Drugs

, Volume 71, Issue 15, pp 2031–2065

Current and Emerging Drug Treatment Options for Alzheimer’s Disease

A Systematic Review
  • Nathan Herrmann
  • Sarah A. Chau
  • Ida Kircanski
  • Krista L. Lanctôt
Review Article

Abstract

Alzheimer’s disease (AD) is a progressive and ultimately fatal condition that causes debilitating memory loss and extensive deterioration of cognitive and functional abilities. Currently available treatments for AD (donepezil, rivastigmine, galantamine and memantine) are symptomatic and do not decelerate or prevent the progression of the disease. These therapies demonstrate modest, but particularly consistent, benefit for cognition, global status and functional ability. The search for disease-modifying interventions has focused largely on compounds targeting the amyloid-β pathway. To date, the treatments targeting this pathway, such as tramiprosate and semagacestat, have been unsuccessful in demonstrating efficacy in clinical stages of testing. At this point, it is likely that not only amyloid-β aggregation but other possible neuronal mechanisms — such as hyperphosphorylated tau, neuro-inflammation and other processes — play important roles in the pathophysiology of this multifactorial disorder. Development of better disease models and biomarkers is essential for the advancement of knowledge of the disease mechanisms. This systematic review critically examines the efficacy and safety data for currently approved drugs and emerging treatments in AD, as well as discussing the present and future directions of innovation in this field.

References

  1. 1.
    Alzheimer’s Association. 2011 Alzheimer’s disease facts and figures. Alzheimers Dement 2011 Mar; 7(2): 208–44CrossRefGoogle Scholar
  2. 2.
    Birks J, Grimley E, Iakovidou V, et al. Rivastigmine for Alzheimer’s disease. Cochrane Database Syst Rev 2009 Apr; (2): CD001191Google Scholar
  3. 3.
    Brookmeyer R, Johnson E, Ziegler-Graham K, et al. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 2007 Jul; 3(3): 186–91PubMedCrossRefGoogle Scholar
  4. 4.
    Ferri CP, Prince M, Brayne C, et al. Global prevalence of dementia: a Delphi consensus study. Lancet 2005 Dec 17; 366(9503): 2112–7PubMedCrossRefGoogle Scholar
  5. 5.
    WHO Media Centre. The 10 leading causes of death by broad income group, 2004 [online]. Available from URL: http://www.who.int/mediacentre/factsheets/fs310_2008.pdf [Accessed 2011 Mar 22]
  6. 6.
    Yaari R, Corey-Bloom J. Alzheimer’s disease. Semin Neurol 2007 Feb; 27(1): 32–41PubMedCrossRefGoogle Scholar
  7. 7.
    Jost BC, Grossberg GT. The natural history of Alzheimer’s disease: a brain bank study. J Am Geriatr Soc 1995 Nov; 43(11): 1248–55PubMedGoogle Scholar
  8. 8.
    Cappell J, Herrmann N, Cornish S, et al. The pharmaco-economics of cognitive enhancers in moderate to severe Alzheimer’s disease. CNS Drugs 2010 Nov 1; 24(11): 909–27PubMedCrossRefGoogle Scholar
  9. 9.
    Knapp M, Knopman D, Solomon P, et al. A 30-week randomized controlled trial of high-dose tacrine in patients with Alzheimer’s disease. The Tacrine Study Group. JAMA 1994 Apr 6; 271(13): 985–91Google Scholar
  10. 10.
    Watkins P, Zimmerman H, Knapp M, et al. Hepatotoxic effects of tacrine administration in patients with Alzheimer’s disease. JAMA 1994 Apr; 271(13): 992–8PubMedCrossRefGoogle Scholar
  11. 11.
    Blackard WJ, Sood G, Crowe D, et al. Tacrine: a cause of fatal hepatotoxicity? J Clin Gastroenterol 1998 Jan; 26(1): 57–9PubMedCrossRefGoogle Scholar
  12. 12.
    McGleenon B, Dynan K, Passmore A. Acetylcholinesterase inhibitors in Alzheimer’s disease. Br J Clin Pharmacol 1999 Oct; 48(4): 471–80PubMedCrossRefGoogle Scholar
  13. 13.
    Birks J. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev 2006 Jan; (1): CD005593Google Scholar
  14. 14.
    McShane R, Areosa Sastre A, Minakaran N. Memantine for dementia. Cochrane Database Syst Rev 2006 Apr 19; (2): CD003154Google Scholar
  15. 15.
    Hogan D, Patterson C. Progress in clinical neurosciences: treatment of Alzheimer’s disease and other dementias. Review and comparison of the cholinesterase inhibitors. Can J Neurol Sci 2002 Nov; 29(4): 306–14Google Scholar
  16. 16.
    Hogan D, Goldlist B, Naglie G, et al. Comparison studies of cholinesterase inhibitors for Alzheimer’s disease. Lancet Neurol 2004 Oct; 3(10): 622–6PubMedCrossRefGoogle Scholar
  17. 17.
    Modrego P, Fayed N, Errea J, et al. Memantine versus donepezil in mild to moderate Alzheimer’s disease: a randomized trial with magnetic resonance spectroscopy. Eur J Neurol 2010 Mar; 17(3): 405–12PubMedCrossRefGoogle Scholar
  18. 18.
    Terry RD, Gonatas NK, Weiss M. Ultrastructural studies in Alzheimer’s presenile dementia. Am J Pathol 1964 Feb; 44: 269–97PubMedGoogle Scholar
  19. 19.
    Blessed G, Tomlinson BE, Roth M. The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects. Br J Psychiatry 1968 Jul; 114(512): 797–811PubMedCrossRefGoogle Scholar
  20. 20.
    American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 4th ed. Washington, DC: American Psychiatric Association, 2000Google Scholar
  21. 21.
    McKhann G, Drachman D, Folstein M, et al. Clinical diagnosis of Alzheimer’s disease: report of the NINCDSADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984; 34: 939–44PubMedCrossRefGoogle Scholar
  22. 22.
    World Health Organization. The tenth revision of the international classification of diseases and relative health problems (ICD-10). Geneva: WHO, 1992Google Scholar
  23. 23.
    Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg 2010; 8(5): 336–4 [online]. Available from URL: http://www.prisma-statement.org/ statement.htm [Accessed 2011 Mar 22]PubMedCrossRefGoogle Scholar
  24. 24.
    Scottish Intercollegiate Guidelines Network. SIGN 50: a guideline developer’s handbook [online]. Available from URL: http://www.sign.ac.uk/guidelines/fulltext/50/index.html [Accessed 2011 Mar 22]
  25. 25.
    Mangialasche F, Solomon A, Winblad B, et al. Alzheimer’s disease: clinical trials and drug development. Lancet Neurol 2010 Jul; 9(7): 702–16PubMedCrossRefGoogle Scholar
  26. 26.
    Perry E, Tomlinson B, Blessed G, et al. Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br Med J 1978 Nov; 2(6150): 1457–9PubMedCrossRefGoogle Scholar
  27. 27.
    Sims N, Bowen D, Allen S, et al. Presynaptic cholinergic dysfunction in patients with dementia. J Neurochem 1983 Feb; 40(2): 503–9PubMedCrossRefGoogle Scholar
  28. 28.
    Bassil N, Grossberg G. Novel regimens and delivery systems in the pharmacological treatment of Alzheimer’s disease. CNS Drugs 2009; 23(4): 293–307PubMedCrossRefGoogle Scholar
  29. 29.
    Kosasa T, Kuriya Y, Matsui K, et al. Inhibitory effect of orally administered donepezil hydrochloride (E2020), a novel treatment for Alzheimer’s disease, on cholinesterase activity in rats. Eur J Pharmacol 2000 Feb; 389(2–3): 173–9PubMedCrossRefGoogle Scholar
  30. 30.
    Seltzer B. Donepezil: an update. Expert Opin Pharmacother 2007 May; 8(7): 1011–23PubMedCrossRefGoogle Scholar
  31. 31.
    Nordberg A. Mechanisms behind the neuroprotective actions of cholinesterase inhibitors in Alzheimer disease. Alzheimer Dis Assoc Disord 2006 Apr–Jun; 20 (2 Suppl. 1): S12–8PubMedCrossRefGoogle Scholar
  32. 32.
    Li J, Wu H, Zhou R, et al. Huperzine A for Alzheimer’s disease. Cochrane Database Syst Rev 2008 Apr; 16 (2): CD005592Google Scholar
  33. 33.
    Rafii MS, Walsh S, Little JT, et al. A phase II trial of huperzine A in mild to moderate Alzheimer disease. Neurology 2011 Apr 19; 76(16): 1389–94PubMedCrossRefGoogle Scholar
  34. 34.
    Eisai Inc. ARICEPT® (donepezil HCl): prescribing and patient information [online]. Available from URL: http://www.aricept.com/?q=info/prescribing-and-patient-info [Accessed 2011 Mar 3]
  35. 35.
    Winblad B. Donepezil in severe Alzheimer’s disease. Am J Alzheimers Dis Other Demen 2009 Jun–Jul; 24(3): 185–92PubMedCrossRefGoogle Scholar
  36. 36.
    Pfizer Canada Inc. Aricept/AriceptRDT product monograph [online]. Available from URL: http://www.pfizer. ca/en/our_products/products/product/122 [Accessed 2011 Jun 23]Google Scholar
  37. 37.
    Farlow MR, Salloway S, Tariot PN, et al. Effectiveness and tolerability of high-dose (23 mg/d) versus standard-dose (10mg/d) donepezil in moderate to severe Alzheimer’s disease: a 24-week, randomized, double-blind study. Clin Ther 2010 Jul; 32(7): 1234–51PubMedCrossRefGoogle Scholar
  38. 38.
    Di Stefano A, Iannitelli A, Laserra S, et al. Drug delivery strategies for Alzheimer’s disease treatment. Expert Opin Drug Deliv 2011; 8(5): 581–603PubMedCrossRefGoogle Scholar
  39. 39.
    Mayeux R, Sano M. Treatment of Alzheimer’s disease. N Engl J Med 1999 Nov; 341(22): 1670–9PubMedCrossRefGoogle Scholar
  40. 40.
    Takada Y, Yonezawa A, Kume T, et al. Nicotinic acetylcholine receptor-mediated neuroprotection by donepezil against glutamate neurotoxicity in rat cortical neurons. J Pharmacol Exp Ther 2003 Aug; 306(2): 772–7PubMedCrossRefGoogle Scholar
  41. 41.
    Birks J, Harvey R. Donepezil for dementia due to Alzheimer’s disease. Cochrane Database Syst Rev 2006 Jan; 25 (1): CD001190Google Scholar
  42. 42.
    Raina P, Santaguida P, Ismaila A, et al. Effectiveness of cholinesterase inhibitors and memantine for treating dementia: evidence review for a clinical practice guideline. Ann Intern Med 2008 Mar; 148(5): 379–97PubMedGoogle Scholar
  43. 43.
    Hansen R, Gartlehner G, Webb A, et al. Efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer’s disease: a systematic review and meta-analysis. Clin Interv Aging 2008; 3(2): 211–25PubMedGoogle Scholar
  44. 44.
    Ritchie C, Ames D, Clayton T, et al. Metaanalysis of randomized trials of the efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer disease. Am J Geriatr Psychiatry 2004 Jul–Aug; 12(4): 358–69PubMedGoogle Scholar
  45. 45.
    Loy C, Schneider L. Galantamine for Alzheimer’s disease and mild cognitive impairment. Cochrane Database Syst Rev 2006 Jan; 25 (1): CD001747Google Scholar
  46. 46.
    Campbell N, Ayub A, Boustani M, et al. Impact of cholinesterase inhibitors on behavioral and psychological symptoms of Alzheimer’s disease: a meta-analysis. Clin Interv Aging 2008; 3(4): 719–28PubMedGoogle Scholar
  47. 47.
    Hansen R, Gartlehner G, Lohr K, et al. Functional outcomes of drug treatment in Alzheimer’s disease: a systematic review and meta-analysis. Drugs Aging 2007; 24(2): 155–67PubMedCrossRefGoogle Scholar
  48. 48.
    Harry R, Zakzanis K. A comparison of donepezil and galantamine in the treatment of cognitive symptoms of Alzheimer’s disease: a meta-analysis. Hum Psychopharmacol 2005 Apr; 20(3): 183–7PubMedCrossRefGoogle Scholar
  49. 49.
    Lanctôt K, Herrmann N, Yau K, et al. Efficacy and safety of cholinesterase inhibitors in Alzheimer’s disease: a meta-analysis. CMAJ 2003 Sep; 169(6): 557–64PubMedGoogle Scholar
  50. 50.
    Schneider LS, Dagerman KS, Higgins JP, et al. Lack of evidence for the efficacy of memantine in mild Alzheimer disease. Arch Neurol. Epub 2011 Apr 11Google Scholar
  51. 51.
    Maidment I, Fox C, Boustani M, et al. Efficacy of memantine on behavioral and psychological symptoms related to dementia: a systematic meta-analysis. Ann Pharmacother 2008 Jan; 42(1): 32–8PubMedGoogle Scholar
  52. 52.
    Doody R, Tariot P, Pfeiffer E, et al. Meta-analysis of six-month memantine trials in Alzheimer’s disease. Alzheimers Dement 2007 Jan; 3(1): 7–17PubMedCrossRefGoogle Scholar
  53. 53.
    Winblad B, Jones R, Wirth Y, et al. Memantine in moderate to severe Alzheimer’s disease: a meta-analysis of randomised clinical trials. Dement Geriatr Cogn Disord 2007; 24(1): 20–7PubMedCrossRefGoogle Scholar
  54. 54.
    Wei ZH, He QB, Wang H, et al. Meta-analysis: the efficacy of nootropic agent Cerebrolysin in the treatment of Alzheimer’s disease. J Neural Transm 2007; 114(5): 629–34PubMedCrossRefGoogle Scholar
  55. 55.
    Wilcock G, Howe I, Coles H, et al. A long-term comparison of galantamine and donepezil in the treatment of Alzheimer’s disease. Drugs Aging 2003; 20(10): 777–89PubMedCrossRefGoogle Scholar
  56. 56.
    Jones R, Soininen H, Hager K, et al. A multinational, randomised, 12-week study comparing the effects of donepezil and galantamine in patients with mild to moderate Alzheimer’s disease. Int J Geriatr Psychiatry 2004 Jan; 19(1): 58–67PubMedCrossRefGoogle Scholar
  57. 57.
    Bullock R, Touchon J, Bergman H, et al. Rivastigmine and donepezil treatment in moderate to moderately-severe Alzheimer’s disease over a 2-year period. Curr Med Res Opin 2005 Aug; 21(8): 1317–27PubMedCrossRefGoogle Scholar
  58. 58.
    Wilkinson D, Passmore A, Bullock R, et al. A multinational, randomised, 12-week, comparative study of donepezil and rivastigmine in patients with mild to moderate Alzheimer’s disease. Int J Clin Pract 2002 Jul–Aug; 56(6): 441–6PubMedGoogle Scholar
  59. 59.
    Courtney C, Farrell D, Gray R, et al. Long-term donepezil treatment in 565 patients with Alzheimer’s disease (AD2000): randomised double-blind trial. Lancet Neurol 2004 Jun; 363(9427): 2105–15Google Scholar
  60. 60.
    Standridge JB. Donepezil did not reduce the rate of institutionalisation or disability in people with mild to moderate Alzheimer’s disease. Evid Based Ment Health 2004 Nov; 7(4): 112PubMedCrossRefGoogle Scholar
  61. 61.
    Black SE, Szalai JP. Are there long-term benefits of donepezil in Alzheimer’s disease? CMAJ 2004 Nov 9; 171(10): 1174–5PubMedCrossRefGoogle Scholar
  62. 62.
    Holmes C, Burns A, Passmore P, et al. AD2000: design and conclusions. Lancet 2004 Oct 2–8; 364(9441): 1213–4; author reply 6-7PubMedCrossRefGoogle Scholar
  63. 63.
    Akintade L, Zaiac M, Ieni JR, et al. AD2000: design and conclusions. Lancet 2004 Oct 2–8; 364(9441): 1214; author reply 6-7PubMedCrossRefGoogle Scholar
  64. 64.
    Howe I. AD2000: design and conclusions. Lancet 2004 Oct 2–8; 364(9441): 1214–5; author reply 6-7PubMedCrossRefGoogle Scholar
  65. 65.
    Clarke N. AD2000: design and conclusions. Lancet 2004 Oct 2–8; 364(9441): 1215–6; author reply 6-7PubMedCrossRefGoogle Scholar
  66. 66.
    Schneider LS. AD2000: donepezil in Alzheimer’s disease. Lancet 2004 Jun 26; 363(9427): 2100–1PubMedCrossRefGoogle Scholar
  67. 67.
    Holmes C, Wilkinson D, Dean C, et al. The efficacy of donepezil in the treatment of neuropsychiatric symptoms in Alzheimer disease. Neurology 2004 Jul; 63(2): 214–9PubMedCrossRefGoogle Scholar
  68. 68.
    Ballard C, Brown R, Fossey J, et al. Brief psychosocial therapy for the treatment of agitation in Alzheimer disease (the CALM-AD trial). Am J Geriatr Psychiatry 2009 Sep; 17(9): 726–33PubMedCrossRefGoogle Scholar
  69. 69.
    Howard R, Juszczak E, Ballard C, et al. Donepezil for the treatment of agitation in Alzheimer’s disease. N Engl J Med 2007 Oct; 357(14): 1382–92PubMedCrossRefGoogle Scholar
  70. 70.
    Polinsky R. Clinical pharmacology of rivastigmine: a new-generation acetylcholinesterase inhibitor for the treatment of Alzheimer’s disease. Clin Ther 1998 Jul–Aug; 20(4): 634–47PubMedCrossRefGoogle Scholar
  71. 71.
    Farlow M, Small G, Quarg P, et al. Efficacy of rivastigmine in Alzheimer’s disease patients with rapid disease progression: results of a meta-analysis. Dement Geriatr Cogn Disord 2005; 20(2–3): 192–7PubMedCrossRefGoogle Scholar
  72. 72.
    Crawford J. Alzheimer’s disease risk factors as related to cerebral blood flow: additional evidence. Med Hypotheses 1998 Jan; 50(1): 25–36PubMedCrossRefGoogle Scholar
  73. 73.
    Novartis Pharmaceuticals Canada Inc. Exelon prescribing information [online]. Available from URL: http://www.novartis.ca/products/en/pharmaceuticals-e.shtml [Accessed 2011 Jun 23]
  74. 74.
    Cummings JL, Farlow MR, Meng X, et al. Rivastigmine transdermal patch skin tolerability: results of a 1-year clinical trial in patients with mild-to-moderate Alzheimer’s disease. Clin Drug Invest 2010; 30(1): 41–9CrossRefGoogle Scholar
  75. 75.
    Emre M, Bernabei R, Blesa R, et al. Drug profile: transdermal rivastigmine patch in the treatment of Alzheimer disease. CNS Neurosci Ther 2010 Aug; 16(4): 246–53PubMedCrossRefGoogle Scholar
  76. 76.
    Shimohama S. Nicotinic receptor-mediated neuroprotection in neurodegenerative disease models. Biol Pharm Bull 2009 Mar; 32(3): 332–6PubMedCrossRefGoogle Scholar
  77. 77.
    Razay G, Wilcock G. Galantamine in Alzheimer’s disease. Expert Rev Neurother 2008 Jan; 8(1): 9–17PubMedCrossRefGoogle Scholar
  78. 78.
    Seltzer B. Galantamine-ER for the treatment of mild-to-moderate Alzheimer’s disease. Clin Interv Aging 2010 Feb 5: 1–6PubMedGoogle Scholar
  79. 79.
    Kaduszkiewicz H, Zimmermann T, Beck-Bornholdt H, et al. Cholinesterase inhibitors for patients with Alzheimer’s disease: systematic review of randomised clinical trials. BMJ 2005 Aug; 331(7512): 321–7PubMedCrossRefGoogle Scholar
  80. 80.
    Herrmann N. Trials and tribulations of evidence-based medicine: the case of Alzheimer disease therapeutics. Can J Psychiatry 2007 Oct; 52(10): 617–9PubMedGoogle Scholar
  81. 81.
    Luckmann R. Cholinesterase inhibitors may be effective in Alzheimer’s disease [review]. Evid Based Med 2006 Feb; 11(1): 23PubMedCrossRefGoogle Scholar
  82. 82.
    Birks J. The evidence for the efficacy of cholinesterase inhibitors in the treatment of Alzheimer’s disease is convincing. Int Psychogeriatr 2008 Feb; 6 (1–7). Epub ahead of printGoogle Scholar
  83. 83.
    Gauthier S, Wirth Y, Möbius H. Effects of memantine on behavioural symptoms in Alzheimer’s disease patients: an analysis of the Neuropsychiatric Inventory (NPI) data of two randomised, controlled studies. Int J Geriatr Psychiatry 2005 May; 20(5): 459–64PubMedCrossRefGoogle Scholar
  84. 84.
    Witt A, Macdonald N, Kirkpatrick P. Memantine hydrochloride. Nat Rev Drug Discov 2004 Feb; 3(2): 109–10PubMedCrossRefGoogle Scholar
  85. 85.
    Wenk GL, Parsons CG, Danysz W. Potential role of N-methyl-D-aspartate receptors as executors of neurode-generation resulting from diverse insults: focus on memantine. Behav Pharmacol 2006 Sep; 17(5–6): 411–24PubMedCrossRefGoogle Scholar
  86. 86.
    Bassil N, Thaipisuttikul P, Grossberg GT. Memantine ER, a once-daily formulation for the treatment of Alzheimer’s disease. Expert Opin Pharmacother 2010 Jul; 11(10): 1765–71PubMedCrossRefGoogle Scholar
  87. 87.
    Forest Laboratories Inc. Forest Laboratories Clinical Trials Registry: study no. MEM-MD-12 [online]. Available from URL: http://www.forestclinicaltrials.com/CTR/CTRController/CTRViewPdf?_file_id=scsr/SCSR_MEM-MD-12_final.pdf [Accessed 2011 Aug 29]
  88. 88.
    Bakchine S, Pascual-Gangnant L, Loft H. Results of a placebo-controlled 6-month study in the treatment of mild-to-moderate Alzheimer’s Disease in Europe [poster no. P2087]. 9th Congress of the European Federation of Neurological Societies; 2005 Sep 17–20; AthensGoogle Scholar
  89. 89.
    Peskind ER, Potkin SG, Pomara N, et al. Memantine treatment in mild to moderate Alzheimer disease: a 24-week randomized, controlled trial. Am J Geriatr Psychiatry 2006 Aug; 14(8): 704–15PubMedCrossRefGoogle Scholar
  90. 90.
    Reisberg B, Doody R, Stoffler A, et al. Memantine in moderate-to-severe Alzheimer’s disease. N Engl J Med 2003 Apr 3; 348(14): 1333–41PubMedCrossRefGoogle Scholar
  91. 91.
    Forest Laboratories Inc. Forest Laboratories Clinical Trials Registry: study no. MEM-MD-01 [online]. Available from URL: http://www.forestclinicaltrials.com/CTR/CTRController/CTRViewPdf?_file_id=scsr/SCSR_MEM-MD-01_final.pdf [Accessed 2011 Aug 29]
  92. 92.
    Tariot PN, Farlow MR, Grossberg GT, et al. Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA 2004 Jan 21; 291(3): 317–24PubMedCrossRefGoogle Scholar
  93. 93.
    Knopman D. Commentary on “Meta-analysis of six-month memantine trials in Alzheimer’s disease”: memantine has negligible benefits in mild to moderate Alzheimer’s disease. Alzheimers Dement 2007 Jan; 3(1): 21–2PubMedCrossRefGoogle Scholar
  94. 94.
    Schneider L. Commentary on “Meta-analysis of six-month memantine trials in Alzheimer’s disease”: wuthering forest plots — distinguishing the forest from the plots. Alzheimers Dement 2007 Jan; 3(1): 18–20PubMedCrossRefGoogle Scholar
  95. 95.
    Herrmann N, Li A, Lanctôt K. Memantine in dementia: a review of the current evidence. Expert Opin Pharmacother 2011 Apr; 12(5): 787–800PubMedCrossRefGoogle Scholar
  96. 96.
    Veinbergs I, Mallory M, Sagara Y, et al. Vitamin E supplementation prevents spatial learning deficits and dendritic alterations in aged apolipoprotein E-deficient mice. Eur J Neurosci 2000 Dec; 12(12): 4541–6PubMedGoogle Scholar
  97. 97.
    Veinbergs I, Mante M, Mallory M, et al. Neurotrophic effects of Cerebrolysin in animal models of excitotoxicity. J Neural Transm 2000; 59: 273–80Google Scholar
  98. 98.
    Rockenstein E, Mallory M, Mante M, et al. Effects of Cerebrolysin on amyloid-beta deposition in a transgenic model of Alzheimer’s disease. J Neural Transm Suppl 2002; (62): 327–36Google Scholar
  99. 99.
    Rockenstein E, Mante M, Adame A, et al. Effects of Cerebrolysin on neurogenesis in an APP transgenic model of Alzheimer’s disease. Acta Neuropathol 2007 Mar; 113(3): 265–75PubMedCrossRefGoogle Scholar
  100. 100.
    Xiong H, Baskys A, Wojtowicz JM. Brain-derived peptides inhibit synaptic transmission via presynaptic GABAB receptors in CA1 area of rat hippocampal slices. Brain Res 1996 Oct 21; 737(1–2): 188–94PubMedCrossRefGoogle Scholar
  101. 101.
    Xiong H, Wojtowicz JM, Baskys A. Brain tissue hydrolysate acts on presynaptic adenosine receptors in the rat hippocampus. Can J Physiol Pharmacol 1995 Aug; 73(8): 1194–7PubMedCrossRefGoogle Scholar
  102. 102.
    Alvarez XA, Lombardi VR, Fernandez-Novoa L, et al. Cerebrolysin reduces microglial activation in vivo and in vitro: a potential mechanism of neuroprotection. J Neural Transm 2000; 59: 281–92Google Scholar
  103. 103.
    Rockenstein E, Torrance M, Mante M, et al. Cerebrolysin decreases amyloid-beta production by regulating amyloid protein precursor maturation in a transgenic model of Alzheimer’s disease. J Neurosci Res 2006 May 15; 83(7): 1252–61PubMedCrossRefGoogle Scholar
  104. 104.
    Ubhi K, Rockenstein E, Doppler E, et al. Neurofibrillary and neurodegenerative pathology in APP-transgenic mice injected with AAV2-mutant TAU: neuroprotective effects of Cerebrolysin. Acta Neuropathol 2009 Jun; 117(6): 699–712PubMedCrossRefGoogle Scholar
  105. 105.
    Plosker GL, Gauthier S. Cerebrolysin: a review of its use in dementia. Drugs Aging 2009; 26(11): 893–915PubMedCrossRefGoogle Scholar
  106. 106.
    Alvarez XA, Cacabelos R, Sampedro C, et al. Combination treatment in Alzheimer’s disease: results of a randomized, controlled trial with cerebrolysin and donepezil. Curr Alzheimer Res. Epub 2011 Jun 17Google Scholar
  107. 107.
    Muresanu DF, Rainer M, Moessler H. Improved global function and activities of daily living in patients with AD: a placebo-controlled clinical study with the neurotrophic agent Cerebrolysin. J Neural Transm Suppl 2002; 62: 277–85PubMedGoogle Scholar
  108. 108.
    Rothwell PM. External validity of randomised controlled trials: “to whom do the results of this trial apply?” Lancet 2005 Jan 1–7; 365(9453): 82–93PubMedCrossRefGoogle Scholar
  109. 109.
    Lockhart IA, Mitchell SA, Kelly S. Safety and tolerability of donepezil, rivastigmine and galantamine for patients with Alzheimer’s disease: systematic review of the ‘real-world’ evidence. Dement Geriatr Cogn Disord 2009; 28(5): 389–403PubMedCrossRefGoogle Scholar
  110. 110.
    Pakrasi S, Mukaetova-Ladinska EB, McKeith IG, et al. Clinical predictors of response to acetyl cholinesterase inhibitors: experience from routine clinical use in Newcastle. Int J Geriatr Psychiatry 2003 Oct; 18(10): 879–86PubMedCrossRefGoogle Scholar
  111. 111.
    Turon-Estrada A, Lopez-Pousa S, Gelada-Batlle E, et al. Tolerance and adverse events of treatment with acetylcholinesterase inhibitors in a clinical sample of patients with very slight and mild Alzheimer’s disease over a six-month period. Rev Neurol 2003 Mar 1–15; 36(5): 421–4PubMedGoogle Scholar
  112. 112.
    Sobow T, Kloszewska I. Cholinesterase inhibitors in the ‘real world’ setting: rivastigmine versus donepezil tolerability and effectiveness study. Arch Med Sci 2006; 2: 194–8Google Scholar
  113. 113.
    Hughes A, Musher J, Thomas SK, et al. Gastrointestinal adverse events in a general population sample of nursing home residents taking cholinesterase inhibitors. Consult Pharm 2004 Aug; 19(8): 713–20PubMedCrossRefGoogle Scholar
  114. 114.
    Park-Wyllie LY, Mamdani MM, Li P, et al. Cholinesterase inhibitors and hospitalization for bradycardia: a population-based study. PLoS Med 2009 Sep; 6(9): e1000157PubMedCrossRefGoogle Scholar
  115. 115.
    Gill SS, Anderson GM, Fischer HD, et al. Syncope and its consequences in patients with dementia receiving cholinesterase inhibitors: a population-based cohort study. Arch Intern Med 2009 May 11; 169(9): 867–73PubMedCrossRefGoogle Scholar
  116. 116.
    Mossello E, Tonon E, Caleri V, et al. Effectiveness and safety of cholinesterase inhibitors in elderly subjects with Alzheimer’s disease: a ‘real world’ study. Arch Gerontol Geriatr Suppl 2004; (9): 297–307Google Scholar
  117. 117.
    Fuschillo C, Ascoli E, Franzese G, et al. Alzheimer’s disease and acetylcholinesterase inhibitor agents: a two-year longitudinal study. Arch Gerontol Geriatr Suppl 2004; (9): 187–94Google Scholar
  118. 118.
    Aguglia E, Onor ML, Saina M, et al. An open-label, comparative study of rivastigmine, donepezil and galantamine in a real-world setting. Curr Med Res Opin 2004 Nov; 20(11): 1747–52PubMedCrossRefGoogle Scholar
  119. 119.
    Lopez-Pousa S, Turon-Estrada A, Garre-Olmo J, et al. Differential efficacy of treatment with acetylcholinesterase inhibitors in patients with mild and moderate Alzheimer’s disease over a 6-month period. Dement Geriatr Cogn Disord 2005; 19(4): 189–95PubMedCrossRefGoogle Scholar
  120. 120.
    Jones RW. A review comparing the safety and tolerability of memantine with the acetylcholinesterase inhibitors. Int J Geriatr Psychiatry 2010 Jun; 25(6): 547–53PubMedGoogle Scholar
  121. 121.
    Calabrese P, Essner U, Forstl H. Memantine (Ebixa) in clinical practice: results of an observational study. Dement Geriatr Cogn Disord 2007; 24(2): 111–7PubMedCrossRefGoogle Scholar
  122. 122.
    Clerici F, Vanacore N, Elia A, et al. Memantine in moderately-severe-to-severe Alzheimer’s disease: a post-marketing surveillance study. Drugs Aging 2009; 26(4): 321–32PubMedCrossRefGoogle Scholar
  123. 123.
    Glenner GG, Wong CW. Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun 1984 Aug 16; 122(3): 1131–5PubMedCrossRefGoogle Scholar
  124. 124.
    Glenner GG, Wong CW. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 1984 May 16; 120(3): 885–90PubMedCrossRefGoogle Scholar
  125. 125.
    Selkoe DJ. Amyloid beta-protein and the genetics of Alzheimer’s disease. J Biol Chem 1996 Aug 2; 271(31): 18295–8PubMedGoogle Scholar
  126. 126.
    Cappai R, Barnham KJ. Delineating the mechanism of Alzheimer’s disease A beta peptide neurotoxicity. Neurochem Res 2008 Mar; 33(3): 526–32PubMedCrossRefGoogle Scholar
  127. 127.
    Selkoe DJ. The molecular pathology of Alzheimer’s disease. Neuron 1991 Apr; 6(4): 487–98PubMedCrossRefGoogle Scholar
  128. 128.
    Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science 1992 Apr 10; 256(5054): 184–5PubMedCrossRefGoogle Scholar
  129. 129.
    Terry RD, Masliah E, Salmon DP, et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991 Oct; 30(4): 572–80PubMedCrossRefGoogle Scholar
  130. 130.
    Holmes C, Boche D, Wilkinson D, et al. Long-term effects of Abeta42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 2008 Jul 19; 372(9634): 216–23PubMedCrossRefGoogle Scholar
  131. 131.
    Kumar-Singh S, Theuns J, Van Broeck B, et al. Mean age-of-onset of familial Alzheimer disease caused by presenilin mutations correlates with both increased Abeta42 and decreased Abeta40. Hum Mutat 2006 Jul; 27(7): 686–95PubMedCrossRefGoogle Scholar
  132. 132.
    Suzuki N, Cheung TT, Cai XD, et al. An increased percentage of long amyloid beta protein secreted by familial amyloid beta protein precursor (beta APP717) mutants. Science 1994 May 27; 264(5163): 1336–40PubMedCrossRefGoogle Scholar
  133. 133.
    Younkin SG. Evidence that A beta 42 is the real culprit in Alzheimer’s disease. Ann Neurol 1995 Mar; 37(3): 287–8PubMedCrossRefGoogle Scholar
  134. 134.
    Pimplikar SW. Reassessing the amyloid cascade hypothesis of Alzheimer’s disease. Int J Biochem Cell Biol 2009 Jun; 41(6): 1261–8PubMedCrossRefGoogle Scholar
  135. 135.
    Pfizer. Study evaluating the safety and efficacy of bapineuzumab in Alzheimer Disease patients [ClinicalTrials.gov identifier NCT00676143]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://clinicaltrials.gov [Accessed 2011 Jan 20]
  136. 136.
    Pfizer. Study evaluating the efficacy and safety of bapineuzumab in Alzheimer disease patients [ClinicalTrials.gov identifier NCT00667810]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://clinicaltrials.gov [Accessed 2010 Dec 20]
  137. 137.
    Eli Lilly and Company. Effect of LY2062430 on the progression of Alzheimer’s disease (EXPEDITION) [ClinicalTrials.gov identifier NCT00905372]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://clinicaltrials.gov [Accessed 2011 Feb 28]
  138. 138.
    Eli Lilly and Company. Effect of LY2062430 on the progression of Alzheimer’s disease (EXPEDITION2) [ClinicalTrials.gov identifier NCT00904683]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://clinicaltrials.gov [Accessed 2011 Jan 20]
  139. 139.
    Baxter Healthcare Corporation. A phase 3 study evaluating safety and effectiveness of immune globulin intravenous (IGIV 10%) for the treatment of mild to moderate Alzheimer’s disease [ClinicalTrials.gov identifier NCT00818662]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://clinicaltrials.gov [Accessed 2011 Feb 18]
  140. 140.
    Medivation, Inc. Safety and efficacy study evaluating dimebon in patients with mild to moderate Alzheimer’s disease on donepezil (CONCERT) [ClinicalTrials.gov identifier NCT00829374]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://clinicaltrials.gov [Accessed 2011 Mar 11]
  141. 141.
    Charite University, Berlin, Germany. Sunphenon EGCg (Epigallocatechin-Gallate) in the early stage of Alzheimer’s disease (SUN-AK) [ClinicalTrials.gov identifier NCT00951834]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://clinicaltrials.gov [Accessed 2010 Dec 20]
  142. 142.
    Jiang Q, Heneka M, Landreth GE. The role of peroxisome proliferator-activated receptor-gamma (PPARgamma) in Alzheimer’s disease: therapeutic implications. CNS Drugs 2008; 22(1): 1–14PubMedCrossRefGoogle Scholar
  143. 143.
    Profenno LA, Porsteinsson AP, Faraone SV. Meta-analysis of Alzheimer’s disease risk with obesity, diabetes, and related disorders. Biol Psychiatry 2010 Mar 15; 67(6): 505–12PubMedCrossRefGoogle Scholar
  144. 144.
    Forti P, Pisacane N, Rietti E, et al. Metabolic syndrome and risk of dementia in older adults. J Am Geriatr Soc 2010 Mar; 58(3): 487–92PubMedCrossRefGoogle Scholar
  145. 145.
    Watson GS, Craft S. The role of insulin resistance in the pathogenesis of Alzheimer’s disease: implications for treatment. CNS Drugs 2003; 17(1): 27–45PubMedCrossRefGoogle Scholar
  146. 146.
    Craft S. Insulin resistance and Alzheimer’s disease pathogenesis: potential mechanisms and implications for treatment. Curr Alzheimer Res 2007 Apr; 4(2): 147–52PubMedCrossRefGoogle Scholar
  147. 147.
    Landreth G, Jiang Q, Mandrekar S, et al. PPARgamma agonists as therapeutics for the treatment of Alzheimer’s disease. Neurotherapeutics 2008 Jul; 5(3): 481–9PubMedCrossRefGoogle Scholar
  148. 148.
    Watson GS, Cholerton BA, Reger MA, et al. Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: a preliminary study. Am J Geriatr Psychiatry 2005 Nov; 13(11): 950–8PubMedGoogle Scholar
  149. 149.
    Risner ME, Saunders AM, Altman JF, et al. Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer’s disease. Pharmacogenomics J 2006 Jul–Aug; 6(4): 246–54PubMedGoogle Scholar
  150. 150.
    Gold M, Alderton C, Zvartau-Hind M, et al. Rosiglitazone monotherapy in mild-to-moderate Alzheimer’s disease: results from a randomized, double-blind, placebo-controlled phase III study. Dement Geriatr Cogn Disord 2010; 30(2): 131–46PubMedCrossRefGoogle Scholar
  151. 151.
    Company ELa. Lilly halts development of Semagacestat for Alzheimer’s disease based on preliminary results of phase III clinical trials [online]. Available from URL: http://newsroom.lilly.com/releasedetail.cfm?releaseid=499794 [Accessed 2010 Aug 17]
  152. 152.
    Aisen PS, Gauthier S, Ferris S, et al. Tramiprosate in mild-to-moderate Alzheimer’s disease: a randomized, double-blind, placebo-controlled, multi-centre study (the Alphase Study). Arch Med Sci 2011; 7(1): 102–11PubMedCrossRefGoogle Scholar
  153. 153.
    Tariot PN, Aisen P, Cummings J, et al. The ADCS valproate neuroprotection trial: primary efficacy and safety results. Alzheimers Dement 2009; 5 (4 Suppl.): P84–5CrossRefGoogle Scholar
  154. 154.
    Reines SA, Block GA, Morris JC, et al. Rofecoxib: no effect on Alzheimer’s disease in a 1-year, randomized, blinded, controlled study. Neurology 2004 Jan 13; 62(1): 66–71PubMedCrossRefGoogle Scholar
  155. 155.
    Aisen PS, Schafer KA, Grundman M, et al. Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. JAMA 2003 Jun 4; 289(21): 2819–26PubMedCrossRefGoogle Scholar
  156. 156.
    Aisen PS, Davis KL, Berg JD, et al. A randomized controlled trial of prednisone in Alzheimer’s disease. Alzheimer’s Disease Cooperative Study. Neurology 2000 Feb 8; 54(3): 588–93Google Scholar
  157. 157.
    Van Gool WA, Weinstein HC, Scheltens P, et al. Effect of hydroxychloroquine on progression of dementia in early Alzheimer’s disease: an 18-month randomised, double-blind, placebo-controlled study. Lancet 2001 Aug 11; 358(9280): 455–60PubMedCrossRefGoogle Scholar
  158. 158.
    de Jong D, Jansen R, Hoefnagels W, et al. No effect of one-year treatment with indomethacin on Alzheimer’s disease progression: a randomized controlled trial. PLoS One 2008; 3(1): e1475PubMedCrossRefGoogle Scholar
  159. 159.
    Green RC, Schneider LS, Amato DA, et al. Effect of tarenflurbil on cognitive decline and activities of daily living in patients with mild Alzheimer disease: a randomized controlled trial. JAMA 2009 Dec 16; 302(23): 2557–64PubMedCrossRefGoogle Scholar
  160. 160.
    Medivation. Pfizer and Medivation announce results from two phase 3 studies in Dimebon (latrepirdine*) Alzheimer’s disease clinical development program [online]. Available from URL: http://investors.medivation.com/releasedetail.cfm?ReleaseID=448818 [Accessed 2010 Mar 3]
  161. 161.
    Freund-Levi Y, Eriksdotter-Jonhagen M, Cederholm T, et al. Omega-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: OmegAD study — a randomized double-blind trial. Arch Neurol 2006 Oct; 63(10): 1402–8PubMedCrossRefGoogle Scholar
  162. 162.
    Quinn JF, Raman R, Thomas RG, et al. Docosahexaenoic acid supplementation and cognitive decline in Alzheimer disease: a randomized trial. JAMA 2010 Nov 3; 304(17): 1903–11PubMedCrossRefGoogle Scholar
  163. 163.
    Sparks DL, Connor DJ, Sabbagh MN, et al. Circulating cholesterol levels, apolipoprotein E genotype and dementia severity influence the benefit of atorvastatin treatment in Alzheimer’s disease: results of the Alzheimer’s Disease Cholesterol-Lowering Treatment (ADCLT) trial. Acta Neurol Scand Suppl 2006; 185: 3–7PubMedCrossRefGoogle Scholar
  164. 164.
    Feldman HH, Doody RS, Kivipelto M, et al. Randomized controlled trial of atorvastatin in mild to moderate Alzheimer disease: LEADe. Neurology 2010 Mar 23; 74(12): 956–64PubMedCrossRefGoogle Scholar
  165. 165.
    National Institute on Aging (NIA). Cholesterol Lowering Agent to Slow Progression (CLASP) of Alzheimer’s disease study [ClinicalTrials.gov identifier NCT00053599]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://clinicaltrials.gov [Accessed 2010 Dec 20]
  166. 166.
    Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 2007 Jun 14; 356(24): 2457–71PubMedCrossRefGoogle Scholar
  167. 167.
    Festuccia WT, Oztezcan S, Laplante M, et al. Peroxisome proliferator-activated receptor-gamma-mediated positive energy balance in the rat is associated with reduced sympathetic drive to adipose tissues and thyroid status. Endocrinology 2008 May; 149(5): 2121–30PubMedCrossRefGoogle Scholar
  168. 168.
    Heneka MT, Sastre M, Dumitrescu-Ozimek L, et al. Acute treatment with the PPARgamma agonist pioglitazone and ibuprofen reduces glial inflammation and Abeta1-42 levels in APPV717I transgenic mice. Brain 2005 Jun; 128(Pt 6): 1442–53PubMedCrossRefGoogle Scholar
  169. 169.
    Maeshiba Y, Kiyota Y, Yamashita K, et al. Disposition of the new antidiabetic agent pioglitazone in rats, dogs, and monkeys. Arzneimittelforschung 1997; 47(1): 29–35PubMedGoogle Scholar
  170. 170.
    Geldmacher DS, Fritsch T, McClendon MJ, et al. A randomized pilot clinical trial of the safety of pioglitazone in treatment of patients with Alzheimer disease. Arch Neurol 2011 Jan; 68(1): 45–50PubMedCrossRefGoogle Scholar
  171. 171.
    Lewis HD, Perez Revuelta BI, Nadin A, et al. Catalytic site-directed gamma-secretase complex inhibitors do not discriminate pharmacologically between Notch S3 and beta-APP cleavages. Biochemistry 2003 Jun 24; 42(24): 7580–6PubMedCrossRefGoogle Scholar
  172. 172.
    Hartmann D, Tournoy J, Saftig P, et al. Implication of APP secretases in notch signaling. J Mol Neurosci 2001 Oct; 17(2): 171–81PubMedCrossRefGoogle Scholar
  173. 173.
    Bateman RJ, Siemers ER, Mawuenyega KG, et al. A gamma-secretase inhibitor decreases amyloid-beta production in the central nervous system. Ann Neurol 2009 Jul; 66(1): 48–54PubMedCrossRefGoogle Scholar
  174. 174.
    Siemers ER, Quinn JF, Kaye J, et al. Effects of a gamma-secretase inhibitor in a randomized study of patients with Alzheimer disease. Neurology 2006 Feb 28; 66(4): 602–4PubMedCrossRefGoogle Scholar
  175. 175.
    Fleisher AS, Raman R, Siemers ER, et al. Phase 2 safety trial targeting amyloid beta production with a gamma-secretase inhibitor in Alzheimer disease. Arch Neurol 2008 Aug; 65(8): 1031–8PubMedCrossRefGoogle Scholar
  176. 176.
    Bateman RJ, Munsell LY, Morris JC, et al. Human amyloid-beta synthesis and clearance rates as measured in cerebrospinal fluid in vivo. Nat Med 2006 Jul; 12(7): 856–61PubMedCrossRefGoogle Scholar
  177. 177.
    Imbimbo BP, Peretto I. Semagacestat, a gamma-secretase inhibitor for the potential treatment of Alzheimer’s disease. Curr Opin Investig Drugs 2009 Jul; 10(7): 721–30PubMedGoogle Scholar
  178. 178.
    Jacobsen S, Comery T, Kreft A, et al. GSI-953 is a potent APP-selective gamma-secretase inhibitor for the treatment of Alzheimer’s disease [abstract]. Alzheimers Dement 2009; 5 Suppl. 1 (4): P139CrossRefGoogle Scholar
  179. 179.
    Soares H, Raha N, Sikpi M, et al. b variability and effect of gamma secretase inhibition on cerebrospinal fluid levels of Ab in healthy volunteers. Alzheimers Dement 2009; 5 (1 Suppl. 4): P252–3CrossRefGoogle Scholar
  180. 180.
    Grossman H, Marzloff G, Luo X, et al. NIC5-15 as a treatment for Alzheimer’s: safety, pharmacokinetics and clinical variables [abstract]. Alzheimers Dement 2009; 5 (1 Suppl. 4): P259CrossRefGoogle Scholar
  181. 181.
    Furukawa K, Sopher BL, Rydel RE, et al. Increased activity-regulating and neuroprotective efficacy of alpha-secretase-derived secreted amyloid precursor protein conferred by a C-terminal heparin-binding domain. J Neurochem 1996 Nov; 67(5): 1882–96PubMedCrossRefGoogle Scholar
  182. 182.
    Meziane H, Dodart JC, Mathis C, et al. Memory-enhancing effects of secreted forms of the beta-amyloid precursor protein in normal and amnestic mice. Proc Natl Acad Sci U S A 1998 Oct 13; 95(21): 12683–8PubMedCrossRefGoogle Scholar
  183. 183.
    Turner PR, O’Connor K, Tate WP, et al. Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog Neurobiol 2003 May; 70(1): 1–32PubMedCrossRefGoogle Scholar
  184. 184.
    Marcade M, Bourdin J, Loiseau N, et al. Etazolate, a neuroprotective drug linking GABA(A) receptor pharmacology to amyloid precursor protein processing. J Neurochem 2008 Jul; 106(1): 392–404PubMedCrossRefGoogle Scholar
  185. 185.
    Etcheberrigaray R, Tan M, Dewachter I, et al. Therapeutic effects of PKC activators in Alzheimer’s disease transgenic mice. Proc Natl Acad Sci U S A 2004 Jul 27; 101(30): 11141–6PubMedCrossRefGoogle Scholar
  186. 186.
    Griffiths HH, Morten IJ, Hooper NM. Emerging and potential therapies for Alzheimer’s disease. Expert Opin Ther Targets 2008 Jun; 12(6): 693–704PubMedCrossRefGoogle Scholar
  187. 187.
    Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 2007 Feb; 8(2): 101–12PubMedCrossRefGoogle Scholar
  188. 188.
    Shankar GM, Li S, Mehta TH, et al. Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 2008 Aug; 14(8): 837–42PubMedCrossRefGoogle Scholar
  189. 189.
    Gong Y, Chang L, Viola KL, et al. Alzheimer’s disease-affected brain: presence of oligomeric A beta ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc Natl Acad Sci U S A 2003 Sep 2; 100(18): 10417–22PubMedCrossRefGoogle Scholar
  190. 190.
    Gervais F, Paquette J, Morissette C, et al. Targeting soluble Abeta peptide with Tramiprosate for the treatment of brain amyloidosis. Neurobiol Aging 2007 Apr; 28(4): 537–47PubMedCrossRefGoogle Scholar
  191. 191.
    Aisen PS, Saumier D, Briand R, et al. A phase II study targeting amyloid-beta with 3APS in mild-to-moderate Alzheimer disease. Neurology 2006 Nov 28; 67(10): 1757–63PubMedCrossRefGoogle Scholar
  192. 192.
    Saumier D, Duong A, Haine D, et al. Domain-specific cognitive effects of tramiprosate in patients with mild to moderate Alzheimer’s disease: ADAS-cog subscale results from the Alphase Study. J Nutr Health Aging 2009 Nov; 13(9): 808–12PubMedCrossRefGoogle Scholar
  193. 193.
    Guo JP, Yu S, McGeer PL. Simple in vitro assays to identify amyloid-beta aggregation blockers for Alzheimer’s disease therapy. J Alzheimers Dis 2010; 19(4): 1359–70PubMedGoogle Scholar
  194. 194.
    Bastianetto S, Yao ZX, Papadopoulos V, et al. Neuroprotective effects of green and black teas and their catechin gallate esters against beta-amyloid-induced toxicity. Eur J Neurosci 2006 Jan; 23(1): 55–64PubMedCrossRefGoogle Scholar
  195. 195.
    Levites Y, Amit T, Mandel S, et al. Neuroprotection and neurorescue against Abeta toxicity and PKC-dependent release of nonamyloidogenic soluble precursor protein by green tea polyphenol (−)-epigallocatechin-3-gallate. FASEB J 2003 May; 17(8): 952–4PubMedGoogle Scholar
  196. 196.
    Choi YT, Jung CH, Lee SR, et al. The green tea polyphenol (−)-epigallocatechin gallate attenuates beta-amyloid-induced neurotoxicity in cultured hippocampal neurons. Life Sci 2001 Dec 21; 70(5): 603–14PubMedCrossRefGoogle Scholar
  197. 197.
    Lee JW, Lee YK, Ban JO, et al. Green tea (−)-epigallocatechin-3-gallate inhibits beta-amyloid-induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NF-kappaB pathways in mice. J Nutr 2009 Oct; 139(10): 1987–93PubMedCrossRefGoogle Scholar
  198. 198.
    Rezai-Zadeh K, Arendash GW, Hou H, et al. Green tea epigallocatechin-3-gallate (EGCG) reduces beta-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice. Brain Res 2008 Jun 12; 1214: 177–87PubMedCrossRefGoogle Scholar
  199. 199.
    Lannfelt L, Blennow K, Zetterberg H, et al. Safety, efficacy, and biomarker findings of PBT2 in targeting Abeta as a modifying therapy for Alzheimer’s disease: a phase IIa, double-blind, randomised, placebo-controlled trial. Lancet Neurol 2008 Sep; 7(9): 779–86PubMedCrossRefGoogle Scholar
  200. 200.
    Garzone P, Koller M, Pastrak A, et al. Oral amyloid anti-aggregating agent ELND005 is measurable in CSF and brain of healthy adult men [abstract]. Alzheimers Dement 2009; 5 (1 Suppl. 4): P323CrossRefGoogle Scholar
  201. 201.
    Schenk D, Barbour R, Dunn W, et al. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 1999 Jul 8; 400(6740): 173–7PubMedCrossRefGoogle Scholar
  202. 202.
    Bard F, Cannon C, Barbour R, et al. Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 2000 Aug; 6(8): 916–9PubMedCrossRefGoogle Scholar
  203. 203.
    Frenkel D, Solomon B, Benhar I. Modulation of Alzheimer’s beta-amyloid neurotoxicity by site-directed single-chain antibody. J Neuroimmunol 2000 Jul 1; 106(1–2): 23–31PubMedCrossRefGoogle Scholar
  204. 204.
    Bacskai BJ, Kajdasz ST, McLellan ME, et al. Non-Fcmediated mechanisms are involved in clearance of amyloid-beta in vivo by immunotherapy. J Neurosci 2002 Sep 15; 22(18): 7873–8PubMedGoogle Scholar
  205. 205.
    DeMattos RB, Bales KR, Cummins DJ, et al. Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 2001 Jul 17; 98(15): 8850–5PubMedCrossRefGoogle Scholar
  206. 206.
    Dodart JC, Bales KR, Gannon KS, et al. Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer’s disease model. Nat Neurosci 2002 May; 5(5): 452–7PubMedGoogle Scholar
  207. 207.
    Gilman S, Koller M, Black RS, et al. Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology 2005 May 10; 64(9): 1553–62PubMedCrossRefGoogle Scholar
  208. 208.
    Wang CY, Finstad CL, Walfield AM, et al. Site-specific UBITh amyloid-beta vaccine for immunotherapy of Alzheimer’s disease. Vaccine 2007 Apr 20; 25(16): 3041–52PubMedCrossRefGoogle Scholar
  209. 209.
    Schneeberger A, Mandler M, Otawa O, et al. Development of AFFITOPE vaccines for Alzheimer’s disease (AD): from concept to clinical testing. J Nutr Health Aging 2009 Mar; 13(3): 264–7PubMedCrossRefGoogle Scholar
  210. 210.
    Black RS, Sperling RA, Safirstein B, et al. A single ascending dose study of bapineuzumab in patients with Alzheimer disease. Alzheimer Dis Assoc Disord 2010 Apr–Jun; 24(2): 198–203PubMedCrossRefGoogle Scholar
  211. 211.
    Salloway S, Sperling R, Gilman S, et al. A phase 2 multiple ascending dose trial of bapineuzumab in mild to moderate Alzheimer disease. Neurology 2009 Dec 15; 73(24): 2061–70PubMedCrossRefGoogle Scholar
  212. 212.
    Pfizer. A long-term safety and tolerability study of bapineuzumab in Alzheimer disease patients [ClinicalTrials.gov identifier NCT00996918]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://clinicaltrials.gov [Accessed 2010 Dec 20]
  213. 213.
    Pfizer. A long-term safety and tolerability extension study of bapineuzumab in Alzheimer disease patients [ClinicalTrials.gov identifier NCT00998764]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://clinicaltrials.gov [Accessed 2010 Dec 20]
  214. 214.
    Siemers ER, Friedrich S, Dean RA, et al. Safety and changes in plasma and cerebrospinal fluid amyloid beta after a single administration of an amyloid beta monoclonal antibody in subjects with Alzheimer disease. Clin Neuropharmacol 2010 Mar–Apr; 33(2): 67–73PubMedCrossRefGoogle Scholar
  215. 215.
    Siemers ER, Friedrich S, Dean RA, et al. Safety, tolerability and biomarker effects of an Abeta monoclonal antibody administered to patients with Alzheimer’s disease [abstract]. Alzheimers Dement 2008; 4 (1 Suppl. 4): T774CrossRefGoogle Scholar
  216. 216.
    Goto T, Fujikoshi S, Uenaka K, et al. Solanezumab was safe and well-tolerated for Asian patients with mild-to-moderate Alzheimer’s disease in a multicenter, randomized, open-label, multi-dose study [abstract]. Alzheimers Dement 2010; 6 (1 Suppl. 4): S308CrossRefGoogle Scholar
  217. 217.
    Eli Lilly and Company. Continued safety monitoring of solanezumab in Alzheimer’s disease (EXPEDITION EXT) [ClinicalTrials.gov identifier NCT01127633]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://clinicaltrials.gov [Accessed 2011 Mar 14]
  218. 218.
    Dodel RC, Du Y, Depboylu C, et al. Intravenous immunoglobulins containing antibodies against beta-amyloid for the treatment of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2004 Oct; 75(10): 1472–4PubMedCrossRefGoogle Scholar
  219. 219.
    Relkin NR, Szabo P, Adamiak B, et al. 18-Month study of intravenous immunoglobulin for treatment of mild Alzheimer disease. Neurobiol Aging 2009 Nov; 30(11): 1728–36PubMedCrossRefGoogle Scholar
  220. 220.
    Tsakanikas D, Shah K, Flores C, et al. Effects of uninterrupted intravenous immunoglobin treatment of Alzheimer’s Disease for nine months [abstract]. Alzheimers Dement 2008; 4 (1 Suppl. 4): T776CrossRefGoogle Scholar
  221. 221.
    Goedert M, Klug A, Crowther RA. Tau protein, the paired helical filament and Alzheimer’s disease. J Alzheimers Dis 2006; 9 (3 Suppl.): 195–207PubMedGoogle Scholar
  222. 222.
    Thal DR, Holzer M, Rub U, et al. Alzheimer-related taupathology in the perforant path target zone and in the hippocampal stratum oriens and radiatum correlates with onset and degree of dementia. Exp Neurol 2000 May; 163(1): 98–110PubMedCrossRefGoogle Scholar
  223. 223.
    Schneider A, Mandelkow E. Tau-based treatment strategies in neurodegenerative diseases. Neurotherapeutics 2008 Jul; 5(3): 443–57PubMedCrossRefGoogle Scholar
  224. 224.
    Lee VM, Trojanowski JQ. Progress from Alzheimer’s tangles to pathological tau points towards more effective therapies now. J Alzheimers Dis 2006; 9 (3 Suppl.): 257–62PubMedGoogle Scholar
  225. 225.
    Tariot PN, Aisen PS. Can lithium or valproate untie tangles in Alzheimer’s disease? J Clin Psychiatry 2009 Jun; 70(6): 919–21PubMedCrossRefGoogle Scholar
  226. 226.
    Hampel H, Ewers M, Burger K, et al. Lithium trial in Alzheimer’s disease: a randomized, single-blind, placebo-controlled, multicenter 10-week study. J Clin Psychiatry 2009 Jun; 70(6): 922–31PubMedCrossRefGoogle Scholar
  227. 227.
    Noscira SA. Efficacy, safety and tolerability of tideglusib to treat mild-to-moderate Alzheimer’s disease patients (ARGO) [ClinicalTrials.gov identifier NCT01350362]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://clinicaltrials.gov [Accessed 2011 Jun 12]
  228. 228.
    Noscira SA. Noscira commences treatment of patients in phase IIb trial with Nypta® (tideglusib), its first drug against Alzheimer’s disease [media release]. 2011 Apr 28 [online]. Available from URL: http://www.noscira.com/prensa.cfm?mS=237&mSS=634 [Accessed 2011 Jun 12]
  229. 229.
    Wischik CM, Edwards PC, Lai RY, et al. Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines. Proc Natl Acad Sci U S A 1996 Oct 1; 93(20): 11213–8PubMedCrossRefGoogle Scholar
  230. 230.
    Oz M, Lorke DE, Petroianu GA. Methylene blue and Alzheimer’s disease. Biochem Pharmacol 2009 Oct 15; 78(8): 927–32PubMedCrossRefGoogle Scholar
  231. 231.
    Atamna H, Kumar R. Protective role of methylene blue in Alzheimer’s disease via mitochondria and cytochrome c oxidase. J Alzheimers Dis 2010; 20 (2 Suppl.): S439–52PubMedGoogle Scholar
  232. 232.
    Wischik CM, Bentham P, Wischik DJ, et al. Tau aggregation inhibitor (TAI) therapy with rember™ arrests disease progression in mild and moderate Alzheimer’s disease over 50 weeks [abstract]. Alzheimers Dement 2008; 4(4): T167CrossRefGoogle Scholar
  233. 233.
    TauRx granted European Composition of Matter patent for lead compound in treatment and prevention of neurodegenerative diseases including Alzheimer’s disease [online]. Available from URL: http://www.biospace.com/news_story.aspx?StoryID=205462&full=1 [Accessed 2010 Dec 15]
  234. 234.
    Swardfager W, Lanctot K, Rothenburg L, et al. A meta-analysis of cytokines in Alzheimer’s disease. Biol Psychiatry 2010 Nov 15; 68(10): 930–41PubMedCrossRefGoogle Scholar
  235. 235.
    McGeer PL, McGeer EG. NSAIDs and Alzheimer disease: epidemiological, animal model and clinical studies. Neurobiol Aging 2007 May; 28(5): 639–47PubMedCrossRefGoogle Scholar
  236. 236.
    Cagnin A, Brooks DJ, Kennedy AM, et al. In-vivo measurement of activated microglia in dementia. Lancet 2001 Aug 11; 358(9280): 461–7PubMedCrossRefGoogle Scholar
  237. 237.
    Floyd RA. Neuroinflammatory processes are important in neurodegenerative diseases: an hypothesis to explain the increased formation of reactive oxygen and nitrogen species as major factors involved in neurodegenerative disease development. Free Radic Biol Med 1999 May; 26(9–10): 1346–55PubMedCrossRefGoogle Scholar
  238. 238.
    McGeer PL, Schulzer M, McGeer EG. Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer’s disease: a review of 17 epidemiologic studies. Neurology 1996 Aug; 47(2): 425–32PubMedCrossRefGoogle Scholar
  239. 239.
    Szekely CA, Thorne JE, Zandi PP, et al. Nonsteroidal anti-inflammatory drugs for the prevention of Alzheimer’s disease: a systematic review. Neuroepidemiology 2004 Jul–Aug; 23(4): 159–69PubMedCrossRefGoogle Scholar
  240. 240.
    Aisen PS, Davis KL. Inflammatory mechanisms in Alzheimer’s disease: implications for therapy. Am J Psychiatry 1994 Aug; 151(8): 1105–13PubMedGoogle Scholar
  241. 241.
    Hoozemans JJ, Veerhuis R, Janssen I, et al. The role of cyclo-oxygenase 1 and 2 activity in prostaglandin E(2) secretion by cultured human adult microglia: implications for Alzheimer’s disease. Brain Res 2002 Oct 4; 951(2): 218–26PubMedCrossRefGoogle Scholar
  242. 242.
    Weggen S, Eriksen JL, Sagi SA, et al. Evidence that nonsteroidal anti-inflammatory drugs decrease amyloid beta 42 production by direct modulation of gamma-secretase activity. J Biol Chem 2003 Aug 22; 278(34): 31831–7PubMedCrossRefGoogle Scholar
  243. 243.
    Beher D, Clarke EE, Wrigley JD, et al. Selected non-steroidal anti-inflammatory drugs and their derivatives target gamma-secretase at a novel site: evidence for an allosteric mechanism. J Biol Chem 2004 Oct 15; 279(42): 43419–26PubMedCrossRefGoogle Scholar
  244. 244.
    Rogers J, Kirby LC, Hempelman SR, et al. Clinical trial of indomethacin in Alzheimer’s disease. Neurology 1993 Aug; 43(8): 1609–11PubMedCrossRefGoogle Scholar
  245. 245.
    Tabet N, Feldman H. Indomethacin for Alzheimer’s disease. Cochrane Database of Syst Rev 2002; (2): CD003673Google Scholar
  246. 246.
    Eriksen JL, Sagi SA, Smith TE, et al. NSAIDs and enantiomers of flurbiprofen target gamma-secretase and lower Abeta 42 in vivo. J Clin Invest 2003 Aug; 112(3): 440–9PubMedGoogle Scholar
  247. 247.
    Morihara T, Chu T, Ubeda O, et al. Selective inhibition of Abeta42 production by NSAID R-enantiomers. J Neurochem 2002 Nov; 83(4): 1009–12PubMedCrossRefGoogle Scholar
  248. 248.
    Galasko DR, Graff-Radford N, May S, et al. Safety, tolerability, pharmacokinetics, and Abeta levels after short-term administration of R-flurbiprofen in healthy elderly individuals. Alzheimer Dis Assoc Disord 2007 Oct–Dec; 21(4): 292–9PubMedCrossRefGoogle Scholar
  249. 249.
    Wilcock GK, Black SE, Hendrix SB, et al. Efficacy and safety of tarenflurbil in mild to moderate Alzheimer’s disease: a randomised phase II trial. Lancet Neurol 2008 Jun; 7(6): 483–93PubMedCrossRefGoogle Scholar
  250. 250.
    Imbimbo BP. Why did tarenflurbil fail in Alzheimer’s disease? J Alzheimers Dis 2009; 17(4): 757–60PubMedGoogle Scholar
  251. 251.
    Reddy PH, Beal MF. Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol Med 2008 Feb; 14(2): 45–53PubMedCrossRefGoogle Scholar
  252. 252.
    Hansson Petersen CA, Alikhani N, Behbahani H, et al. The amyloid beta-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proc Natl Acad Sci U S A 2008 Sep 2; 105(35): 13145–50PubMedCrossRefGoogle Scholar
  253. 253.
    Bachurin S, Bukatina E, Lermontova N, et al. Antihistamine agent Dimebon as a novel neuroprotector and a cognition enhancer. Ann N Y Acad Sci 2001 Jun; 939: 425–35PubMedCrossRefGoogle Scholar
  254. 254.
    Wu J, Li Q, Bezprozvanny I. Evaluation of Dimebon in cellular model of Huntington’s disease [abstract]. Mol Neurodegener 2008; 3: 15PubMedCrossRefGoogle Scholar
  255. 255.
    Moreira PI, Santos MS, Moreno A, et al. Amyloid beta-peptide promotes permeability transition pore in brain mitochondria. Biosci Rep 2001 Dec; 21(6): 789–800PubMedCrossRefGoogle Scholar
  256. 256.
    Zhang S, Hedskog L, Petersen CA, et al. Dimebon (latrepirdine) enhances mitochondrial function and protects neuronal cells from death. J Alzheimers Dis 2010; 21(2): 389–402PubMedGoogle Scholar
  257. 257.
    Doody RS, Gavrilova SI, Sano M, et al. Effect of dimebon on cognition, activities of daily living, behaviour, and global function in patients with mild-to-moderate Alzheimer’s disease: a randomised, double-blind, placebo-controlled study. Lancet 2008 Jul 19; 372(9634): 207–15PubMedCrossRefGoogle Scholar
  258. 258.
    Kalmijn S, Launer LJ, Ott A, et al. Dietary fat intake and the risk of incident dementia in the Rotterdam Study. Ann Neurol 1997 Nov; 42(5): 776–82PubMedCrossRefGoogle Scholar
  259. 259.
    Morris MC, Evans DA, Bienias JL, et al. Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Arch Neurol 2003 Jul; 60(7): 940–6PubMedCrossRefGoogle Scholar
  260. 260.
    Schaefer EJ, Bongard V, Beiser AS, et al. Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: the Framingham Heart Study. Arch Neurol 2006 Nov; 63(11): 1545–50PubMedCrossRefGoogle Scholar
  261. 261.
    Prasad MR, Lovell MA, Yatin M, et al. Regional membrane phospholipid alterations in Alzheimer’s disease. Neurochem Res 1998 Jan; 23(1): 81–8PubMedCrossRefGoogle Scholar
  262. 262.
    Soderberg M, Edlund C, Kristensson K, et al. Fatty acid composition of brain phospholipids in aging and in Alzheimer’s disease. Lipids 1991 Jun; 26(6): 421–5PubMedCrossRefGoogle Scholar
  263. 263.
    Hoglund K, Blennow K. Effect of HMG-CoA reductase inhibitors on beta-amyloid peptide levels: implications for Alzheimer’s disease. CNS Drugs 2007; 21(6): 449–62PubMedCrossRefGoogle Scholar
  264. 264.
    Fassbender K, Simons M, Bergmann C, et al. Simvastatin strongly reduces levels of Alzheimer’s disease beta-amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo. Proc Natl Acad Sci U S A 2001 May 8; 98(10): 5856–61PubMedCrossRefGoogle Scholar
  265. 265.
    Refolo LM, Pappolla MA, LaFrancois J, et al. A cholesterol-lowering drug reduces beta-amyloid pathology in a transgenic mouse model of Alzheimer’s disease. Neurobiol Dis 2001 Oct; 8(5): 890–9PubMedCrossRefGoogle Scholar
  266. 266.
    Solomon A, Kivipelto M. Cholesterol-modifying strategies for Alzheimer’s disease. Expert Rev Neurother 2009 May; 9(5): 695–709PubMedCrossRefGoogle Scholar
  267. 267.
    McGuinness B, Craig D, Bullock R, et al. Statins for the prevention of dementia. Cochrane Database Syst Rev 2009; (2): CD003160Google Scholar
  268. 268.
    Rockwood K, Kirkland S, Hogan DB, et al. Use of lipid-lowering agents, indication bias, and the risk of dementia in community-dwelling elderly people. Arch Neurol 2002 Feb; 59(2): 223–7PubMedCrossRefGoogle Scholar
  269. 269.
    Jick H, Zornberg GL, Jick SS, et al. Statins and the risk of dementia. Lancet 2000 Nov 11; 356(9242): 1627–31PubMedCrossRefGoogle Scholar
  270. 270.
    Arvanitakis Z, Schneider JA, Wilson RS, et al. Statins, incident Alzheimer disease, change in cognitive function, and neuropathology. Neurology 2008 May 6; 70(19 Pt 2): 1795–802PubMedGoogle Scholar
  271. 271.
    Tokuda T, Tamaoka A, Matsuno S, et al. Plasma levels of amyloid beta proteins did not differ between subjects taking statins and those not taking statins. Ann Neurol 2001 Apr; 49(4): 546–7PubMedCrossRefGoogle Scholar
  272. 272.
    Benito-Leon J, Louis ED, Vega S, et al. Statins and cognitive functioning in the elderly: a population-based study. J Alzheimers Dis 2010; 21(1): 95–102PubMedGoogle Scholar
  273. 273.
    McGuinness B, O’Hare J, Craig D, et al. Statins for the treatment of dementia. Cochrane Database Syst Rev 2010; (8) CD007514Google Scholar
  274. 274.
    Tsuji A, Saheki A, Tamai I, et al. Transport mechanism of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors at the blood-brain barrier. J Pharmacol Exp Ther 1993 Dec; 267(3): 1085–90PubMedGoogle Scholar
  275. 275.
    Sparks DL, Connor DJ, Browne PJ, et al. HMG-CoA reductase inhibitors (statins) in the treatment of Alzheimer’s disease and why it would be ill-advised to use one that crosses the blood-brain barrier. J Nutr Health Aging 2002; 6(5): 324–31PubMedGoogle Scholar
  276. 276.
    Simons M, Schwarzler F, Lutjohann D, et al. Treatment with simvastatin in normocholesterolemic patients with Alzheimer’s disease: a 26-week randomized, placebo-controlled, double-blind trial. Ann Neurol 2002 Sep; 52(3): 346–50PubMedCrossRefGoogle Scholar
  277. 277.
    Lewis J, Dickson DW, Lin WL, et al. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 2001 Aug 24; 293(5534): 1487–91PubMedCrossRefGoogle Scholar
  278. 278.
    Gonzalez-Martinez A, Rosado B, Pesini P, et al. Plasma beta-amyloid peptides in canine aging and cognitive dysfunction as a model of Alzheimer’s disease. Exp Gerontol 2011 Mar 3; 46(7); 590–6PubMedCrossRefGoogle Scholar
  279. 279.
    Sarasa M, Pesini P. Natural non-transgenic animal models for research in Alzheimer’s disease. Curr Alzheimer Res 2009 Apr; 6(2): 171–8PubMedCrossRefGoogle Scholar
  280. 280.
    Hampel H, Frank R, Broich K, et al. Biomarkers for Alzheimer’s disease: academic, industry and regulatory perspectives. Nat Rev Drug Discov 2010 Jul; 9(7): 560–74PubMedCrossRefGoogle Scholar
  281. 281.
    Strozyk D, Blennow K, White LR, et al. CSF Abeta 42 levels correlate with amyloid-neuropathology in a population-based autopsy study. Neurology 2003 Feb 25; 60(4): 652–6PubMedCrossRefGoogle Scholar
  282. 282.
    Buerger K, Ewers M, Pirttila T, et al. CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer’s disease. Brain 2006 Nov; 129(Pt 11): 3035–41PubMedCrossRefGoogle Scholar
  283. 283.
    de Jong D, Kremer BP, Olde Rikkert MG, et al. Current state and future directions of neurochemical biomarkers for Alzheimer’s disease. Clin Chem Lab Med 2007; 45(11): 1421–34PubMedGoogle Scholar
  284. 284.
    Ridha BH, Anderson VM, Barnes J, et al. Volumetric MRI and cognitive measures in Alzheimer disease: comparison of markers of progression. J Neurol 2008 Apr; 255(4): 567–74PubMedCrossRefGoogle Scholar
  285. 285.
    Frisoni GB, Fox NC, Jack Jr CR, et al. The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol 2010 Feb; 6(2): 67–77PubMedCrossRefGoogle Scholar
  286. 286.
    Yuan X, Shan B, Ma Y, et al. Multi-center study on Alzheimer’s disease using FDG PET: group and individual analyses. J Alzheimers Dis 2010; 19(3): 927–35PubMedGoogle Scholar
  287. 287.
    Mosconi L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease: FDG-PET studies in MCI and AD. Eur J Nucl Med Mol Imaging 2005 Apr; 32(4): 486–510PubMedCrossRefGoogle Scholar
  288. 288.
    Rinne JO, Brooks DJ, Rossor MN, et al. 11C-PiB PET assessment of change in fibrillar amyloid-beta load in patients with Alzheimer’s disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol 2010 Apr; 9(4): 363–72PubMedCrossRefGoogle Scholar
  289. 289.
    Forsberg A, Almkvist O, Engler H, et al. High PIB retention in Alzheimer’s disease is an early event with complex relationship with CSF biomarkers and functional parameters. Curr Alzheimer Res 2010 Feb; 7(1): 56–66PubMedCrossRefGoogle Scholar
  290. 290.
    Clark CM, Schneider JA, Bedell BJ, et al. Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA 2011 Jan 19; 305(3): 275–83PubMedCrossRefGoogle Scholar
  291. 291.
    Okamura N, Yanai K. Florbetapir (18F), a PET imaging agent that binds to amyloid plaques for the potential detection of Alzheimer’s disease. IDrugs 2010 Dec; 13(12): 890–9PubMedGoogle Scholar
  292. 292.
    Engler H, Forsberg A, Almkvist O, et al. Two-year follow-up of amyloid deposition in patients with Alzheimer’s disease. Brain 2006 Nov; 129(Pt 11): 2856–66PubMedCrossRefGoogle Scholar
  293. 293.
    Scheuner D, Eckman C, Jensen M, et al. Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 1996 Aug; 2(8): 864–70PubMedCrossRefGoogle Scholar
  294. 294.
    Kauwe JS, Wang J, Mayo K, et al. Alzheimer’s disease risk variants show association with cerebrospinal fluid amyloid beta. Neurogenetics 2009 Feb; 10(1): 13–7PubMedCrossRefGoogle Scholar
  295. 295.
    Coon KD, Myers AJ, Craig DW, et al. A high-density whole-genome association study reveals that APOE is the major susceptibility gene for sporadic late-onset Alzheimer’s disease. J Clin Psychiatry 2007 Apr; 68(4): 613–8PubMedCrossRefGoogle Scholar
  296. 296.
    Lambert JC, Amouyel P. Genetics of Alzheimer’s disease: new evidences for an old hypothesis? Curr Opin Genet Dev 2011 Mar 1; 21(3): 295–301PubMedCrossRefGoogle Scholar
  297. 297.
    DeKosky ST, Carrillo MC, Phelps C, et al. Revision of the criteria for Alzheimer’s disease: a symposium. Alzheimers Dement 2011 Jan; 7(1): e1–12PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2011

Authors and Affiliations

  • Nathan Herrmann
    • 1
    • 2
  • Sarah A. Chau
    • 1
    • 3
  • Ida Kircanski
    • 1
    • 3
  • Krista L. Lanctôt
    • 1
    • 2
    • 3
  1. 1.Neuropsychopharmacology Research ProgramSunnybrook Health Sciences CentreTorontoCanada
  2. 2.Department of PsychiatryUniversity of TorontoTorontoCanada
  3. 3.Department of Pharmacology and ToxicologyUniversity of TorontoTorontoCanada

Personalised recommendations