Skip to main content

Antibiotic-Induced Release of Endotoxin

A Therapeutic Paradox

Summary

There is clear experimental evidence that antibiotics increase the bioavailability of endotoxin from Gram-negative bacteria. In this review, data for 2 variables, level of endotoxin and level of bacteria, at the time point closest to 2 hours post-antibiotic exposure were abstracted as a change from baseline readings from each available study, to enable presentation in a graphical overview. This overview indicates that the phenomenon is not limited to β-lactam agents nor is it apparent only for the more rapidly bactericidal agents. However, evidence that this phenomenon is of clinical importance is scant.

With the Jarisch-Herxheimer reaction (JHR), there is clear evidence for an acute deterioration with the initiation of antibiotic therapy and yet uncertainty as to the nature of the bacterial mediator(s) of this reaction. There is no evidence to support the commonly stated concern that therapy with antibiotics with a more rapid bactericidal action may result in the sudden lysis of bacteria with the release of cell wall components and cause a deterioration that might be avoidable through the use of antibiotics with a slower time course of action.

This is a preview of subscription content, access via your institution.

References

  1. A nasty shock from antibiotics? Lancet 1985; 2: 594

  2. Hurley JC. Antibiotic-induced release of endotoxin: a reappraisal. Clin Infect Dis 1992; 15: 840–54

    PubMed  Article  CAS  Google Scholar 

  3. Bone RC, Balk RA, Cerra FB, et al. ACCP/SCCM consensus conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest 1992; 101: 1644–55

    PubMed  Article  CAS  Google Scholar 

  4. Hurley JC. Reappraisal of the role of endotoxin in the sepsis syndrome. Lancet 1993; 341: 1133–5

    PubMed  Article  CAS  Google Scholar 

  5. Brandtzaeg P, Kierulf P, Gaustad P, et al. Plasma endotoxin as a predictor of multiple organ failure and death in systemic meningococcal disease. J Infect Dis 1989; 159: 195–204

    PubMed  Article  CAS  Google Scholar 

  6. van Deventer SJH, Büller HR, ten Cate JW, et al. Experimental endotoxemia in humans: analysis of cytokine release and coagulation, fibrinolytic, and complement pathways. Blood 1990; 76: 2520–6

    PubMed  Google Scholar 

  7. Hurley JC. Endotoxemia, methods for detection and clinical correlates. Clin Microbiol Rev. 1995; 8 (2): In press

  8. Cohen J, McConnell JS. Release of endotoxin from bacteria exposed to ciprofloxacin and its prevention with polymyxin B. Eur J Clin Microbiol Infect Dis 1986; 5: 13–7

    Article  CAS  Google Scholar 

  9. Dofferhoff ASM, Nijland JH, de Vries-Hospers HG, et al. Effects of different types and combinations of antimicrobial agents on endotoxin release from gram negative bacteria: an in vitro and in vivo study. Scand J Infect Dis 1991; 23: 745–54

    PubMed  Article  CAS  Google Scholar 

  10. Mellado MC, Rodriguez-Contreras R, Mariscal A, et al. Effect of penicillin and chloramphenicol on the growth and endotoxin release by N. meningitidis. Epidemiol Infect 1991; 106: 283–8

    PubMed  Article  CAS  Google Scholar 

  11. Jackson JJ, Kropp H. Beta-lactam antibiotic-induced release of free endotoxin: in vitro comparison of penicillin-binding protein (PBP) 2-specific imipenem and PBP 3-specific ceftazidime. J Infect Dis 1992; 165: 1033–41

    PubMed  Article  CAS  Google Scholar 

  12. Bingen E, Goury V, Bennani H, et al. Bactericidal activity of beta-lactams against Haemophilus influenzae: effect on endotoxin release. J Antimicrob Chemother 1992; 30: 165–72

    PubMed  Article  CAS  Google Scholar 

  13. Van Den Berg C, De Neeling AJ, Schot CS, et al. Delayed antibiotic-induced lysis of Escherichia coli in vitro is correlated with enhancement of LPS release. Scand J Infect Dis 1992; 24: 619–27

    Article  Google Scholar 

  14. Mertsola J, Kennedy WA, Waagner D, et al. Endotoxin concentrations in cerebrospinal fluid correlate with clinical severity and neurological outcome of Haemophilus influenzae type B meningitis. Am J Dis Child 1991; 145: 1099–103

    PubMed  CAS  Google Scholar 

  15. Nelson DS, Kuppermann N, Saladino RA, et al. A randomized trial of a recombinant endotoxin neutralizing protein versus a monoclonal antibody to endotoxin for the treatment of E. coli sepsis in a rat model [abstract 1043]. Pediatr Res 1993; 33: 177A

    Article  Google Scholar 

  16. Tsukada K, Katoh H, Shiojima M, et al. Mortality rate and bacteremia, endotoxin, and endothelin-1 levels in antibiotic therapy for E. coli septic peritonitis. APMIS 1993; 101: 97–100

    PubMed  Article  CAS  Google Scholar 

  17. Friedland IR, Jafari H, Ehrett S, et al. Comparison of endotoxin release by different antimicrobial agents and the effects on inflammation in experimental Escherichia coli meningitis. J Infect Dis 1993; 168: 657–62

    PubMed  Article  CAS  Google Scholar 

  18. Arditi M, Kabat W, Yogev R. Antibiotic-induced bacterial killing stimulates tumor necrosis factor-alpha release in whole blood. J Infect Dis 1993; 167: 240–4

    PubMed  Article  CAS  Google Scholar 

  19. Andersen BM, Solberg O. The endotoxin-liberating effect of antibiotics on meningococci in vitro. Acta Pathol Microbiol Scand 1980; 88 Sect. B: 231–6

    CAS  Google Scholar 

  20. Dofferhoff ASM, Esselink MT, de Vries-Hospers HG, et al. The release of endotoxin from antibiotic treated Escherichia coli and the production of tumour necrosis factor by human monocytes. J Antimicrob Chemother 1993; 31: 373–84

    PubMed  Article  CAS  Google Scholar 

  21. Arditi M, Abies L, Yogev R. Cerebrospinal fluid endotoxin levels in children with H. influenzae meningitis before and after administration of intravenous ceftriaxone. J Infect Dis 1989; 160: 1005–11

    PubMed  Article  CAS  Google Scholar 

  22. Shenep JL, Flynn PM, Barrett FF, et al. Serial quantitation of endotoxaemia and bacteraemia during therapy for Gram-negative bacterial sepsis. J Infect Dis 1988; 157: 565–8

    PubMed  Article  CAS  Google Scholar 

  23. Evans ME, Pollack M. Effect of antibiotic class and concentration on the release of lipopolysaccharide from Escherichia coli. J Infect Dis 1993; 167: 1336–43

    PubMed  Article  CAS  Google Scholar 

  24. Stratton CW, Cooksey RC. Susceptibility tests: special tests. In: Balows A, Hausler WJ, Hermann KL, et al., editors. Manual of clinical microbiology. 5th ed. Washington, DC: American Society for Microbiology, 1991: 1153–65

    Google Scholar 

  25. Russell RRB. Free endotoxin — a review. Microbios Lett 1976; 2: 125–35

    CAS  Google Scholar 

  26. Hurley JC. Cerebrospinal fluid endotoxin levels with ceftriaxone therapy for Haemophilus influenzae meningitis [letter]. J Infect Dis 1990; 162: 991

    PubMed  Article  CAS  Google Scholar 

  27. van Deventer SJH, Büller HR, ten Cate JW, et al. Endotoxaemia: an early predictor of septicaemia in febrile patients. Lancet 1988; 1: 605–8

    PubMed  Article  Google Scholar 

  28. Natanson C, Danner RL, Reilly JM, et al. Antibiotics versus cardiovascular support in a canine model of human septic shock. Am J Physiology 1990; 259: H1440–7

    CAS  Google Scholar 

  29. Täuber MG, Shibl AM, Hackbarth CJ, et al. Antibiotic therapy, endotoxin concentration in cerebrospinal fluid, and brain edema in experimental Escherichia coli meningitis in rabbits. J Infect Dis 1987; 156: 456–62

    PubMed  Article  Google Scholar 

  30. Eng RHK, Smith SM, Fan-Havard P, et al. Effect of antibiotics on endotoxin release from gram negative bacteria. Diagn Microbiol Infect Dis 1993; 16: 185–9

    PubMed  Article  CAS  Google Scholar 

  31. Hozbor D, Rodriguez ME, Samo A, et al. Release of lipopolysaccharide during Bordetella pertussis growth. Res Microbiol 1993; 144: 201–9

    PubMed  Article  CAS  Google Scholar 

  32. Hurley JC, Louis WJ, Tosolini FA, et al. Antibiotic-induced release of endotoxin in chronically bacteriuric patients. Antimicrob Agents Chemother 1991; 35: 2388–94

    PubMed  Article  CAS  Google Scholar 

  33. Mohler J, Fantin B, Mainardi JL, et al. Influence of antimicrobial therapy on kinetics of tumour necrosis factor levels in experimental endocarditis caused by Klebsiella pneumoniae. Antimicrob Agents Chemother 1994; 38: 1017–22

    PubMed  Article  CAS  Google Scholar 

  34. Burroughs M, Prasad S, Cabellos C, et al. The biological activities of peptidoglycan in experimental Haemophilus influenzae meningitis. J Infect Dis 1993; 167: 464–8

    PubMed  Article  CAS  Google Scholar 

  35. Mattsby-Baltzer I, Lindgren K, Lindholm B, et al. Endotoxin shedding by enterobacteria: free and cell bound endotoxin differ in Limulus activity. Infect Immun 1991; 59: 689–95

    PubMed  CAS  Google Scholar 

  36. Burroughs M, Cabellos C, Prasad S, et al. Bacterial components and the pathophysiology of injury to the blood-brain barrier: does cell wall add to the effects of endotoxin in Gram-negative meningitis? J Infect Dis 1992; 165 (Suppl. 1): S82–5

    PubMed  Article  Google Scholar 

  37. Simon DM, Koenig G, Trenholme GM. Differences in release of tumor necrosis factor from THP-1 cells stimulated by filtrates of antibiotic-killed Escherichia coli. J Infect Dis 1991; 164: 800–2

    PubMed  Article  CAS  Google Scholar 

  38. Crosby HA, Bion JF, Penn CW, et al. Antibiotic induced release of endotoxin form bacteria in vitro. J Med Microbiol 1994; 40: 23–40

    PubMed  Article  CAS  Google Scholar 

  39. Hanberger H, Nilsson LE, Nilsson M, et al. Post-antibiotic effect of beta-lactam antibiotics on gram-negative bacteria in relation to morphology, initial killing and MIC. Eur J Clin Microbiol Infect Dis 1991; 10: 927–34

    PubMed  Article  CAS  Google Scholar 

  40. Nelson D, Delahooke TES, Poxton IR. Influence of sub-inhibitory levels of antibiotics on expression of Escherichia coli lipopolysaccharide and binding of anti-lipopolysaccharide monoclonal antibodies. J Med Microbiol 1993; 39: 100–6

    PubMed  Article  CAS  Google Scholar 

  41. Raponi G, Lun MT, Lorino G, et al. Reactivity and protective capacity of a polyclonal antiserum derived from mice immunized with antibiotic exposed Escherichia coli. J Antimicrob Chemother 1993; 31: 117–28

    PubMed  Article  CAS  Google Scholar 

  42. Siegel SA, Evans ME, Pollack M, et al. Antibiotics enhance binding by human lipid A-reactive monoclonal antibody HA-1A to smooth gram negative bacteria. Infect Immun 1993; 61: 512–9

    PubMed  CAS  Google Scholar 

  43. Almdahl SM, Osterud B. Effect of antibiotics on gram negative sepsis in the rat. Lack of endotoxin burst. Acta Chirurg Scand 1987; 153: 283–6

    CAS  Google Scholar 

  44. Klein VR, Cox SM, Mitchell MD, et al. The Jarisch-Herxheimer reaction complicating syphilotherapy in pregnancy. Obstet Gynecol 1990; 75: 375–80

    PubMed  CAS  Google Scholar 

  45. Loveday C, Bingham JS. Changes in circulating immune complexes during the Jarisch-Herxheimer reaction in secondary syphilis. Eur J Clin Microbiol Infect Dis 1993; 12: 185–91

    PubMed  Article  CAS  Google Scholar 

  46. Horton JM, Blaser MJ. The spectrum of relapsing fever in the Rocky Mountains. Arch Intern Med 1985; 145: 871–5

    PubMed  Article  CAS  Google Scholar 

  47. Nadelman RB, Luger SW, Frank E, et al. Comparison of cefuroxime axetil and doxycycline in the treatment of early Lyme disease. Ann Intern Med 1992; 117: 273–80

    PubMed  CAS  Google Scholar 

  48. Galloway RE, Levin J, Butler T, et al. Activation of protein mediators of inflammation and evidence for endotoxemia in Borrelia recurrentis infection. Am J Med 1977; 63: 933–8

    PubMed  Article  CAS  Google Scholar 

  49. Negussie Y, Remick DG, DeForge LE, et al. Detection of plasma tumor necrosis factor, interleukins 6, and 8 during the Jarisch-Herxheimer reaction of relapsing fever. J Exp Med 1992; 175: 1207–12

    PubMed  Article  CAS  Google Scholar 

  50. Bryceson ADM, Cooper KE, Warrell DA, et al. Studies on the mechanism of the Jarisch-Herxheimer reaction in louse-borne relapsing fever: evidence for the presence of circulating Borrelia endotoxin. Clin Sci 1972; 43: 343–54

    PubMed  CAS  Google Scholar 

  51. Gelfand JA, Elin RJ, Berry FW, et al. Endotoxemia associated with the Jarisch-Herxheimer reaction. N Engl J Med 1976; 295: 211–3

    PubMed  Article  CAS  Google Scholar 

  52. Wright DJM. Reaction following treatment of murine borreliosis and Shwartzman type reaction with borrelial sonicates. Parasite Immunol 1980; 2: 201–21

    PubMed  Article  CAS  Google Scholar 

  53. Young EJ, Weingarten NM, Baughn RE, et al. Studies on the pathogenesis of the Jarisch-Herxheimer reaction: development of an animal model and evidence against a role for classic endotoxin. J Infect Dis 1982; 146: 606–15

    PubMed  Article  CAS  Google Scholar 

  54. Hardy Jr PH, Levin J. Lack of endotoxin in Borrelia hispanica and Treponema pallidum. Proc Soc Exp Biol Med 1983; 174: 47–52

    PubMed  CAS  Google Scholar 

  55. Shenep JL, Feldman S, Thorton D. Evaluation for endotoxemia in patients receiving penicillin therapy for secondary syphilis. JAMA 1986; 256: 388–90

    PubMed  Article  CAS  Google Scholar 

  56. Radolf JD, Norgard MV, Brandt ME, et al. Lipoproteins of Borrelia burgdorferi and Treponema pallidum activate cachectin/tumor necrosis factor synthesis: analysis using a CAT reporter construct. J Immunol 1991; 147: 1968–74

    PubMed  CAS  Google Scholar 

  57. Habicht GS. Cytokines in Borrelia burgdorferi infection. In: Schutzer SE, editor. Lyme disease: molecular and immunological approaches. Cold Spring Harbor Laboratory Press, 1992: 149-67

  58. Tatro JB, Romero LI, Beasley D, et al. Borrelia burgdorferi and Escherichia coli lipopolysaccharides induce nitric oxide and interleukin-6 production in cultured rat brain cells. J Infect Dis 1994; 169: 1014–22

    PubMed  Article  CAS  Google Scholar 

  59. Warrell RP Jr. Tumor lysis syndrome. In: De Vita VT, Hellman S, Rosenberg SA, editors. Cancer: principles and practice of oncology. 4th ed. Philadelpia: JB Lippincott and Company, 1993: 2135

    Google Scholar 

  60. Graham JM, Oshiro BT, Blanco JD, et al. Uterine contractions after antibiotic therapy for pyelonephritis in pregnancy. Am J Obstet Gynecol 1993; 168: 577–80

    PubMed  CAS  Google Scholar 

  61. Lehner PJ, Davies KA, Walport MJ, et al. Meningococcal septicaemia in a C6-deficient patient and effects of plasma transfusion on lipopolysaccharide release. Lancet 1992; 340: 1379–81

    PubMed  Article  CAS  Google Scholar 

  62. Engebrestsen LF, Kierulf P, Brandtzaeg P. Extreme plasminogen activator inhibitor and endotoxin values in patients with meningococcal disease. Thromb Res 1986; 42: 713–6

    Article  Google Scholar 

  63. Harthug S, Bjorvatn B, Osterud B. Quantitation of endotoxin in blood from patients with meningococcal disease using a limulus lysate test in combination with chromogenic substrate. Infection 1983; 11: 192–5

    PubMed  Article  CAS  Google Scholar 

  64. Andersen BM, Solberg O. Endotoxin liberation and invasivity of Neisseria meningitidis. Scand J Infect Dis 1984; 16: 247–54

    PubMed  Article  CAS  Google Scholar 

  65. Mellado MC, Rodriguez-Contreras R, Fernandez-Crehuet M, et al. Endotoxin liberation by strains of N. meningitidis isolated from patients and healthy carriers. Epidemiol Infect 1991; 106: 289–95

    PubMed  Article  CAS  Google Scholar 

  66. Brandtzaeg P, Bryn K, Kierulf P, et al. Meningococcal endotoxin in lethal septic shock plasma studied by gas chromatography, mass-spectrometry, ultracentrifugation, and electron microscopy. J Clin Invest 1992; 89: 816–23

    PubMed  Article  CAS  Google Scholar 

  67. Hurley JC. Concordance of endotoxemia with gram negative bacteremia in patients with gram negative sepsis: a meta-analysis. J Clin Microbiol 1994; 32: 2120–7

    PubMed  CAS  Google Scholar 

  68. Danner RL, Natanson C, Elin RJ, et al. Pseudomonas aeruginosa compared with Escherichia coli produces less endotoxemia but more cardiovascular dysfunction and mortality in a canine model of septic shock. Chest 1990; 98: 1480–7

    PubMed  Article  CAS  Google Scholar 

  69. Cross AS, Opal SM, Sadoff JC, et al. Choice of bacteria in animal models of sepsis. Infect Immun 1993; 61: 2741–7

    PubMed  CAS  Google Scholar 

  70. Rijkels DF. Louse-borne relapsing fever in Ethiopia. Trop Geogr Med 1971; 23: 335–40

    PubMed  CAS  Google Scholar 

  71. Knaack RH, Wright LJ, Leithead CS, et al. Penicillin versus tetracycline in the treatment of louse borne relapsing fever. Ethiop Med J 1972; 10: 15–22

    PubMed  CAS  Google Scholar 

  72. Butler T, Jones PK, Wallace CK. Borrelia recurrentis infection: single-dose antibiotic regimens and management of the Jarisch-Herxheimer reaction. J Infect Dis 1978; 137: 573–7

    PubMed  Article  CAS  Google Scholar 

  73. Warrell DA, Perine PL, Krause DW, et al. Pathophysiology and immunology of the Jarisch-Herxheimer-like reaction in louse-borne relapsing fever: comparison of tetracycline and slow-release penicillin. J Infect Dis 1983; 147: 898–909

    PubMed  Article  CAS  Google Scholar 

  74. Gebrehiwot T, Fiseha A. Tetracycline versus penicillin in the treatment of louse-borne relapsing fever. Ethiop Med J 1992; 30: 175–81

    PubMed  CAS  Google Scholar 

  75. Sande MA. Antibiotic therapy of bacterial meningitis: lessons wes’ve learned. Am J Med 1981; 71: 507–10

    PubMed  Article  CAS  Google Scholar 

  76. Lepper MH, Dowling HF Treatment of pneumococcic meningitis with penicillin compared with penicillin plus aureomycin: studies including observations on an apparent antagonism between penicillin and aureomycin. Arch Intern Med 1951; 88: 489–94

    Article  CAS  Google Scholar 

  77. Schaad UB, Suter S, Gianella-Borradori A, et al. A comparison of ceftriaxone and cefuroxime for the treatment of bacterial meningitis in children. N Engl J Med 1990; 322: 141–7

    PubMed  Article  CAS  Google Scholar 

  78. Peltola H, Anttila M, Renkonen OV, et al. Randomised comparison of chloramphenicol, ampicillin, cefotaxime, and ceftriaxone for childhood bacterial meningitis. Lancet 1989; 1: 1281–7

    PubMed  Article  CAS  Google Scholar 

  79. Islam A, Butler T, Kabir I, et al. Treatment of typhoid fever with ceftriaxone for 5 days or chloramphenicol for 14 days: a randomized clinical trial. Antimicrob Agents Chemother 1993; 37: 1572–5

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hurley, J. Antibiotic-Induced Release of Endotoxin. Drug-Safety 12, 183–195 (1995). https://doi.org/10.2165/00002018-199512030-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-199512030-00004

Keywords

  • Adis International Limited
  • Ceftriaxone
  • Imipenem
  • Bacterial Meningitis
  • Lactam