Drug Safety

, Volume 17, Issue 1, pp 1–7 | Cite as

Mitochondrial Injury

Lessons from the Fialuridine Trial
  • Pieter Honkoop
  • Hans R. Scholte
  • Robert A. de Man
  • Solko W. Schalm
Leading Article

Summary

Fialuridine is an antiviral agent with potent activity against hepatitis B virus replication in vitro and in vivo. In a phase II study, 7 of 15 patients experienced severe toxicity due to the drug after 9 to 13 weeks of treatment. Adverse effects included nausea, vomiting and painful paraesthesia; subsequently, hepatic failure, pancreatitis, neuropathy, myopathy and lactic acidosis developed, probably due to multisystem mitochondrial toxicity.

Possible mechanisms of fialuridine toxicity include mitochondrial injury and pyruvate oxidation inhibition. While other nucleoside analogues have shown evidence of inducing mitochondrial injury (zidovudine, didanosine, zalcitabine), others to date have not (lamivudine, famciclovir). Specific recommendations for future study of existing and new nucleoside analogues include testing for toxicity after prolonged incubation, specific investigations to measure mitochondrial function, toxicological tests and well designed clinical trials with appropriate testing to monitor for any adverse effects on mitochondrial integrity and function.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Korba BE, Milman G. Acell culture assay for compounds which inhibit hepatitis B virus replication. Antiviral Res 1991; 15: 217–28PubMedCrossRefGoogle Scholar
  2. 2.
    Fourel I, Hantz O, Watanabe KA, et al. Inhibitory effects of 2′-fluorinated arabinosyl-pyrimidine nucleosides on wood-chuck hepatitis virus replication in chronically infected wood-chucks. Antimicrob Agents Chemother 1990; 34: 473–5PubMedCrossRefGoogle Scholar
  3. 3.
    Fried MW, Di Bisceglie AM, Straus SE, et al. FIAU, a new oral anti-viral agent, profoundly inhibits HBV DNA in patients with chronic hepatitis B [abstract]. Hepatology 1992; 16: 127ACrossRefGoogle Scholar
  4. 4.
    McKenzie R, Fried MW, Sallie R, et al. Hepatic failure and lactic acidosis due to fialuridine (FIAU), an investigational nucleoside analogue for chronic hepatitis B. N Engl J Med 1995; 333: 1099–105PubMedCrossRefGoogle Scholar
  5. 5.
    Kleiner DE, Gaffey MJ, Sallie R, et al. Histopathologic changes associated with fialuridine hepatotoxicity. Mod Pathol 1997; 10: 192–9PubMedGoogle Scholar
  6. 6.
    Staschke KA, Colacino JM, Mabry TE, et al. The in vitro anti-hepatitis B virus activity of FIAU [1-(2′-deoxy-2′-fluoro-1-beta-D-arabinofuranosyl-5-iodo)-uracil] is selective, reversible, and determined, at least in part, by the host cell. Antiviral Res 1994; 23: 45–61PubMedCrossRefGoogle Scholar
  7. 7.
    Manning FJ, Swartz M. Review of the fialuridine (FIAU) clinical trials. Washington, DC: National Academy Press, 1995Google Scholar
  8. 8.
    Lewis W, Dalakas MC. Mitochondrial toxicity of antiviral drugs. Nat Med 1995; 1: 417–22PubMedCrossRefGoogle Scholar
  9. 9.
    Martin JL, Brown CE, Matthews-Davis N, et al. Effects of antiviral nucleoside analogs on human DNA polymerases and mitochondrial DNA synthesis. Antimicrob Agents Chemother 1994; 38: 2743–9PubMedCrossRefGoogle Scholar
  10. 10.
    Lewis W, Meyer RR, Simpson JF, et al. Mammalian DNA polymerases alpha, beta, gamma, delta, and epsilon incorporate fialuridine (FIAU) monophosphate into DNA and are inhibited competitively by FIAU triphosphate. Biochemistry 1994; 33: 14620–4PubMedCrossRefGoogle Scholar
  11. 11.
    Parker WB, Cheng YC. Mitochondrial toxicity of antiviral nucleoside analogs. J NIH Res 1994; 6: 57–61Google Scholar
  12. 12.
    Cherrington JM, Allen SJ, McKee BH, et al. Kinetic analysis of the interaction between the diphosphate of (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl) cytosine, ddCTP, AZTTP, and FIAUTP with human DNA polymerases beta and gamma. Biochem Pharmacol 1994; 48: 1986–8PubMedCrossRefGoogle Scholar
  13. 13.
    Cui L, Yoon S, Schinazi RF, et al. Cellular and molecular events leading to mitochondrial toxicity of 1-(2-deoxy-2-fluoro-1-beta-D-arabinofuranosyl)-5-iodouracil in human liver cells. J Clin Invest 1995; 95: 555–63PubMedCrossRefGoogle Scholar
  14. 14.
    Colacino JM, Malcolm SK, Jaskunas SR. Effect of fialuridine on replication of mitochondrial DNA in CEM cells and in human hepatoblastoma cells in culture. Antimicrob Agents Chemother 1994; 38: 1997–2002PubMedCrossRefGoogle Scholar
  15. 15.
    Klecker RW, Katki AG, Collins JM. Toxicity, metabolism, DNA incorporation with lack of repair, and lactate production for 1-2′-fluoro-2′-deoxy-beta-D-arabinofuranosyl)-5-iodouracil in U-937 and MOLT-4 cells. Mol Pharmacol 1994; 46: 1204–9PubMedGoogle Scholar
  16. 16.
    Hatefi Y. The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem 1985; 54: 1015–69PubMedCrossRefGoogle Scholar
  17. 17.
    Walker JE. The NADH: ubiquinone oxidoreductase (Complex I) of respiratory chains. Q Rev Biophys 1992; 25: 253–324PubMedCrossRefGoogle Scholar
  18. 18.
    Shoffner JM, Wallace DC. Oxidative phosphorylation diseases. In: Scriver CR, Beaudet AL, Sly WS, et al., editors. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, Inc., 1995: 1535–609Google Scholar
  19. 19.
    Colacino JM. Mechanisms for the anti-hepatitis B virus activity and mitochondrial toxicity of fialuridine (FIAU). Antiviral Res 1996; 29: 125–39PubMedCrossRefGoogle Scholar
  20. 20.
    Robinson BH, Ward J, Goodyer P, et al. Respiratory chain defects in the mitochondria of cultured skin fibroblasts from three patients with lacticacidemia. J Clin Invest 1986; 77: 1422–7PubMedCrossRefGoogle Scholar
  21. 21.
    Wijburg FA, Feller N, Scholte HR, et al. Studies on the formation of lactate and pyruvate from glucose in cultured skin fibroblasts: implications for detection of respiratory chain defects. Biochem Int 1989; 19: 563–70PubMedGoogle Scholar
  22. 22.
    Chariot P, Gherardi R. Partial cytochrome c oxidase deficiency and cytoplasmic bodies in patients with zidovudine myopathy. Neuromuscul Disord 1991; 1: 357–63PubMedCrossRefGoogle Scholar
  23. 23.
    Arnaudo E, Dalakas M, Shanske S, et al. Depletion of muscle mitochondrial DNA in AIDS patients with zidovudine-induced myopathy. Lancet 1991; 337: 508–10PubMedCrossRefGoogle Scholar
  24. 24.
    Dalakas MC, Illa I, Pezeshkpour GH, et al. Mitochondrial myopathy caused by long-term zidovudine therapy. N Engl J Med 1990; 322: 1098–105PubMedCrossRefGoogle Scholar
  25. 25.
    Chen CH, Cheng YC. Delayed cytotoxicity and selective loss of mitochondrial DNA in cells treated with the anti-human immunodeficiency virus compound 2′,3′-dideoxycytidine. J Biol Chem 1989; 264: 11934–7PubMedGoogle Scholar
  26. 26.
    Lai KK, Gang DL, Zawacki JK, et al. Fulminant hepatic failure associated with 2′,3′-dideoxyinosine (ddl). Ann Intern Med 1991; 115: 283–4PubMedGoogle Scholar
  27. 27.
    Shaw T, Amor P, Civitico G, et al. In vitro antiviral activity of penciclovir, a novel purine nucleoside, against duck hepatitis B virus. Antimicrob Agents Chemother 1994; 38: 719–23PubMedCrossRefGoogle Scholar
  28. 28.
    Cirelli R, Herne K, McCrary M, et al. Famciclovir: review of clinical efficacy and safety. Antiviral Res 1996; 29: 141–51PubMedCrossRefGoogle Scholar
  29. 29.
    Korba BE, Boyd MR. Penciclovir is a selective inhibitor of hepatitis B virus replication in cultured human hepatoblastoma cells. Antimicrob Agents Chemother 1996; 40: 1282–4PubMedGoogle Scholar
  30. 30.
    Main J, Brown JL, Howells C, et al. A double-blind, placebo-controlled study to assess the effect of famciclovir on virus replication in patients with chronic hepatitis B virus infection. J Viral Hepat 1996; 3: 211–5PubMedCrossRefGoogle Scholar
  31. 31.
    Doong SL, Tsai CH, Schinazi RF, et al. Inhibition of the replication of hepatitis B virus in vitro by 2′,3′-dideoxy-3′-thiacytidine and related analogues. Proc Natl Acad Sci USA 1991; 88: 8495–9PubMedCrossRefGoogle Scholar
  32. 32.
    de Man RA, Schalm SW, Main J, et al. A dose ranging study to determine the antiviral activity and safety of lamivudine (2′-deoxy-3′-thiacytidine) in patients with chronic hepatitis B infection [abstract]. Gut 1993; 34: S5CrossRefGoogle Scholar
  33. 33.
    Dienstag JL, Perrillo RP, Schiff ER, et al. A preliminary trial of lamivudine for chronic hepatitis B infection. N Engl J Med 1995; 333: 1657–61PubMedCrossRefGoogle Scholar
  34. 34.
    Honkoop P, de Man RA, Scholte HR, et al. Effect of lamivudine treatment on morphology and function of the mitochondrial system in patients with chronic hepatitis B. Hepatology. In pressGoogle Scholar
  35. 35.
    Kruining J, Heijtink RA, Schalm SW. Antiviral agents in hepatitis B virus transfected cell lines: inhibitory and cytotoxic effect related to time of treatment. J Hepatol 1995; 22: 263–7PubMedCrossRefGoogle Scholar
  36. 36.
    Robinson BH, McKay N, Goodyer P, et al. Defective intramitochondrial NADH oxidation in skin fibroblasts from an infant with fatal neonatal lacticacidemia. Am J Hum Genet 1985; 37: 938–46PubMedGoogle Scholar
  37. 37.
    Wanders RJA, Ruiter JPN, Wijburg FA. Studies on mitochondrial oxidative phosphorylation in permeabilized human skin fibroblasts: application to mitochondrial encephalomyopathies. Biochim Biophys Acta 1993; 118: 219–22Google Scholar

Copyright information

© Adis International Limited 1997

Authors and Affiliations

  • Pieter Honkoop
    • 1
  • Hans R. Scholte
    • 2
  • Robert A. de Man
    • 1
  • Solko W. Schalm
    • 1
  1. 1.Department of Internal Medicine II (Section Hepatology)Erasmus University HospitalRotterdamThe Netherlands
  2. 2.Department of BiochemistryErasmus University HospitalRotterdamThe Netherlands

Personalised recommendations