    Google Scholar 

  63. Gurer H, Ozgunes H, Neal R, et al. Antioxidant effects of N-acetylcysteine and succimer in red blood cells from lead-exposed rats. Toxicol 1998; 128: 181–9

    CAS  Google Scholar 

  64. Yusof M, Yildiz D, Ercal N. N-acetyl-L-cysteine protects against delta-aminolevulinic acid-induced 8-hydroxydeoxy-guanosine formation. Toxicol Lett 1999: 106: 41–7

    PubMed  CAS  Google Scholar 

  65. Ballatori N, Lieberman MW, Wang W. N-acetylcysteine as an antidote in methylmercury poisoning. Environ Health Perspect 1998; 106: 267–71

    PubMed  CAS  Google Scholar 

  66. Hjortsø E, Fomsgaard JS, Fogh-Andersen N. Does N-acetylcysteine increase the excretion of trace metals (calcium, magnesium, iron, zinc and copper) when given orally? Eur J Clin Pharmacol 1990; 39: 29–31

    PubMed  Google Scholar 

  67. Livardjani F, Lediga M, Koppa P, et al. Lung and blood super-oxide dismutase activity in mercury vapor exposed rats: effect of N-acetylcysteine treatment. Toxicol 1991; 66: 289–95

    CAS  Google Scholar 

  68. Zalups RK, Barfuss DW. Participation of mercuric conjugates of cysteine, homocysteine, and N-acetylcysteine in mechanisms involved in the renal tubular uptake of inorganic mercury. J Am Soc Nephrol 1998; 9: 551–61

    PubMed  CAS  Google Scholar 

  69. Zalups RK. Basolateral uptake of mercuric conjugates of N-acetylcysteine and cysteine in the kidney involves the organic anion transport system. J Toxicol Environ Health 1998: 55: 13–29

    CAS  Google Scholar 

  70. Lu FC. Mercury as a food contaminant. WHO Chron 1974; 28: 8–11

    Google Scholar 

  71. Slott VL, Hales BF. Effect of gluthione depletion by buthione sulfoximine on rat embryonic development in vitro. Biochem Pharmacol 1987; 36: 683–8

    PubMed  CAS  Google Scholar 

  72. Thomas DJ, Smith JC. Effects of coadministered low-molecular-weight thiol compounds on short-term distribution of methyl mercury in the rat. Toxicol Appl Pharmacol 1982; 62: 104–10

    PubMed  CAS  Google Scholar 

  73. Lund ME, Banner Jr W, Clarkson TW, et al. Treatment of acute methylmercury ingestion by hemodialysis with N-acetylcysteine (Mucomyst) infusion and 2, 3 dimercaptopropane sulfonate. Clin Toxicol 1984; 22: 31–49

    CAS  Google Scholar 

  74. Wright RO, Magnani B, Shannon MW, et al. N-acetylcysteine reduces methemoglobin in vitro. Ann Emerg Med 1996; 28: 499–503

    PubMed  CAS  Google Scholar 

  75. Rosen PJ, Johnson C, McGehee WG, et al. Failure of methylene blue treatment in toxic methemoglobinemia. Ann Intern Med 1971; 75: 93–6

    Google Scholar 

  76. Wright RO, Woof AD, Shannon MW, et al. N-acetylcysteine reduces methemoglobin in an in-vitro model of glucose-6-phosphate dehydrogenase deficiency. Acad Emerg Med 1998; 5: 225–9

    PubMed  CAS  Google Scholar 

  77. Tanen D, Lo Vecchio F, Curry S. N-acetylcysteine is not effective in rapidly reducing methemoglobinemia [abstract]. J Toxicol Clin Toxicol 1999; 37: 642–3

    Google Scholar 

  78. Shen W, Hoener B. Mitigation of nitrofurantoin-induced toxicity in the perfused rat liver. Human Exp Toxicol 1996; 15(5): 428–34

    CAS  Google Scholar 

  79. Makin AJ, Wendon J, Williams R. A 7-year experience of severe acetaminophen-induced hepatotoxicity (1987-1993). Gastroenterology 1995; 109: 1907–16

    PubMed  CAS  Google Scholar 

  80. Schiodt FV, Rochling FA, Casey DL, et al. Acetaminophen toxicity in an urban county hospital. N Engl J Med 1997; 337: 1112–7

    PubMed  CAS  Google Scholar 

  81. Rivera-Penera T, Gugig R, Davis J, et al. Outcome of acetaminophen overdose in pediatric patients and factors contributing to liver toxicity. J Pediatr 1997; 130: 300–4

    PubMed  CAS  Google Scholar 

  82. Heubi JE, Barbacci MB, Zimmerman HJ. Therapeutic misadventures with acetaminophen: hepatotoxicity after multiple doses in children. J Pediatr 1998; 132: 22–7

    PubMed  CAS  Google Scholar 

  83. Janes JM, Routledge PA. Recent developments in the management of paracetamol (acetaminophen) poisoning. Drug Saf 1992; 7: 170–7

    PubMed  CAS  Google Scholar 

  84. Brotodihardjo AE, Batey RG, Farrell GC, et al. Hepatotoxicity from paracetamol self-poisoning in western Sydney: a continuing challenge. Med J Aust 1992; 157: 382–5

    PubMed  CAS  Google Scholar 

  85. Chan TY, Chan AY, Critchley JA. Paracetamol poisoning and hepatotoxicity in Chinese - the Prince of Wales Hospital (Hong Kong) experience. Singapore Med J 1993; 34: 299–302

    PubMed  CAS  Google Scholar 

  86. Davidson DGD, Eastham WN. Acute liver necrosis following overdose of paracetamol. BMJ 1966; 2: 497–9

    PubMed  CAS  Google Scholar 

  87. Thomson JS, Prescott LF. Liver damage and impaired glucose tolerance after paracetamol overdosage. BMJ 1966; 2: 506–7

    PubMed  CAS  Google Scholar 

  88. Jollow DJ, Mitchell JR, Potter WZ, et al. Acetaminophen-induced hepatic necrosis. II: role of covalent binding in vivo. J Pharmacol Exp Ther 1973; 187: 195–202

    PubMed  CAS  Google Scholar 

  89. Dahlin DC, Miwa GT, Lu AYH, et al. N-acetyl-p-benzoquinone imine: a cytochrome P-450-mediated oxidation product of acetaminophen. Proc Natl Acad Sci U S A 1984: 81: 1327–31

    PubMed  CAS  Google Scholar 

  90. Thummel KE, Lee CA, Kunze KL, et al. Oxidation of acetaminophen to N-acetyl-p-benzoquinone imine by human CYP3A4. Biochem Pharmacol 1993; 45: 1563–9

    PubMed  CAS  Google Scholar 

  91. Lee SST, Buters JTM, Pineau T, et al. Role of CYP2E1 in the hepatotoxicity of acetaminophen. J Biol Chem 1996; 271: 12063–7

    PubMed  CAS  Google Scholar 

  92. Miners JO, Drew R, Birkett DJ. Mechanism of action of paracetamol protective agents in mice in vivo. Biochem Pharmacol 1984; 33: 2995–3000

    PubMed  CAS  Google Scholar 

  93. Prescott LF. Paracetamol overdosage: pharmacological considerations and clinical management. Drugs 1983; 25: 290–314

    PubMed  CAS  Google Scholar 

  94. Rumack BH, Matthew H. Acetaminophen poisoning and toxicity. Pediatrics 1975; 55: 871–6

    PubMed  CAS  Google Scholar 

  95. Prescott LF, Illingworth RN, Critchley JAJH, et al. Intravenous acetylcysteine: the treatment of choice for paracetamol poisoning. BMJ 1979; 2: 1097–100

    PubMed  CAS  Google Scholar 

  96. Smilkstein MJ, Knapp GL, Kulig KW, et al. Efficacy of oral N-acetylcysteine in the treatment of acetaminophen overdose: Analysis ofthe national multicenter study (1976-1985). N Engl J Med 1988; 319: 1557–62

    PubMed  CAS  Google Scholar 

  97. Keays R, Harrison PM, Wendon JA, et al. Intravenous acetylcysteine in paracetamol-induced fulminant hepatic failure: a prospective controlled trial. BMJ 1991; 303: 1026–9

    PubMed  CAS  Google Scholar 

  98. Jones AL. Mechanism of action and value of N-acetylcysteine in the treatment of early and late acetaminophen poisoning: a critical review. J Toxicol Clin Toxicol 1998; 36: 277–85

    PubMed  CAS  Google Scholar 

  99. Harrison PM, Keays R, Bray GP, et al. Improved outcome of paracetamol induced fulminant hepatic failure by late administration of acetylcysteine. Lancet 1990; 335: 1572–3

    PubMed  CAS  Google Scholar 

  100. Rey C, Ajzenberg N, Tchernia G, et al. Insuffisance hepatocellulaire aigue au paracetamol: faut-il prolonger la duree traitement par la N-acetyl cysteine. Arch Pediatr 1995; 2: 662–6

    PubMed  CAS  Google Scholar 

  101. Makin AJ, Williams R. Acetaminophen-induced hepatotoxicity: predisposing factors and treatments. Adv Intern Med 1997; 42: 453–83

    PubMed  CAS  Google Scholar 

  102. Routledge P, Vale JA, Bateman DN, et al. Paracetamol (acetaminophen) poisoning: no need to change current guidelines to accident departments. BMJ 1998; 317: 1609–10

    PubMed  CAS  Google Scholar 

  103. Lauterburg BH, Corcoran GB, Mitchell JR. Mechanism of action of N-acetylcysteine in the protection against the hepatotoxicity of acetaminophen in rats in vivo. J Clin Invest 1983; 71: 980–91

    PubMed  CAS  Google Scholar 

  104. Mitchell JR, Jollow DJ, Potter WZ, et al. Acetaminophen-induced hepatic necrosis: IV: protective role of glutathione. J Pharmacol Exp Ther 1973; 187: 211–7

    PubMed  CAS  Google Scholar 

  105. Mitchell JR, Thorgeirsson SS, Potter WZ, et al. Acetaminophen-induced hepatic injury: protective role of glutathione in man and rationale for therapy. Clin Pharmacol Ther 1974; 16: 676–84

    PubMed  CAS  Google Scholar 

  106. Slattery JT, Wilson JM, Kalhorn TF, et al. Dose-dependent pharmacokinetics of acetaminophen: evidence for glutathione depletion in humans. Clin Pharmacol Ther 1987; 41: 413–8

    PubMed  CAS  Google Scholar 

  107. Galinsky RE, Levy G. Effect of N-acetylcysteine on the pharmacokinetics of acetaminophen in rats. Life Sci 1979; 25: 693–700

    PubMed  CAS  Google Scholar 

  108. Lin JH, Levy G. Renal clearance of inorganic sulfate in rats: effect of acetaminophen-induced depletion of endogenous sulfate. J Pharm Sci 1983; 72: 213–7

    PubMed  CAS  Google Scholar 

  109. Corcoran GB, Mitchell JR, Vaishnav YN, et al. Evidence that acetaminophen and N-hydroxyacetaminophen form a common arylating intermediate, N-acetyl-p-benzoquinoneimine. Mol Pharmacol 1980; 18: 536–42

    PubMed  CAS  Google Scholar 

  110. Smilkstein MJ, Bronstein AC, Linden C, et al. Acetaminophen overdose: a 48 hour intravenous N-acetylcysteine treatment protocol. Ann Emerg Med 1991; 20: 1058–63

    PubMed  CAS  Google Scholar 

  111. Holt S, Goodier D, Marley R, et al. Improvement in renal function in hepatorenal syndrome with N-acetylcysteine. Lancet 1999; 353: 294–5

    PubMed  CAS  Google Scholar 

  112. Jaeschke H, Mitchell JR. Mitochondria and xanthine oxidase both generate reactive oxygen species in isolated perfused rat liver after hypoxic injury. Biochem Biophys Res Commun 1989; 160: 140–7

    PubMed  CAS  Google Scholar 

  113. Bruno MK, Cohen SD, Khairallah EA. Antidotal effectiveness of N-acetylcysteine in reversing acetaminophen-induced hepatotoxicity: enhancement of the proteolysis of arylated proteins. Biochem Pharmacol 1988; 37: 4319–25

    PubMed  CAS  Google Scholar 

  114. Devlin J, Ellis AE, McPeake J, et al. N-acetylcysteine improves indocyanine green extraction and oxygen transport during hepatic dysfunction. Crit Care Med 1997; 25: 236–42

    PubMed  CAS  Google Scholar 

  115. Lopez BL, Snyder JW, Birenbaum DS, et al. N-acetylcysteine enhances endothelium-dependent vasorelaxation in the isolated rat mesenteric artery. Ann Emerg Med 1998; 32: 405–10

    PubMed  CAS  Google Scholar 

  116. Perry HE, Shannon MW. Efficacy of oral versus intravenous N-acetylcysteine in acetaminophen overdose: results of an open-label, clinical trial. J Pediatr 1998; 132: 149–52

    PubMed  CAS  Google Scholar 

  117. Dhawan A, Sorrell MF. Acetaminophen overdose: Need to consider intravenous preparation of N-acetylcysteine in the United States. Am J Gastroenterol 1998; 91: 1476

    Google Scholar 

  118. Yip L, Dart RC, Hurlbut KM. Intravenous administration of oral N-acetylcysteine. Crit Care Med 1998; 26: 40–3

    PubMed  CAS  Google Scholar 

  119. Chan TYK, Critchley JAJH. Adverse reactions to intravenous N-acetylcysteine in Chinese patients with paracetamol (acetaminophen) poisoning. Hum Exp Toxicol 1994; 13: 542–4

    PubMed  CAS  Google Scholar 

  120. Bailey B, McGuigan MA. Management of anaphylactoid reactions to intravenous N-acetylcysteine. Ann Emerg Med 1998; 31: 710–5

    PubMed  CAS  Google Scholar 

  121. Wright RO, Anderson AC, Lesko SL, et al. Effect of metoclopramide dose on preventing emesis after oral administration of N-acetylcysteine for acetaminophen overdose. J Toxicol Clin Toxicol 1999; 37: 35–42

    PubMed  CAS  Google Scholar 

  122. Buckley NA, Whyte IM, O’Connell DL, et al. Oral or intravenous N-acetylcysteine: which is the treatment of choice for acetaminophen (paracetamol) poisoning? J Toxicol Clin Toxicol 1999; 37: 759–67

    PubMed  CAS  Google Scholar 

  123. Buechel DW, Haverlah VC, Gardner ME. Pennyroyal oil ingestion: report of a case. J Am Osteopath Assoc 1983; 82: 793–4

    PubMed  CAS  Google Scholar 

  124. Anderson IB, Mullen WH, Meeker JE, et al. Pennyroyal toxicity: measurement of toxic metabolite levels in two cases and review of the literature. Ann Intern Med 1996; 124: 726–34

    PubMed  CAS  Google Scholar 

  125. Redondo P, de Felipe I, de la Pena A, et al. Drug-induced hypersensitivity syndrome and toxic epidermal necrolysis. Treatment with N-acetylcysteine. Br J Dermatol 1997; 136(4): 645–6

    PubMed  CAS  Google Scholar 

  126. Sarnstrand B, Jansson AH, Matuseviciene G, et al. N,N’-diacetyl- L-cystine - the disulfide dimer of N-acetylcysteine - is a potent modulator of contact sensitivity/delayed type hypersensitivity reactions in rodents. J Pharmacol Exp Ther 1999: 288: 1174–84

    PubMed  CAS  Google Scholar 

  127. Sciuto AM, Strickland PT, Kennedy TP, et al. Protective effects of N-acetylcysteine treatment after phosgene exposure in rabbits. Am J Respir Crit Care Med 1995; 151(Pt 1): 768–72

    PubMed  CAS  Google Scholar 

  128. Oda T, Iwaoka J, Komatsu N, et al. Involvement of N-acetylcysteine-sensitive pathways in ricin-induced apoptotic cell death in U937 cells. Biosci Biotechnol Biochem 1999; 63: 341–8

    PubMed  CAS  Google Scholar 

  129. Gabay C, De Bandt M, Palazzo E. Sulphasalazine-related life-threatening side effects: is N-acetylcysteine of therapeutic value? Clin Exp Rheumatol 1993; 11(4): 417–20

    PubMed  CAS  Google Scholar 

  130. Rieder MJ, Uetrecht J, Cannon NH, et al. Sulfonamide hypersensitivity reactions: reversal of hydroxylamine toxicity by N-acetylcysteine in lymphocytes of patients and normal volunteers [abstract]. Pediatr Res 1988; 23: 263A

    Google Scholar 

  131. Meggs WJ, Cahill-Morasco R, Shih RD, et al. Effects of Prussian blue and N-acetylcysteine on thallium toxicity in mice. J Toxicol Clin Toxicol 1997; 35(2): 163–6

    PubMed  CAS  Google Scholar 

  132. Appenroth D, Winnefeld K. Is thallium-induced nephrotoxicity in rats connected with riboflavin and/or GSH?: reconsideration of hypotheses on the mechanism of thallium toxicity. J Appl Toxicol 1999; 19: 61–6

    PubMed  CAS  Google Scholar 

  133. Gogu SR, Agrawal KC. The protective role of zinc and N-acetylcysteine in modulating zidovudine induced hematopoietic toxicity. Life Sci 1996; 59: 1323–9

    PubMed  CAS  Google Scholar 

  134. Cotgreave IA. N-acetylcysteine: pharmacological considerations and experimental and clinical applications. Adv Pharmacol 1997; 38: 205–27

    PubMed  CAS  Google Scholar 

  135. Saikumar P, Dong Z, Mikhailov V, et al. Apoptosis: definition, mechanisms, and relevance to disease. Am J Med 1999; 107: 489–506

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Chyka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chyka, P.A., Butler, A.Y., Holliman, B.J. et al. Utility of Acetylcysteine in Treating Poisonings and Adverse Drug Reactions. Drug-Safety 22, 123–148 (2000). https://doi.org/10.2165/00002018-200022020-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-200022020-00005

Keywords

Navigation