Skip to main content
Log in

How Important Is Therapeutic Drug Monitoring in the Prediction and Avoidance of Adverse Reactions?

  • Leading Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Conclusions

TDM has greatly contributed to explaining and minimising the toxicity of agents such as theophylline, phenytoin, aminoglycosides and digoxin. The significant use of drugs with narrow therapeutic ranges will continue to require TDM resources to be available and convenient. Improved methods of characterising drug toxicities using pharmacokinetic parameters will extend the use of TDM to effectively optimise the dosage regimens of additional toxic therapies such as antineoplastics and certain investigational agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steel K, Gertman PM, Crescenzi C, et al. Iatrogenic illness on a general medical service at a university hospital. N Engl J Med 1981; 304: 638–42

    Article  PubMed  CAS  Google Scholar 

  2. Classen DC, Pestotnik SL, Evans RS, et al. Computerized surveillance of adverse drug events in hospital patients. JAMA 1991; 266: 2847–51

    Article  PubMed  CAS  Google Scholar 

  3. Leape LL, Brennan TA, Laird N, et al. The nature of adverse events in hospitalized patients. N Engl J Med 1991; 324: 377–84

    Article  PubMed  CAS  Google Scholar 

  4. Tyler LS, Nickman NA. Hospital pharmacy compliance with JCAHO standards and ASHP guidelines for reporting adverse drug reactions. Am J Hosp Pharm 1992; 49: 845–50

    PubMed  CAS  Google Scholar 

  5. Schneider JK, Mion LC, Frengley JD. Adverse drug reactions in an elderly outpatient population. Am J Hosp Pharm 1992; 49: 90–6

    PubMed  CAS  Google Scholar 

  6. Noone P, Parsons TMC, Pattison JR, et al. Experience in monitoring gentamicin therapy during treatment of serious Gram-negative sepsis. BMJ 1974; 1: 477–81

    Article  PubMed  CAS  Google Scholar 

  7. Moore RD, Smith CR, Lietman PS. The association of aminoglycoside plasma levels with mortality in patients with Gram-negative bacteremia. J Infect Dis 1984; 149: 443–8

    Article  PubMed  CAS  Google Scholar 

  8. Moore RD, Smith CR, Lietman PS. Association of aminoglycoside plasma levels with therapeutic outcome in Gram-negative pneumonia. Am J Med 1984; 77: 657–62

    Article  PubMed  CAS  Google Scholar 

  9. Bertino JS, Booker LA, Franck PA, et al. Incidence of and significant risk factors for aminoglycoside-associated nephrotoxicity in patients dosed by using individualized pharmacokinetic monitoring. J Infect Dis 1993; 167: 173–9

    Article  PubMed  Google Scholar 

  10. Dahlgren JG, Anderson ET, Hewitt WL. Gentamicin blood levels: a guide to nephrotoxicity. Antimicrob Agents Chemother 1975; 8: 58–62

    Article  PubMed  CAS  Google Scholar 

  11. Smith CR, Maxwell RR, Edwards CQ, et al. Nephrotoxicity induced by gentamicin and amikacin. John Hopkins Med J 1978; 142: 85–90

    CAS  Google Scholar 

  12. Boucher BA, Coffey BC, Kuhl DA, et al. Algorithm for assessing renal dysfunction risk in critically ill trauma patients receiving aminoglycosides. Am J Surg 1990; 160: 473–80

    Article  PubMed  CAS  Google Scholar 

  13. Smith CR, Moore RD, Lietman PS. Studies of risk factors for aminoglycoside nephrotoxicity. Am J Kidney Dis 1986; 8: 308–13

    PubMed  CAS  Google Scholar 

  14. Jaresko GS, Boucher BA, Dole EJ, et al. Risk of renal dysfunction in critically ill trauma patients receiving aminoglycosides. Clin Pharm 1989; 8: 43–8

    PubMed  CAS  Google Scholar 

  15. Park HM, Chen IW, Manitasas GT, et al. Clinical evaluation of radioimmunoassay of digoxin. J Nucl Med 1973; 14: 531–3

    PubMed  CAS  Google Scholar 

  16. Smith TW, Haber E. Digoxin intoxication: the relationship of clinical presentation to serum digoxin concentration. J Clin Invest 1970; 49: 2377–86

    Article  PubMed  CAS  Google Scholar 

  17. Evered DC, Chapman C. Plasma digoxin concentrations and digoxin toxicity in hospital patients. Br Heart J 1971; 33: 540–5

    Article  PubMed  CAS  Google Scholar 

  18. Beller GA, Smith TW, Abelmann WH, et al. Digitalis intoxication. N Engl J Med 1971; 284: 989–97

    Article  PubMed  CAS  Google Scholar 

  19. Schumacher GE, Barr JT. Applying decision analysis in therapeutic drug monitoring: using decision trees to interpret serum theophylline concentrations. Clin Pharm 1986; 5: 325–33

    PubMed  CAS  Google Scholar 

  20. Paloucek FP, Rodvold KA. Evaluation of theophylline overdoses and toxicities. Ann Emerg Med 1988; 17: 135–44

    Article  PubMed  CAS  Google Scholar 

  21. Hendeles L, Weinberger M. Theophylline: a state of the art review. Pharmacotherapy 1983; 3: 2–44

    PubMed  CAS  Google Scholar 

  22. Kutt H, Winters W, Kokenge R, et al. Diphenylhydantoin metabolism, blood levels, and toxicity. Arch Neurol 1964; 11: 642–8

    Article  PubMed  CAS  Google Scholar 

  23. Cranford RE, Leppik IE, Patrick B, et al. Intravenous phenytoin: clinical and pharmacokinetic aspects. Neurology 1978; 28: 874–80

    Article  PubMed  CAS  Google Scholar 

  24. Amdisen A. Serum level monitoring and clinical pharmacokinetics of lithium. Clin Pharmacokinet 1977; 2: 73–92

    Article  PubMed  CAS  Google Scholar 

  25. Rodighiero V. Therapeutic drug monitoring of cyclosporin. Clin Pharmacokinet 1989; 16; 27–37

    Article  PubMed  CAS  Google Scholar 

  26. Bootman JL, Wertheimer AL, Zaske DE, et al. Individualizing gentamicin dosage regimens in burn patients with Gram-negative septicemia: a cost-benefit analysis. J Pharm Sci 1979; 68: 267–72

    Article  PubMed  CAS  Google Scholar 

  27. Sveska KJ, Roffe BD, Solomon DK, et al. Outcome of patients treated by an aminoglycoside pharmacokinetic dosing service. Am J Hosp Pharm 1985; 42: 2472–8

    PubMed  CAS  Google Scholar 

  28. Crist KD, Nahata MC, Ety J. Positive impact of a therapeutic drug-monitoring program on total aminoglycoside dose and cost of hospitalization. Ther Drug Monit 1987; 9: 306–10

    Article  PubMed  CAS  Google Scholar 

  29. Destache CJ, Meyer SK, Rowley KM. Does accepting pharmacokinetic recommendations impact hospitalization? A cost-benefit analysis. Ther Drug Monit 1990; 12: 427–33

    Article  PubMed  CAS  Google Scholar 

  30. Burton ME, Ash CL, Hill DP, et al. A controlled trial of the cost benefit of computerized bayesian aminoglycoside administration. Clin Pharmacol Ther 1991; 49: 685–94

    Article  PubMed  CAS  Google Scholar 

  31. Whipple JK, Ausman RK, Franson T, et al. Effect of individualized pharmacokinetic dosing on patient outcome. Crit Care Med 1991; 19: 1480–5

    Article  PubMed  CAS  Google Scholar 

  32. Ambrose PJ, Smith WE, Palarea ER. A decade of experience with a clinical pharmacokinetic s service. Am J Hosp Pharm 1988; 45: 1879–86

    PubMed  CAS  Google Scholar 

  33. Reid LD, Mckenna DA, Horn JR. Meta-analysis of research on the effect of clinical pharmacokinetics services on therapeutic drug monitoring. Am J Hosp Pharm 1989; 46: 945–51

    Google Scholar 

  34. Ellis RF, Stephens MA, Sharp GB. Evaluation of a pharmacy-managed warfarin-monitoring service to coordinate inpatient and outpatient therapy. Am J Hosp Pharm 1992; 49: 387–94

    PubMed  CAS  Google Scholar 

  35. Miller AA, Tolley EA, Niell HB, et al. Pharmacodynamics of three daily infusions of etoposide in patients with extensive-stage small-cell lung cancer. Cancer Chemother Pharmacol 1992; 31: 161–6

    Article  PubMed  CAS  Google Scholar 

  36. Miller AA, Stewart CF, Tolley EA, et al. Clinical pharmacodynamics of continuous-infusion etoposide. Cancer Chemother Pharmacol 1990; 25: 361–6

    Article  PubMed  CAS  Google Scholar 

  37. Ratain MJ, Mick R, Schilsky RL, et al. Pharmacologically based dosing of etoposide: a means of safely increasing dose intensity. J Clin Oncol 1991; 9: 1480–6

    PubMed  CAS  Google Scholar 

  38. Ratain MJ, Schilsky RL, Choi KE, et al. Adaptive control of etoposide administration: impact of interpatient pharmaco-dynamic variability. Clin Pharmacol Ther 1989; 45: 226–33

    Article  PubMed  CAS  Google Scholar 

  39. Trump DL, Egorin MJ, Forrest A, et al. Pharmacokinetic and pharmacodynamic analysis of fluorouracil during 72-hour continuous infusion with and without dipyridamole. J Clin Oncol 1991; 9: 2027–35

    PubMed  CAS  Google Scholar 

  40. Forrest A, Masson E., Collins D. Validation of a new approach to comodelling population pharmacokinetics and pharmacodynamics of myelosuppression. Proceedings of the 1992 Annual Meeting of the American College of Clinical Pharmacy; 1992 August 9–12: Toronto. Kansas City: American College of Clinical Pharmacy, 1992

    Google Scholar 

  41. Piscitelli SC, Rodvold KA, Rushing DA, et al. Pharmacokinetics and pharmacodynamics of doxorubicin in patients with small cell lung cancer. Clin Pharmacol Ther 1993; 53: 555–61

    Article  PubMed  CAS  Google Scholar 

  42. Egorin MJ, Forrest A, Belani CP, et al. A limited sampling strategy for cyclophosphamide pharmacokinetics. Cancer Res 1989; 49: 3129–33

    PubMed  CAS  Google Scholar 

  43. Cooper MR, Lieberman R, La Rocca RV, et al. Adaptive control with feedback strategies for suramin dosing. Clin Pharmacol Ther 1992; 52: 11–23

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gentry, C.A., Rodvold, K.A. How Important Is Therapeutic Drug Monitoring in the Prediction and Avoidance of Adverse Reactions?. Drug-Safety 12, 359–363 (1995). https://doi.org/10.2165/00002018-199512060-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-199512060-00001

Keywords

Navigation