Clinical Pharmacokinetics

, Volume 51, Issue 5, pp 277–304 | Cite as

Impact of Obesity on Drug Metabolism and Elimination in Adults and Children

  • Margreke J. E. Brill
  • Jeroen Diepstraten
  • Anne van Rongen
  • Simone van Kralingen
  • John N. van den Anker
  • Catherijne A. J. Knibbe
Review Article


The prevalence of obesity in adults and children is rapidly increasing across the world. Several general (patho)physiological alterations associated with obesity have been described, but the specific impact of these alterations on drug metabolism and elimination and its consequences for drug dosing remains largely unknown.

In order to broaden our knowledge of this area, we have reviewed and summarized clinical studies that reported clearance values of drugs in both obese and non-obese patients. Studies were classified according to their most important metabolic or elimination pathway. This resulted in a structured review of the impact of obesity on metabolic and elimination processes, including phase I metabolism, phase II metabolism, liver blood flow, glomerular filtration and tubular processes.

This literature study shows that the influence of obesity on drug metabolism and elimination greatly differs per specific metabolic or elimination pathway. Clearance of cytochrome P450 (CYP) 3A4 substrates is lower in obese as compared with non-obese patients. In contrast, clearance of drugs primarily metabolized by uridine diphosphate glucuronosyltransferase (UGT), glomerular filtration and/or tubular-mediated mechanisms, xanthine oxidase, N-acetyltransferase or CYP2E1 appears higher in obese versus non-obese patients. Additionally, in obese patients, trends indicating higher clearance values were seen for drugs metabolized via CYP1A2, CYP2C9, CYP2C19 and CYP2D6, while studies on high-extraction-ratio drugs showed somewhat inconclusive results. Very limited information is available in obese children, which prevents a direct comparison between data obtained in obese children and obese adults.

Future clinical studies, especially in children, adolescents and morbidly obese individuals, are needed to extend our knowledge in this clinically important area of adult and paediatric clinical pharmacology.



John van den Anker and Catherijne Knibbe contributed equally to this work.

The authors declare no conflicts of interest that are directly relevant to the content of this review. The authors thank Sabine Ahlers and Saskia de Mik-van Ham for critically reading the manuscript.


  1. 1.
    Centers for Disease Control and Prevention [CDC]. US obesity trends. Atlanta (GA): CDC, 2009 [online]. Available from URL: [Accessed 2011 May 3]Google Scholar
  2. 2.
    Flegal KM, Carroll MD, Ogden CL, et al. Prevalence and trends in obesity among US adults, 1999–2008. JAMA 2010 Jan 20; 303(3): 235–41PubMedCrossRefGoogle Scholar
  3. 3.
    Ogden CL, Carroll MD, Curtin LR, et al. Prevalence of overweight and obesity in the United States, 1999–2004. JAMA 2006 Apr 5; 295(13): 1549–55PubMedCrossRefGoogle Scholar
  4. 4.
    IASO. International Association for the Study of Obesity. EU 27 adult overweight & obesity document of the International Association for the Study of Obesity, July 2008 [online]. Available from URL: [Accessed 2012 Mar 5]
  5. 5.
    Ogden CL, Carroll MD, Curtin LR, et al. Prevalence of high body mass index in US children and adolescents, 2007–2008. JAMA 2010 Jan 20; 303(3): 242–9PubMedCrossRefGoogle Scholar
  6. 6.
    Jia WP, Wang C, Jiang S, et al. Characteristics of obesity and its related disorders in China. Biomed Environ Sci 2010 Feb; 23(1): 4–11PubMedCrossRefGoogle Scholar
  7. 7.
    Kelly T, Yang W, Chen CS, et al. Global burden of obesity in 2005 and projections to 2030. Int J Obes (Lond) 2008 Sep; 32(9): 1431–7CrossRefGoogle Scholar
  8. 8.
    Cheymol G. Clinical pharmacokinetics of drugs in obesity: an update. Clin Pharmacokinet 1993 Aug; 25(2): 103–14PubMedCrossRefGoogle Scholar
  9. 9.
    Cheymol G. Effects of obesity on pharmacokinetics implications for drug therapy. Clin Pharmacokinet 2000 Sep; 39(3): 215–31PubMedCrossRefGoogle Scholar
  10. 10.
    Alexander JK, Dennis EW, Smith WG, et al. Blood volume, cardiac output, and distribution of systemic blood flow in extreme obesity. Cardiovasc Res Cent Bull 1962 Winter; 1: 39–44PubMedGoogle Scholar
  11. 11.
    Zavorsky GS. Cardiopulmonary aspects of obesity in women. Obstet Gynecol Clin North Am 2009 Jun; 36(2): 267–84, viiiPubMedCrossRefGoogle Scholar
  12. 12.
    Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest 2005 May; 115(5): 1111–9PubMedGoogle Scholar
  13. 13.
    Guzzaloni G, Grugni G, Minocci A, et al. Liver steatosis in juvenile obesity: correlations with lipid profile, hepatic biochemical parameters and glycemic and insulinemic responses to an oral glucose tolerance test. Int J Obes Relat Metab Disord 2000 Jun; 24(6): 772–6PubMedCrossRefGoogle Scholar
  14. 14.
    Wree A, Kahraman A, Gerken G, et al. Obesity affects the liver: the link between adipocytes and hepatocytes. Digestion 2011; 83(1–2): 124–33PubMedCrossRefGoogle Scholar
  15. 15.
    Fisher CD, Lickteig AJ, Augustine LM, et al. Hepatic cytochrome P450 enzyme alterations in humans with progressive stages of nonalcoholic fatty liver disease. Drug Metab Dispos 2009 Oct; 37(10): 2087–94PubMedCrossRefGoogle Scholar
  16. 16.
    Donato MT, Lahoz A, Jimenez N, et al. Potential impact of steatosis on cytochrome P450 enzymes of human hepatocytes isolated from fatty liver grafts. Drug Metab Dispos 2006 Sep; 34(9): 1556–62PubMedCrossRefGoogle Scholar
  17. 17.
    Donato MT, Jimenez N, Serralta A, et al. Effects of steatosis on drug-metabolizing capability of primary human hepatocytes. Toxicol In Vitro 2007 Mar; 21(2): 271–6PubMedCrossRefGoogle Scholar
  18. 18.
    Emery MG, Fisher JM, Chien JY, et al. CYP2E1 activity before and after weight loss in morbidly obese subjects with nonalcoholic fatty liver disease. Hepatology 2003 Aug; 38(2): 428–35PubMedCrossRefGoogle Scholar
  19. 19.
    Casati A, Putzu M. Anesthesia in the obese patient: pharmacokinetic considerations. J Clin Anesth 2005 Mar; 17(2): 134–45PubMedCrossRefGoogle Scholar
  20. 20.
    Marik P, Varon J. The obese patient in the ICU. Chest 1998; 113: 492–8PubMedCrossRefGoogle Scholar
  21. 21.
    Darbari DS, Neely M, van den Anker J, et al. Increased clearance of morphine in sickle cell disease: implications for pain management. J Pain 2011 May; 12(5): 531–8PubMedCrossRefGoogle Scholar
  22. 22.
    Jain R, Chung SM, Jain L, et al. Implications of obesity for drug therapy: limitations and challenges. Clin Pharmacol Ther 2011 Jul; 90(1): 77–89PubMedCrossRefGoogle Scholar
  23. 23.
    Abernethy DR, Greenblatt DJ. Drug disposition in obese humans: an update. Clin Pharmacokinet 1986 May–Jun; 11(3): 199–213PubMedCrossRefGoogle Scholar
  24. 24.
    Mulla H, Johnson TN. Dosing dilemmas in obese children. Arch Dis Child Educ Pract Ed 2010 Aug; 95(4): 112–7PubMedCrossRefGoogle Scholar
  25. 25.
    Hanley MJ, Abernethy DR, Greenblatt DJ. Effect of obesity on the pharmacokinetics of drugs in humans. Clin Pharmacokinet 2010; 49(2): 71–87PubMedCrossRefGoogle Scholar
  26. 26.
    Ingrande J, Lemmens HJ. Dose adjustment of anaesthetics in the morbidly obese. Br J Anaesth 2010; 105 Suppl. 1: i16–23PubMedCrossRefGoogle Scholar
  27. 27.
    Morrish GA, Pai MP, Green B. The effects of obesity on drug pharmacokinetics in humans. Expert Opin Drug Metab Toxicol 2011 Jun; 7(6): 697–706PubMedCrossRefGoogle Scholar
  28. 28.
    Abernethy DR, Greenblatt DJ. Pharmacokinetics of drugs in obesity. Clin Pharmacokinet 1982 Mar–Apr; 7(2): 108–24PubMedCrossRefGoogle Scholar
  29. 29.
    Kotlyar M, Carson SW. Effects of obesity on the cytochrome P450 enzyme system. Int J Clin Pharmacol Ther 1999 Jan; 37(1): 8–19PubMedGoogle Scholar
  30. 30.
    Edelman AB, Cherala G, Stanczyk FZ. Metabolism and pharmacokinetics of contraceptive steroids in obese women: a review. Contraception 2010 Oct; 82(4): 314–23PubMedCrossRefGoogle Scholar
  31. 31.
    Green B, Duffull SB. What is the best size descriptor to use for pharmacokinetic studies in the obese? Br J Clin Pharmacol 2004 Aug; 58(2): 119–33PubMedCrossRefGoogle Scholar
  32. 32.
    Flockhart DA. Drug interactions: cytochrome P450 drug interaction table [version 5.0]. Indianapolis (IN): Indiana University School of Medicine, 2009 Jan 12 [online]. Available from URL: [Accessed 2011 May 4]Google Scholar
  33. 33.
    Williams RT. Detoxication mechanisms: the metabolism and detoxication of drugs,toxic substances, and other organic compounds. 2nd ed. London: Chapman and Hall, 1959Google Scholar
  34. 34.
    Moretto M, Kupski C, Mottin CC, et al. Hepatic steatosis in patients undergoing bariatric surgery and its relationship to body mass index and comorbidities. Obes Surg 2003 Aug; 13(4): 622–4PubMedCrossRefGoogle Scholar
  35. 35.
    Silverman JF, O’Brien KF, Long S, et al. Liver pathology in morbidly obese patients with and without diabetes. Am J Gastroenterol 1990 Oct; 85(10): 1349–55PubMedGoogle Scholar
  36. 36.
    Harnois F, Msika S, Sabate JM, et al. Prevalence and predictive factors of non-alcoholic steatohepatitis (NASH) in morbidly obese patients undergoing bariatric surgery. Obes Surg 2006 Feb; 16(2): 183–8PubMedCrossRefGoogle Scholar
  37. 37.
    Thorn M, Finnstrom N, Lundgren S, et al. Cytochromes P450 and MDR1 mRNA expression along the human gastrointestinal tract. Br J Clin Pharmacol 2005 Jul; 60(1): 54–60PubMedCrossRefGoogle Scholar
  38. 38.
    Lindell M, Karlsson MO, Lennernas H, et al. Variable expression of CYP and Pgp genes in the human small intestine. Eur J Clin Invest 2003 Jun; 33(6): 493–9PubMedCrossRefGoogle Scholar
  39. 39.
    Guengerich FP. Cytochrome p450 and chemical toxicology. Chem Res Toxicol 2008 Jan; 21(1): 70–83PubMedCrossRefGoogle Scholar
  40. 40.
    Evans WE, Relling MV. Pharmacogenomics: translating functional genomics into rational therapeutics. Science 1999 Oct 15; 286(5439): 487–91PubMedCrossRefGoogle Scholar
  41. 41.
    Reddy VB, Doss GA, Karanam BV, et al. In vitro and in vivo metabolism of a novel cannabinoid-1 receptor inverse agonist, taranabant, in rats and monkeys. Xenobiotica 2010 Sep; 40(9): 650–62PubMedCrossRefGoogle Scholar
  42. 42.
    Li XS, Nielsen J, Cirincione B, et al. Development of a population pharmacokinetic model for taranabant, a cannibinoid-1 receptor inverse agonist. AAPS J 2010 Dec; 12(4): 537–47PubMedCrossRefGoogle Scholar
  43. 43.
    Koolen SL, Oostendorp RL, Beijnen JH, et al. Population pharmacokinetics of intravenously and orally administered docetaxel with or without co-administration of ritonavir in patients with advanced cancer. Br J Clin Pharmacol 2010 May; 69(5): 465–74PubMedCrossRefGoogle Scholar
  44. 44.
    Sparreboom A, Wolff AC, Mathijssen RH, et al. Evaluation of alternate size descriptors for dose calculation of anticancer drugs in the obese. J Clin Oncol 2007 Oct 20; 25(30): 4707–13PubMedCrossRefGoogle Scholar
  45. 45.
    Kerr BM, Thummel KE, Wurden CJ, et al. Human liver carbamazepine metabolism: role of CYP3A4 and CYP2C8 in 10,11-epoxide formation. Biochem Pharmacol 1994 Jun 1; 47(11): 1969–79PubMedCrossRefGoogle Scholar
  46. 46.
    Caraco Y, Zylber-Katz E, Berry EM, et al. Carbamazepine pharmacokinetics in obese and lean subjects. Ann Pharmacother 1995 Sep; 29(9): 843–7PubMedGoogle Scholar
  47. 47.
    Caraco Y, Zylber-Katz E, Berry EM, et al. Significant weight reduction in obese subjects enhances carbamazepine elimination. Clin Pharmacol Ther 1992 May; 51(5): 501–6PubMedCrossRefGoogle Scholar
  48. 48.
    Watkins PB. The role of cytochromes P-450 in cyclosporine metabolism. J Am Acad Dermatol 1990 Dec; 23(6 Pt 2): 1301–9; discussion 1309-11PubMedCrossRefGoogle Scholar
  49. 49.
    Hunt CM, Westerkam WR, Stave GM, et al. Hepatic cytochrome P-4503A (CYP3A) activity in the elderly. Mech Ageing Dev 1992 Jun; 64(1–2): 189–99PubMedCrossRefGoogle Scholar
  50. 50.
    Hunt CM, Watkins PB, Saenger P, et al. Heterogeneity of CYP3A isoforms metabolizing erythromycin and cortisol. Clin Pharmacol Ther 1992 Jan; 51(1): 18–23PubMedCrossRefGoogle Scholar
  51. 51.
    Streetman DS, Bertino Jr JS, Nafziger AN. Phenotyping of drug-metabolizing enzymes in adults: a review of in-vivo cytochrome P450 phenotyping probes. Pharmacogenetics 2000 Apr; 10(3): 187–216PubMedCrossRefGoogle Scholar
  52. 52.
    Greenblatt DJ, Abernethy DR, Locniskar A, et al. Effect of age, gender, and obesity on midazolam kinetics. Anesthesiology 1984 Jul; 61(1): 27–35PubMedGoogle Scholar
  53. 53.
    Ohno Y, Hisaka A, Suzuki H. General framework for the quantitative prediction of CYP3A4-mediated oral drug interactions based on the AUC increase by coadministration of standard drugs. Clin Pharmacokinet 2007; 46(8): 681–96PubMedCrossRefGoogle Scholar
  54. 54.
    Abernethy DR, Greenblatt DJ, Divoll M, et al. The influence of obesity on the pharmacokinetics of oral alprazolam and triazolam. Clin Pharmacokinet 1984 Mar–Apr; 9(2): 177–83PubMedCrossRefGoogle Scholar
  55. 55.
    Flechner SM, Kolbeinsson ME, Tam J, et al. The impact of body weight on cyclosporine pharmacokinetics in renal transplant recipients. Transplantation 1989 May; 47(5): 806–10PubMedCrossRefGoogle Scholar
  56. 56.
    Yee GC, Lennon TP, Gmur DJ, et al. Effect of obesity on cyclosporine disposition. Transplantation 1988 Mar; 45(3): 649–51PubMedCrossRefGoogle Scholar
  57. 57.
    Rotzinger S, Fang J, Baker GB. Trazodone is metabolized to m-chlorophenylpiperazine by CYP3A4 from human sources. Drug Metab Dispos 1998 Jun; 26(6): 572–5PubMedGoogle Scholar
  58. 58.
    Mihara K, Otani K, Suzuki A, et al. Relationship between the CYP2D6 genotype and the steady-state plasma concentrations of trazodone and its active metabolite m-chlorophenylpiperazine. Psychopharmacology (Berl) 1997 Sep; 133(1): 95–8CrossRefGoogle Scholar
  59. 59.
    Greenblatt DJ, Friedman H, Burstein ES, et al. Trazodone kinetics: effect of age, gender, and obesity. Clin Pharmacol Ther 1987 Aug; 42(2): 193–200PubMedCrossRefGoogle Scholar
  60. 60.
    Kharasch ED, Russell M, Mautz D, et al. The role of cytochrome P450 3A4 in alfentanil clearance: implications for interindividual variability in disposition and perioperative drug interactions. Anesthesiology 1997 Jul; 87(1): 36–50PubMedCrossRefGoogle Scholar
  61. 61.
    Bentley J, Finley J, Humphrey L, et al. Obesity and alfentanil pharmacokinetics [abstract]. Anesth Analg 1983; 62: 251Google Scholar
  62. 62.
    Marterre WF, Hariharan S, First MR, et al. Gastric bypass in morbidly obese kidney transplant recipients. Clin Transplant 1996 Oct; 10(5): 414–9PubMedGoogle Scholar
  63. 63.
    Boni J, Leister C, Burns J, et al. Pharmacokinetic profile of temsirolimus with concomitant administration of cytochrome p450-inducing medications. J Clin Pharmacol 2007 Nov; 47(11): 1430–9PubMedCrossRefGoogle Scholar
  64. 64.
    Kamdem LK, Streit F, Zanger UM, et al. Contribution of CYP3A5 to the in vitro hepatic clearance of tacrolimus. Clin Chem 2005 Aug; 51(8): 1374–81PubMedCrossRefGoogle Scholar
  65. 65.
    Picard N, Cresteil T, Premaud A, et al. Characterization of a phase 1 metabolite of mycophenolic acid produced by CYP3A4/5. Ther Drug Monit 2004 Dec; 26(6): 600–8PubMedCrossRefGoogle Scholar
  66. 66.
    Rogers CC, Alloway RR, Alexander JW, et al. Pharmacokinetics of mycophenolic acid, tacrolimus and sirolimus after gastric bypass surgery in endstage renal disease and transplant patients: a pilot study. Clin Transplant 2008 May–Jun; 22(3): 281–91PubMedCrossRefGoogle Scholar
  67. 67.
    Skottheim IB, Jakobsen GS, Stormark K, et al. Significant increase in systemic exposure of atorvastatin after biliopancreatic diversion with duodenal switch. Clin Pharmacol Ther 2010 Jun; 87(6): 699–705PubMedCrossRefGoogle Scholar
  68. 68.
    Skottheim IB, Stormark K, Christensen H, et al. Significantly altered systemic exposure to atorvastatin acid following gastric bypass surgery in morbidly obese patients. Clin Pharmacol Ther 2009 Sep; 86(3): 311–8PubMedCrossRefGoogle Scholar
  69. 69.
    Lucas D, Ferrara R, Gonzalez E, et al. Chlorzoxazone, a selective probe for phenotyping CYP2E1 in humans. Pharmacogenetics 1999 Jun; 9(3): 377–88PubMedCrossRefGoogle Scholar
  70. 70.
    Lucas D, Farez C, Bardou LG, et al. Cytochrome P450 2E1 activity in diabetic and obese patients as assessed by chlorzoxazone hydroxylation. Fundam Clin Pharmacol 1998; 12(5): 553–8PubMedCrossRefGoogle Scholar
  71. 71.
    O’Shea D, Davis SN, Kim RB, et al. Effect of fasting and obesity in humans on the 6-hydroxylation of chlorzoxazone: a putative probe of CYP2E1 activity. Clin Pharmacol Ther 1994 Oct; 56(4): 359–67PubMedCrossRefGoogle Scholar
  72. 72.
    Kharasch ED, Thummel KE, Mautz D, et al. Clinical enflurane metabolism by cytochrome P450 2E1. Clin Pharmacol Ther 1994 Apr; 55(4): 434–40PubMedCrossRefGoogle Scholar
  73. 73.
    Miller MS, Gandolfi AJ, Vaughan RW, et al. Disposition of enflurane in obese patients. J Pharmacol Exp Ther 1980 Nov; 215(2): 292–6PubMedGoogle Scholar
  74. 74.
    Bentley JB, Vaughan RW, Miller MS, et al. Serum inorganic fluoride levels in obese patients during and after enflurane anesthesia. Anesth Analg 1979 Sep–Oct; 58(5): 409–12PubMedCrossRefGoogle Scholar
  75. 75.
    Kharasch ED. Biotransformation of sevoflurane. Anesth Analg 1995 Dec; 81(6 Suppl.): S27–38PubMedCrossRefGoogle Scholar
  76. 76.
    Higuchi H, Satoh T, Arimura S, et al. Serum inorganic fluoride levels in mildly obese patients during and after sevoflurane anesthesia. Anesth Analg 1993 Nov; 77(5): 1018–21PubMedCrossRefGoogle Scholar
  77. 77.
    Frink Jr EJ, Malan Jr TP, Brown EA, et al. Plasma inorganic fluoride levels with sevoflurane anesthesia in morbidly obese and nonobese patients. Anesth Analg 1993 Jun; 76(6): 1333–7PubMedGoogle Scholar
  78. 78.
    Reichle FM, Conzen PF. Halogenated inhalational anaesthetics. Best Pract Res Clin Anaesthesiol 2003 Mar; 17(1): 29–46PubMedCrossRefGoogle Scholar
  79. 79.
    Bentley JB, Vaughan RW, Gandolfi AJ, et al. Halothane biotransformation in obese and nonobese patients. Anesthesiology 1982 Aug; 57(2): 94–7PubMedCrossRefGoogle Scholar
  80. 80.
    Barshop NJ, Capparelli EV, Sirlin CB, et al. Acetaminophen pharmacokinetics in children with nonalcoholic fatty liver disease. J Pediatr Gastroenterol Nutr 2011 Feb; 52(2): 198–202PubMedCrossRefGoogle Scholar
  81. 81.
    Abernethy DR, Divoll M, Greenblatt DJ, et al. Obesity, sex, and acetaminophen disposition. Clin Pharmacol Ther 1982 Jun; 31(6): 783–90PubMedCrossRefGoogle Scholar
  82. 82.
    Rumack BH. Acetaminophen hepatotoxicity: the first 35 years. J Toxicol Clin Toxicol 2002; 40(1): 3–20PubMedCrossRefGoogle Scholar
  83. 83.
    May DG. Genetic differences in drug disposition. J Clin Pharmacol 1994 Sep; 34(9): 881–97PubMedCrossRefGoogle Scholar
  84. 84.
    van den Anker JN. Developmental pharmacology. Dev Disabil Res Rev 2010; 16(3): 233–8PubMedCrossRefGoogle Scholar
  85. 85.
    Haritos VS, Ching MS, Ghabrial H, et al. Metabolism of dexfenfluramine in human liver microsomes and by recombinant enzymes: role of CYP2D6 and 1A2. Pharmacogenetics 1998 Oct; 8(5): 423–32PubMedCrossRefGoogle Scholar
  86. 86.
    Cheymol G, Weissenburger J, Poirier JM, et al. The pharmacokinetics of dexfenfluramine in obese and non-obese subjects. Br J Clin Pharmacol 1995 Jun; 39(6): 684–7PubMedGoogle Scholar
  87. 87.
    Lefebvre J, Poirier L, Poirier P, et al. The influence of CYP2D6 phenotype on the clinical response of nebivolol in patients with essential hypertension. Br J Clin Pharmacol 2007 May; 63(5): 575–82PubMedCrossRefGoogle Scholar
  88. 88.
    Cheymol G, Woestenborghs R, Snoeck E, et al. Pharmacokinetic study and cardiovascular monitoring of nebivolol in normal and obese subjects. Eur J Clin Pharmacol 1997; 51(6): 493–8PubMedCrossRefGoogle Scholar
  89. 89.
    Schrenk D, Brockmeier D, Morike K, et al. A distribution study of CYP1A2 phenotypes among smokers and non-smokers in a cohort of healthy Caucasian volunteers. Eur J Clin Pharmacol 1998 Jan; 53(5): 361–7PubMedCrossRefGoogle Scholar
  90. 90.
    Rostami-Hodjegan A, Nurminen S, Jackson PR, et al. Caffeine urinary metabolite ratios as markers of enzyme activity: a theoretical assessment. Pharmacogenetics 1996 Apr; 6(2): 121–49PubMedCrossRefGoogle Scholar
  91. 91.
    Rasmussen BB, Brosen K. Theophylline has no advantages over caffeine as a putative model drug for assessing CYPIA2 activity in humans. Br J Clin Pharmacol 1997 Mar; 43(3): 253–8PubMedCrossRefGoogle Scholar
  92. 92.
    Chine MS, Schwarzenberg SJ, Johnson LA. Altered xanthine oxidase and N-acetyl transferase activity in obese children. Br J Clin Pharmacol 2011 Jul; 72(1): 109–15CrossRefGoogle Scholar
  93. 93.
    Caraco Y, Zylber-Katz E, Berry EM, et al. Caffeine pharmacokinetics in obesity and following significant weight reduction. Int J Obes Relat Metab Disord 1995 Apr; 19(4): 234–9PubMedGoogle Scholar
  94. 94.
    Kamimori GH, Somani SM, Knowlton RG, et al. The effects of obesity and exercise on the pharmacokinetics of caffeine in lean and obese volunteers. Eur J Clin Pharmacol 1987; 31(5): 595–600PubMedCrossRefGoogle Scholar
  95. 95.
    Abernethy DR, Todd EL, Schwartz JB. Caffeine disposition in obesity. Br J Clin Pharmacol 1985 Jul; 20(1): 61–6PubMedCrossRefGoogle Scholar
  96. 96.
    Zahorska-Markiewicz B, Waluga M, Zielinski M, et al. Pharmacokinetics of theophylline in obesity. Int J Clin Pharmacol Ther 1996 Sep; 34(9): 393–5PubMedGoogle Scholar
  97. 97.
    Jusko WJ, Gardner MJ, Mangione A, et al. Factors affecting theophylline clearances: age, tobacco, marijuana, cirrhosis, congestive heart failure, obesity, oral contraceptives, benzodiazepines, barbiturates, and ethanol. J Pharm Sci 1979 Nov; 68(11): 1358–66PubMedCrossRefGoogle Scholar
  98. 98.
    Blouin RA, Elgert JF, Bauer LA. Theophylline clearance: effect of marked obesity. Clin Pharmacol Ther 1980 Nov; 28(5): 619–23PubMedCrossRefGoogle Scholar
  99. 99.
    Langtry HD, Balfour JA. Glimepiride: a review of its use in the management of type 2 diabetes mellitus. Drugs 1998 Apr; 55(4): 563–84PubMedCrossRefGoogle Scholar
  100. 100.
    Shukla UA, Chi EM, Lehr KH. Glimepiride pharmacokinetics in obese versus non-obese diabetic patients. Ann Pharmacother 2004 Jan; 38(1): 30–5PubMedCrossRefGoogle Scholar
  101. 101.
    Tan B, Zhang YF, Chen XY, et al. The effects of CYP2C9 and CYP2C19 genetic polymorphisms on the pharmacokinetics and pharmacodynamics of glipizide in Chinese subjects. Eur J Clin Pharmacol 2010 Feb; 66(2): 145–51PubMedCrossRefGoogle Scholar
  102. 102.
    Jaber LA, Ducharme MP, Halapy H. The effects of obesity on the pharmacokinetics and pharmacodynamics of glipizide in patients with non-insulin-dependent diabetes mellitus. Ther Drug Monit 1996 Feb; 18(1): 6–13PubMedCrossRefGoogle Scholar
  103. 103.
    Garcia-Martin E, Martinez C, Tabares B, et al. Interindividual variability in ibuprofen pharmacokinetics is related to interaction of cytochrome P450 2C8 and 2C9 amino acid polymorphisms. Clin Pharmacol Ther 2004 Aug; 76(2): 119–27PubMedCrossRefGoogle Scholar
  104. 104.
    Abernethy DR, Greenblatt DJ. Ibuprofen disposition in obese individuals. Arthritis Rheum 1985 Oct; 28(10): 1117–21PubMedCrossRefGoogle Scholar
  105. 105.
    Kumar V, Wahlstrom JL, Rock DA, et al. CYP2C9 inhibition: impact of probe selection and pharmacogenetics on in vitro inhibition profiles. Drug Metab Dispos 2006 Dec; 34(12): 1966–75PubMedCrossRefGoogle Scholar
  106. 106.
    Abernethy DR, Greenblatt DJ. Phenytoin disposition in obesity: determination of loading dose. Arch Neurol 1985 May; 42(5): 468–71PubMedCrossRefGoogle Scholar
  107. 107.
    Gonzalez FJ, Idle JR. Pharmacogenetic phenotyping and genotyping: present status and future potential. Clin Pharmacokinet 1994; 26(1): 59–70PubMedCrossRefGoogle Scholar
  108. 108.
    He SM, Zhou ZW, Li XT, et al. Clinical drugs undergoing polymorphic metabolism by human cytochrome P450 2C9 and the implication in drug development. Curr Med Chem 2011; 18(5): 667–713PubMedCrossRefGoogle Scholar
  109. 109.
    Flockhart DA. Drug interactions and the cytochrome P450 system: the role of cytochrome P450 2C19. Clin Pharmacokinet 1995; 29 Suppl. 1: 45–52PubMedCrossRefGoogle Scholar
  110. 110.
    Bertilsson L, Henthorn TK, Sanz E, et al. Importance of genetic factors in the regulation of diazepam metabolism: relationship to S-mephenytoin, but not debrisoquin, hydroxylation phenotype. Clin Pharmacol Ther 1989 Apr; 45(4): 348–55PubMedCrossRefGoogle Scholar
  111. 111.
    Abernethy DR, Greenblatt DJ, Divoll M, et al. Alterations in drug distribution and clearance due to obesity. J Pharmacol Exp Ther 1981 Jun; 217(3): 681–5PubMedGoogle Scholar
  112. 112.
    Abernethy DR, Greenblatt DJ, Divoll M, et al. Prolongation of drug half-life due to obesity: studies of desmethyldiazepam (clorazepate). J Pharm Sci 1982 Aug; 71(8): 942–4PubMedCrossRefGoogle Scholar
  113. 113.
    Strolin Benedetti M, Whomsley R, Baltes E. Involvement of enzymes other than CYPs in the oxidative metabolism of xenobiotics. Expert Opin Drug Metab Toxicol 2006 Dec; 2(6): 895–921PubMedCrossRefGoogle Scholar
  114. 114.
    Balis FM. Pharmacokinetic drug interactions of commonly used anticancer drugs. Clin Pharmacokinet 1986 May–Jun; 11(3): 223–35PubMedCrossRefGoogle Scholar
  115. 115.
    Zuccaro P, Guandalini S, Pacifici R, et al. Fat body mass and pharmacokinetics of oral 6-mercaptopurine in children with acute lymphoblastic leukemia. Ther Drug Monit 1991 Jan; 13(1): 37–41PubMedCrossRefGoogle Scholar
  116. 116.
    Yanni SB, Annaert PP, Augustijns P, et al. In vitro hepatic metabolism explains higher clearance of voriconazole in children versus adults: role of CYP2C19 and flavin-containing monooxygenase 3. Drug Metab Dispos 2010 Jan; 38(1): 25–31PubMedCrossRefGoogle Scholar
  117. 117.
    Pai MP, Lodise TP. Steady-state plasma pharmacokinetics of oral voriconazole in obese adults. Antimicrob Agents Chemother 2011 Jun; 55(6): 2601–5PubMedCrossRefGoogle Scholar
  118. 118.
    Ebner T, Remmel RP, Burchell B. Human bilirubin UDP-glucuronosyltransferase catalyzes the glucuronidation of ethinylestradiol. Mol Pharmacol 1993 Apr; 43(4): 649–54PubMedGoogle Scholar
  119. 119.
    Palovaara S, Tybring G, Laine K. The effect of ethinyloestradiol and levonorgestrel on the CYP2C19-mediated metabolism of omeprazole in healthy female subjects. Br J Clin Pharmacol 2003 Aug; 56(2): 232–7PubMedCrossRefGoogle Scholar
  120. 120.
    Yamazaki H, Shaw PM, Guengerich FP, et al. Roles of cytochromes P450 1A2 and 3A4 in the oxidation of estradiol and estrone in human liver microsomes. Chem Res Toxicol 1998 Jun; 11(6): 659–65PubMedCrossRefGoogle Scholar
  121. 121.
    Westhoff CL, Torgal AH, Mayeda ER, et al. Pharmacokinetics of a combined oral contraceptive in obese and normal-weight women. Contraception 2010 Jun; 81(6): 474–80PubMedCrossRefGoogle Scholar
  122. 122.
    Stanczyk FZ, Roy S. Metabolism of levonorgestrel, norethindrone, and structurally related contraceptive steroids. Contraception 1990 Jul; 42(1): 67–96PubMedCrossRefGoogle Scholar
  123. 123.
    Edelman A, Munar M, Elman MR, et al. Effect of ethinyl estradiol/levonorgestrel combined oral contraceptive on the activity of cytochrome P4503A in obese women. Br J Clin Pharmacol. Epub 2012 Feb 2Google Scholar
  124. 124.
    Ohyama K, Nakajima M, Nakamura S, et al. A significant role of human cytochrome P450 2C8 in amiodarone N-deethylation: an approach to predict the contribution with relative activity factor. Drug Metab Dispos 2000 Nov; 28(11): 1303–10PubMedGoogle Scholar
  125. 125.
    Fukuchi H, Nakashima M, Araki R, et al. Effect of obesity on serum amiodarone concentration in Japanese patients: population pharmacokinetic investigation by multiple trough screen analysis. J Clin Pharm Ther 2009 Jun; 34(3): 329–36PubMedCrossRefGoogle Scholar
  126. 126.
    Brain EG, Yu LJ, Gustafsson K, et al. Modulation of P450-dependent ifosfamide pharmacokinetics: a better understanding of drug activation in vivo. Br J Cancer 1998 Jun; 77(11): 1768–76PubMedCrossRefGoogle Scholar
  127. 127.
    Lind MJ, Margison JM, Cerny T, et al. Prolongation of ifosfamide elimination half-life in obese patients due to altered drug distribution. Cancer Chemother Pharmacol 1989; 25(2): 139–42PubMedCrossRefGoogle Scholar
  128. 128.
    Engel G, Hofmann U, Heidemann H, et al. Antipyrine as a probe for human oxidative drug metabolism: identification of the cytochrome P450 enzymes catalyzing 4-hydroxyantipyrine, 3-hydroxymethylantipyrine, and norantipyrine formation. Clin Pharmacol Ther 1996 Jun; 59(6): 613–23PubMedCrossRefGoogle Scholar
  129. 129.
    Walter-Sack I, Klotz U. Influence of diet and nutritional status on drug metabolism. Clin Pharmacokinet 1996 Jul; 31(1): 47–64PubMedCrossRefGoogle Scholar
  130. 130.
    Caraco Y, Zylber-Katz E, Berry EM, et al. Antipyrine disposition in obesity: evidence for negligible effect of obesity on hepatic oxidative metabolism. Eur J Clin Pharmacol 1995; 47(6): 525–30PubMedCrossRefGoogle Scholar
  131. 131.
    Horikiri Y, Suzuki T, Mizobe M. Pharmacokinetics and metabolism of bisoprolol enantiomers in humans. J Pharm Sci 1998 Mar; 87(3): 289–94PubMedCrossRefGoogle Scholar
  132. 132.
    Le Jeunne C, Poirier JM, Cheymol G, et al. Pharmacokinetics of intravenous bisoprolol in obese and non-obese volunteers. Eur J Clin Pharmacol 1991; 41(2): 171–4PubMedCrossRefGoogle Scholar
  133. 133.
    Krishna S, White NJ. Pharmacokinetics of quinine, chloroquine and amodiaquine: clinical implications. Clin Pharmacokinet 1996 Apr; 30(4): 263–99PubMedCrossRefGoogle Scholar
  134. 134.
    Viriyayudhakorn S, Thitiarchakul S, Nachaisit S, et al. Pharmacokinetics of quinine in obesity. Trans R Soc Trop Med Hyg 2000 Jul–Aug; 94(4): 425–8PubMedCrossRefGoogle Scholar
  135. 135.
    Zharikova OL, Fokina VM, Nanovskaya TN, et al. Identification of the major human hepatic and placental enzymes responsible for the bio-transformation of glyburide. Biochem Pharmacol 2009 Dec 15; 78(12): 1483–90PubMedCrossRefGoogle Scholar
  136. 136.
    Jaber LA, Antal EJ, Slaughter RL, et al. The pharmacokinetics and pharmacodynamics of 12 weeks of glyburide therapy in obese diabetics. Eur J Clin Pharmacol 1993; 45(5): 459–63PubMedCrossRefGoogle Scholar
  137. 137.
    Joerger M, Huitema AD, Meenhorst PL, et al. Pharmacokinetics of low-dose doxorubicin and metabolites in patients with AIDS-related Kaposi sarcoma. Cancer Chemother Pharmacol 2005 May; 55(5): 488–96PubMedCrossRefGoogle Scholar
  138. 138.
    Rudek MA, Sparreboom A, Garrett-Mayer ES, et al. Factors affecting pharmacokinetic variability following doxorubicin and docetaxel-based therapy. Eur J Cancer 2004 May; 40(8): 1170–8PubMedCrossRefGoogle Scholar
  139. 139.
    Thompson PA, Rosner GL, Matthay KK, et al. Impact of body composition on pharmacokinetics of doxorubicin in children: a Glaser Pediatric Research Network study. Cancer Chemother Pharmacol 2009 Jul; 64(2): 243–51PubMedCrossRefGoogle Scholar
  140. 140.
    Kiang TK, Ensom MH, Chang TK. UDP-glucuronosyltransferases and clinical drug-drug interactions. Pharmacol Ther 2005 Apr; 106(1): 97–132PubMedCrossRefGoogle Scholar
  141. 141.
    Tchernof A, Levesque E, Beaulieu M, et al. Expression of the androgen metabolizing enzyme UGT2B15 in adipose tissue and relative expression measurement using a competitive RT-PCR method. Clin Endocrinol (Oxf) 1999 May; 50(5): 637–42CrossRefGoogle Scholar
  142. 142.
    Mutlib AE, Goosen TC, Bauman JN, et al. Kinetics of acetaminophen glucuronidation by UDP-glucuronosyltransferases 1A1, 1A6, 1A9 and 2B15: potential implications in acetaminophen-induced hepatotoxicity. Chem Res Toxicol 2006 May; 19(5): 701–9PubMedCrossRefGoogle Scholar
  143. 143.
    Hayakawa H, Fukushima Y, Kato H, et al. Metabolism and disposition of novel des-fluoro quinolone garenoxacin in experimental animals and an interspecies scaling of pharmacokinetic parameters. Drug Metab Dispos 2003 Nov; 31(11): 1409–18PubMedCrossRefGoogle Scholar
  144. 144.
    Van Wart S, Phillips L, Ludwig EA, et al. Population pharmacokinetics and pharmacodynamics of garenoxacin in patients with community-acquired respiratory tract infections. Antimicrob Agents Chemother 2004 Dec; 48(12): 4766–77PubMedCrossRefGoogle Scholar
  145. 145.
    Court MH, Duan SX, Guillemette C, et al. Stereoselective conjugation of oxazepam by human UDP-glucuronosyltransferases (UGTs): S-oxazepam is glucuronidated by UGT2B15, while R-oxazepam is glucuronidated by UGT2B7 and UGT1A9. Drug Metab Dispos 2002 Nov; 30(11): 1257–65PubMedCrossRefGoogle Scholar
  146. 146.
    Abernethy DR, Greenblatt DJ, Divoll M, et al. Enhanced glucuronide conjugation of drugs in obesity: studies of lorazepam, oxazepam, and acetaminophen. J Lab Clin Med 1983 Jun; 101(6): 873–80PubMedGoogle Scholar
  147. 147.
    Chung JY, Cho JY, Yu KS, et al. Effect of the UGT2B15 genotype on the pharmacokinetics, pharmacodynamics, and drug interactions of intravenous lorazepam in healthy volunteers. Clin Pharmacol Ther 2005 Jun; 77(6): 486–94PubMedCrossRefGoogle Scholar
  148. 148.
    Okumura K, Kita T, Chikazawa S, et al. Genotyping of N-acetylation polymorphism and correlation with procainamide metabolism. Clin Pharmacol Ther 1997 May; 61(5): 509–17PubMedCrossRefGoogle Scholar
  149. 149.
    Christoff PB, Conti DR, Naylor C, et al. Procainamide disposition in obesity. Drug Intell Clin Pharm 1983 Jul–Aug; 17(7–8): 516–22PubMedGoogle Scholar
  150. 150.
    Czerwinski M, Gibbs JP, Slattery JT. Busulfan conjugation by glutathione S-transferases alpha, mu, and pi. Drug Metab Dispos 1996 Sep; 24(9): 1015–9PubMedGoogle Scholar
  151. 151.
    Browning B, Thormann K, Donaldson A, et al. Busulfan dosing in children with BMIs ≥85% undergoing HSCT: a new optimal strategy. Biol Blood Marrow Transplant 2011 Sep; 17(9): 1383–8PubMedCrossRefGoogle Scholar
  152. 152.
    Nguyen L, Leger F, Lennon S, et al. Intravenous busulfan in adults prior to haematopoietic stem cell transplantation: a population pharmacokinetic study. Cancer Chemother Pharmacol 2006 Jan; 57(2): 191–8PubMedCrossRefGoogle Scholar
  153. 153.
    Gibbs JP, Gooley T, Corneau B, et al. The impact of obesity and disease on busulfan oral clearance in adults. Blood 1999 Jun 15; 93(12): 4436–40PubMedGoogle Scholar
  154. 154.
    Buggia I, Zecca M, Alessandrino EP, et al. Itraconazole can increase systemic exposure to busulfan in patients given bone marrow transplantation. GITMO (Gruppo Italiano Trapianto di Midollo Osseo). Anticancer Res 1996 Jul–Aug; 16(4A): 2083–8PubMedGoogle Scholar
  155. 155.
    Farrell GC, Teoh NC, McCuskey RS. Hepatic microcirculation in fatty liver disease. Anat Rec (Hoboken) 2008 Jun; 291(6): 684–92CrossRefGoogle Scholar
  156. 156.
    Al-Jahdari WS, Yamamoto K, Hiraoka H, et al. Prediction of total propofol clearance based on enzyme activities in microsomes from human kidney and liver. Eur J Clin Pharmacol 2006 Jul; 62(7): 527–33PubMedCrossRefGoogle Scholar
  157. 157.
    van Kralingen S, Diepstraten J, Peeters MYM, et al. Population pharmacokinetics and pharmacodynamics of propofol in morbidly obese patients. Clin Pharmacokinet 2011 Nov 1; 50(11): 739–50PubMedCrossRefGoogle Scholar
  158. 158.
    Cortinez LI, Anderson BJ, Penna A, et al. Influence of obesity on propofol pharmacokinetics: derivation of a pharmacokinetic model. Br J Anaesth 2010 Oct; 105(4): 448–56PubMedCrossRefGoogle Scholar
  159. 159.
    Rahman A, Korzekwa KR, Grogan J, et al. Selective biotransformation of taxol to 6 alpha-hydroxytaxol by human cytochrome P450 2C8. Cancer Res 1994 Nov 1; 54(21): 5543–6PubMedGoogle Scholar
  160. 160.
    Tateishi T, Krivoruk Y, Ueng YF, et al. Identification of human liver cytochrome P-450 3A4 as the enzyme responsible for fentanyl and sufentanil N-dealkylation. Anesth Analg 1996 Jan; 82(1): 167–72PubMedGoogle Scholar
  161. 161.
    Gepts E, Shafer SL, Camu F, et al. Linearity of pharmacokinetics and model estimation of sufentanil. Anesthesiology 1995 Dec; 83(6): 1194–204PubMedCrossRefGoogle Scholar
  162. 162.
    Schwartz AE, Matteo RS, Ornstein E, et al. Pharmacokinetics of sufentanil in obese patients. Anesth Analg 1991 Dec; 73(6): 790–3PubMedGoogle Scholar
  163. 163.
    Masubuchi Y, Hosokawa S, Horie T, et al. Cytochrome P450 isozymes involved in propranolol metabolism in human liver microsomes: the role of CYP2D6 as ring-hydroxylase and CYP1A2 as N-desisopropylase. Drug Metab Dispos 1994 Nov–Dec; 22(6): 909–15PubMedGoogle Scholar
  164. 164.
    Wojcicki J, Jaroszynska M, Drozdzik M, et al. Comparative pharmacokinetics and pharmacodynamics of propranolol and atenolol in normolipaemic and hyperlipidaemic obese subjects. Biopharm Drug Dispos 2003 Jul; 24(5): 211–8PubMedCrossRefGoogle Scholar
  165. 165.
    Cheymol G, Poirier JM, Carrupt PA, et al. Pharmacokinetics of beta-adrenoceptor blockers in obese and normal volunteers. Br J Clin Pharmacol 1997 Jun; 43(6): 563–70PubMedCrossRefGoogle Scholar
  166. 166.
    Cheymol G, Poirier JM, Barre J, et al. Comparative pharmacokinetics of intravenous propranolol in obese and normal volunteers. J Clin Pharmacol 1987 Nov; 27(11): 874–9PubMedCrossRefGoogle Scholar
  167. 167.
    Bowman SL, Hudson SA, Simpson G, et al. A comparison of the pharmacokinetics of propranolol in obese and normal volunteers. Br J Clin Pharmacol 1986 May; 21(5): 529–32PubMedCrossRefGoogle Scholar
  168. 168.
    McNeil JJ, Louis WJ. Clinical pharmacokinetics of labetalol. Clin Pharmacokinet 1984 Mar–Apr; 9(2): 157–67PubMedCrossRefGoogle Scholar
  169. 169.
    Hamann SR, Blouin RA, McAllister Jr RG, et al. Clinical pharmacokinetics of verapamil. Clin Pharmacokinet 1984 Jan–Feb; 9(1): 26–41PubMedCrossRefGoogle Scholar
  170. 170.
    Echizen H, Eichelbaum M. Clinical pharmacokinetics of verapamil, nifedipine and diltiazem. Clin Pharmacokinet 1986 Nov–Dec; 11(6): 425–49PubMedCrossRefGoogle Scholar
  171. 171.
    Abernethy DR, Schwartz JB. Verapamil pharmacodynamics and disposition in obese hypertensive patients. J Cardiovasc Pharmacol 1988 Feb; 11(2): 209–15PubMedGoogle Scholar
  172. 172.
    Zito RA, Reid PR. Lidocaine kinetics predicted by indocyanine green clearance. N Engl J Med 1978 May 25; 298(21): 1160–3PubMedCrossRefGoogle Scholar
  173. 173.
    Abernethy DR, Greenblatt DJ. Lidocaine disposition in obesity. Am J Cardiol 1984 Apr 1; 53(8): 1183–6PubMedCrossRefGoogle Scholar
  174. 174.
    Oda Y, Mizutani K, Hase I, et al. Fentanyl inhibits metabolism of midazolam: competitive inhibition of CYP3A4 in vitro. Br J Anaesth 1999 Jun; 82(6): 900–3PubMedCrossRefGoogle Scholar
  175. 175.
    Shibutani K, Inchiosa Jr MA, Sawada K, et al. Accuracy of pharmacokinetic models for predicting plasma fentanyl concentrations in lean and obese surgical patients: derivation of dosing weight (“pharmacokinetic mass”). Anesthesiology 2004 Sep; 101(3): 603–13PubMedCrossRefGoogle Scholar
  176. 176.
    Routledge PA, Shand DG. Clinical pharmacokinetics of propranolol. Clin Pharmacokinet 1979 Mar–Apr; 4(2): 73–90PubMedCrossRefGoogle Scholar
  177. 177.
    Pea F, Licari M, Baldassarre M, et al. MEGX disposition in critically-ill trauma patients: subsequent assessments during the first week following trauma. Fundam Clin Pharmacol 2002 Dec; 16(6): 519–25PubMedCrossRefGoogle Scholar
  178. 178.
    Koska 3rd AJ, Romagnoli A, Kramer WG. Effect of cardiopulmonary bypass on fentanyl distribution and elimination. Clin Pharmacol Ther 1981 Jan; 29(1): 100–5PubMedCrossRefGoogle Scholar
  179. 179.
    Jiko M, Yano I, Okuda M, et al. Altered pharmacokinetics of paclitaxel in experimental hepatic or renal failure. Pharm Res 2005 Feb; 22(2): 228–34PubMedCrossRefGoogle Scholar
  180. 180.
    Pai MP. Estimating the glomerular filtration rate in obese adult patients for drug dosing. Adv Chronic Kidney Dis 2010 Sep; 17(5): e53–62PubMedCrossRefGoogle Scholar
  181. 181.
    Ribstein J, du Cailar G, Mimran A. Combined renal effects of overweight and hypertension. Hypertension 1995 Oct; 26(4): 610–5PubMedCrossRefGoogle Scholar
  182. 182.
    Marik P, Varon J. The obese patient in the ICU. Chest 1998 Feb; 113(2): 492–8PubMedCrossRefGoogle Scholar
  183. 183.
    Kasiske BL, Crosson JT. Renal disease in patients with massive obesity. Arch Intern Med 1986 Jun; 146(6): 1105–9PubMedCrossRefGoogle Scholar
  184. 184.
    Cindik N, Baskin E, Agras PI, et al. Effect of obesity on inflammatory markers and renal functions. Acta Paediatr 2005 Dec; 94(12): 1732–7PubMedCrossRefGoogle Scholar
  185. 185.
    Csernus K, Lanyi E, Erhardt E, et al. Effect of childhood obesity and obesity-related cardiovascular risk factors on glomerular and tubular protein excretion. Eur J Pediatr 2005 Jan; 164(1): 44–9PubMedCrossRefGoogle Scholar
  186. 186.
    Savino A, Pelliccia P, Giannini C, et al. Implications for kidney disease in obese children and adolescents. Pediatr Nephrol 2011 May; 26(5): 749–58PubMedCrossRefGoogle Scholar
  187. 187.
    Post FA, Wyatt CM, Mocroft A. Biomarkers of impaired renal function. Curr Opin HIV AIDS 2010 Nov; 5(6): 524–30PubMedCrossRefGoogle Scholar
  188. 188.
    Henegar JR, Bigler SA, Henegar LK, et al. Functional and structural changes in the kidney in the early stages of obesity. J Am Soc Nephrol 2001 Jun; 12(6): 1211–7PubMedGoogle Scholar
  189. 189.
    Matzke GR, Zhanel GG, Guay DR. Clinical pharmacokinetics of vancomycin. Clin Pharmacokinet 1986 Jul–Aug; 11(4): 257–82PubMedCrossRefGoogle Scholar
  190. 190.
    Bauer LA, Black DJ, Lill JS. Vancomycin dosing in morbidly obese patients. Eur J Clin Pharmacol 1998 Oct; 54(8): 621–5PubMedCrossRefGoogle Scholar
  191. 191.
    Dvorchik B, Arbeit RD, Chung J, et al. Population pharmacokinetics of daptomycin. Antimicrob Agents Chemother 2004 Aug; 48(8): 2799–807PubMedCrossRefGoogle Scholar
  192. 192.
    Pai MP, Norenberg JP, Anderson T, et al. Influence of morbid obesity on the single-dose pharmacokinetics of daptomycin. Antimicrob Agents Chemother 2007 Aug; 51(8): 2741–7PubMedCrossRefGoogle Scholar
  193. 193.
    Dvorchik BH, Damphousse D. The pharmacokinetics of daptomycin in moderately obese, morbidly obese, and matched nonobese subjects. J Clin Pharmacol 2005 Jan; 45(1): 48–56PubMedCrossRefGoogle Scholar
  194. 194.
    Harland SJ, Newell DR, Siddik ZH, et al. Pharmacokinetics of cis-diammine-1,1-cyclobutane dicarboxylate platinum(II) in patients with normal and impaired renal function. Cancer Res 1984 Apr; 44(4): 1693–7PubMedGoogle Scholar
  195. 195.
    Ekhart C, Rodenhuis S, Schellens JH, et al. Carboplatin dosing in overweight and obese patients with normal renal function, does weight matter? Cancer Chemother Pharmacol 2009 Jun; 64(1): 115–22PubMedCrossRefGoogle Scholar
  196. 196.
    Schmitt A, Gladieff L, Lansiaux A, et al. A universal formula based on cystatin C to perform individual dosing of carboplatin in normal weight, underweight, and obese patients. Clin Cancer Res 2009 May 15; 15(10): 3633–9PubMedCrossRefGoogle Scholar
  197. 197.
    Frydman A. Low-molecular-weight heparins: an overview of their pharmacodynamics, pharmacokinetics and metabolism in humans. Haemostasis 1996; 26 Suppl. 2: 24–38PubMedGoogle Scholar
  198. 198.
    Barras MA, Duffull SB, Atherton JJ, et al. Modelling the occurrence and severity of enoxaparin-induced bleeding and bruising events. Br J Clin Pharmacol 2009 Nov; 68(5): 700–11PubMedCrossRefGoogle Scholar
  199. 199.
    Yee JY, Duffull SB. The effect of body weight on dalteparin pharmacokinetics: a preliminary study. Eur J Clin Pharmacol 2000 Jul; 56(4): 293–7PubMedCrossRefGoogle Scholar
  200. 200.
    Barrett JS, Gibiansky E, Hull RD, et al. Population pharmacodynamics in patients receiving tinzaparin for the prevention and treatment of deep vein thrombosis. Int J Clin Pharmacol Ther 2001 Oct; 39(10): 431–46PubMedGoogle Scholar
  201. 201.
    Richards DA. Comparative pharmacodynamics and pharmacokinetics of cimetidine and ranitidine. J Clin Gastroenterol 1983; 5 Suppl. 1: 81–90PubMedCrossRefGoogle Scholar
  202. 202.
    Abernethy DR, Greenblatt DJ, Matlis R, et al. Cimetidine disposition in obesity. Am J Gastroenterol 1984 Feb; 79(2): 91–4PubMedGoogle Scholar
  203. 203.
    Lewis TV, Johnson PN, Nebbia AM, et al. Increased enoxaparin dosing is required for obese children. Pediatrics 2011 Mar; 127(3): e787–90PubMedCrossRefGoogle Scholar
  204. 204.
    Karlsson E. Clinical pharmacokinetics of procainamide. Clin Pharmacokinet 1978 Mar–Apr; 3(2): 97–107PubMedCrossRefGoogle Scholar
  205. 205.
    Drusano GL. An overview of the pharmacology of intravenously administered ciprofloxacin. Am J Med 1987 Apr 27; 82(4A): 339–45PubMedGoogle Scholar
  206. 206.
    Allard S, Kinzig M, Boivin G, et al. Intravenous ciprofloxacin disposition in obesity. Clin Pharmacol Ther 1993 Oct; 54(4): 368–73PubMedCrossRefGoogle Scholar
  207. 207.
    Daley-Yates PT, McBrien DC. The mechanism of renal clearance of cisplatin (cis-dichlorodiammine platinum II) and its modification by furosemide and probenecid. Biochem Pharmacol 1982 Jul 1; 31(13): 2243–6PubMedCrossRefGoogle Scholar
  208. 208.
    Zamboni WC, Houghton PJ, Johnson RK, et al. Probenecid alters topotecan systemic and renal disposition by inhibiting renal tubular secretion. J Pharmacol Exp Ther 1998 Jan; 284(1): 89–94PubMedGoogle Scholar
  209. 209.
    Iisalo E. Clinical pharmacokinetics of digoxin. Clin Pharmacokinet 1977 Jan–Feb; 2(1): 1–16PubMedCrossRefGoogle Scholar
  210. 210.
    Abernethy DR, Greenblatt DJ, Smith TW. Digoxin disposition in obesity: clinical pharmacokinetic investigation. Am Heart J 1981 Oct; 102(4): 740–4PubMedCrossRefGoogle Scholar
  211. 211.
    Davis JM, Fann WE. Lithium. Annu Rev Pharmacol 1971; 11: 285–302PubMedCrossRefGoogle Scholar
  212. 212.
    Reiss RA, Haas CE, Karki SD, et al. Lithium pharmacokinetics in the obese. Clin Pharmacol Ther 1994 Apr; 55(4): 392–8PubMedCrossRefGoogle Scholar
  213. 213.
    Chagnac A, Herman M, Zingerman B, et al. Obesity-induced glomerular hyperfiltration: its involvement in the pathogenesis of tubular sodium reabsorption. Nephrol Dial Transplant 2008 Dec; 23(12): 3946–52PubMedCrossRefGoogle Scholar
  214. 214.
    Mortensen A, Lenz K, Abildstrom H, et al. Anesthetizing the obese child. Paediatr Anaesth 2011 Jun; 21(6): 623–9PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2012

Authors and Affiliations

  • Margreke J. E. Brill
    • 1
    • 2
  • Jeroen Diepstraten
    • 1
  • Anne van Rongen
    • 1
  • Simone van Kralingen
    • 3
  • John N. van den Anker
    • 4
    • 5
  • Catherijne A. J. Knibbe
    • 2
  1. 1.Department of Clinical PharmacySt Antonius HospitalNieuwegeinthe Netherlands
  2. 2.Division of Pharmacology, Leiden/Amsterdam Center for Drug ResearchLeiden UniversityLeidenthe Netherlands
  3. 3.Department of AnesthesiologySt Lucas Andreas HospitalAmsterdamthe Netherlands
  4. 4.Division of Pediatric Clinical PharmacologyChildren’s National Medical CenterUSA
  5. 5.Intensive CareErasmus MC-Sophia Children’s HospitalRotterdamthe Netherlands

Personalised recommendations