Clinical Pharmacokinetics

, Volume 50, Issue 9, pp 551–603

Clinical Pharmacokinetics of Tyrosine Kinase Inhibitors

Focus on Pyrimidines, Pyridines and Pyrroles
  • Paola Di Gion
  • Friederike Kanefendt
  • Andreas Lindauer
  • Matthias Scheffler
  • Oxana Doroshyenko
  • Uwe Fuhr
  • Jürgen Wolf
  • Ulrich Jaehde
Review Article

Abstract

Pyrimidine (imatinib, dasatinib, nilotinib and pazopanib), pyridine (sorafenib) and pyrrole (sunitinib) tyrosine kinase inhibitors (TKIs) are multi-targeted TKIs with high activity towards several families of receptor and non-receptor tyrosine kinases involved in angiogenesis, tumour growth and metastatic progression of cancer. These orally administered TKIs have quite diverse characteristics with regard to absorption from the gastrointestinal tract. Absolute bioavailability in humans has been investigated only for imatinib (almost 100%) and pazopanib (14–39%; n = 3). On the basis of human radioactivity data, dasatinib is considered to be well absorbed after oral administration (19% and 0.1% of the total radioactivity were excreted as unchanged dasatinib in the faeces and urine, respectively). Quite low absolute bioavailability under fasted conditions is assumed for nilotinib (31%), sorafenib (50%) and sunitinib (50%). Imatinib, dasatinib and sunitinib exhibit dose-proportional increases in their area under the plasma concentration-time curve values over their therapeutic dose ranges. Less than dose-proportional increases were observed for nilotinib at doses ≥400 mg/day and for sorafenib and pazopanib at doses ≥800 mg/day. At steady state, the accumulation ratios are 1.5–2.5 (unchanged imatinib), 2.0 (nilotinib once-daily dosing), 3.4 (nilotinib twice-daily dosing), 1.2–4.5 (pazopanib), 5.7–6.4 (sorafenib) and 3.0–4.5 (sunitinib). Concomitant intake of a high-fat meal does not alter exposure to imatinib, dasatinib and sunitinib but leads to considerably increased bioavailability of nilotinib and pazopanib and decreased bioavailability of sorafenib. With the exception of pazopanib, the TKIs described here have large apparent volumes of distribution, exceeding the volume of body water by at least 4-fold.

Very low penetration into the central nervous system in humans has been reported for imatinib and dasatinib, but there are currently no published human data for nilotinib, pazopanib, sorafenib or sunitinib. All TKIs that have been described are more than 90% bound to the plasma proteins: α1-acid glycoprotein and/or albumin. They are metabolized primarily via cytochrome P450 (CYP) 3A4, the only exception being sorafenib, for which uridine diphosphate glucuronosyltransferase 1A9 is the other main enzyme involved. Active metabolites of imatinib and sunitinib contribute to their antitumour activity. Although some patient demographics have been identified as significant co-factors that partly explain interindividual variability in exposure to TKIs, these findings have not been regarded as sufficient to recommend age-, sex-, bodyweight-or ethnicity-specific dose adjustment. Systemic exposure to imatinib, sorafenib and pazopanib increases in patients with hepatic impairment, and reduction of the initial therapeutic dose is recommended in this subpopulation. The starting dose of imatinib should also be reduced in renally impaired subjects. Because the solubility of dasatinib is pH dependent, co-administration of histamine H2-receptor antagonists and proton pump inhibitors with dasatinib should be avoided. With the exception of sorafenib, systemic exposure to TKIs is significantly decreased/increased by co-administration of potent CYP3A4 inducers/inhibitors, and so it is strongly recommended that the TKI dose is adjusted or that such co-administration is avoided. Caution is also recommended for co-administration of CYP3A4 substrates with TKIs, especially for those with a narrow therapeutic index. However, current recommendations with regard to dose adjustment of TKIs need to be validated in clinical studies. Further investigations are needed to explain the large interindividual variability in the pharmacokinetics of these drugs and to assess the clinical relevance of their interaction potential and inhibitory effects on metabolizing enzymes and transporters.

References

  1. 1.
    Robinson DR, Wu YM, Lin SF. The protein tyrosine kinase family of the human genome. Oncogene 2000 Nov 20; 19(49): 5548–57PubMedCrossRefGoogle Scholar
  2. 2.
    Agrawal M, Garg RJ, Cortes J, et al. Tyrosine kinase inhibitors: the first decade. Curr Hematol Malig Rep 2010 Apr; 5(2): 70–80PubMedCrossRefGoogle Scholar
  3. 3.
    Lyseng-Williamson K, Jarvis B. Imatinib. Drugs 2001; 61(12): 1765–74PubMedCrossRefGoogle Scholar
  4. 4.
    Snead JL, O’Hare T, Adrian LT, et al. Acute dasatinib exposure commits Bcr-Abl dependent cells to apoptosis. Blood 2009 Oct 15; 114(16): 3459–63PubMedCrossRefGoogle Scholar
  5. 5.
    Druker BJ, Sawyers CL, Kantarjian H, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 2001 Apr 5; 344(14): 1038–42PubMedCrossRefGoogle Scholar
  6. 6.
    Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001 Apr 5; 344(14): 1031–7PubMedCrossRefGoogle Scholar
  7. 7.
    Joensuu H, Roberts PJ, Sarlomo-Rikala M, et al. Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med 2001 Apr 5; 344(14): 1052–6PubMedCrossRefGoogle Scholar
  8. 8.
    Capdeville R, Silberman S, Dimitrijevic S. Imatinib: the first 3 years. Eur J Cancer 2002 Sep; 38 Suppl. 5: 77–82CrossRefGoogle Scholar
  9. 9.
    An X, Tiwari AK, Sun Y, et al. BCR-ABL tyrosine kinase inhibitors in the treatment of Philadelphia chromosome positive chronic myeloid leukemia: a review. Leuk Res 2010 Oct; 34(10): 1255–68PubMedCrossRefGoogle Scholar
  10. 10.
    Peng B, Hayes M, Resta D, et al. Pharmacokinetics and pharmacodynamics of imatinib in a phase I trial with chronic myeloid leukemia patients. J Clin Oncol 2004 Mar 1; 22(5): 935–42PubMedCrossRefGoogle Scholar
  11. 11.
    Gschwind HP, Pfaar U, Waldmeier F, et al. Metabolism and disposition of imatinib mesylate in healthy volunteers. Drug Metab Dispos 2005 Oct; 33(10): 1503–12PubMedCrossRefGoogle Scholar
  12. 12.
    Sedlacek HH. Kinase inhibitors in cancer therapy: a look ahead. Drugs 2000 Mar; 59(3): 435–76PubMedCrossRefGoogle Scholar
  13. 13.
    Rajagopalan H, Bardelli A, Lengauer C, et al. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature 2002 Aug 29; 418(6901): 934PubMedCrossRefGoogle Scholar
  14. 14.
    Dancey J, Sausville EA. Issues and progress with protein kinase inhibitors for cancer treatment. Nat Rev Drug Discov 2003 Apr; 2(4): 296–313PubMedCrossRefGoogle Scholar
  15. 15.
    Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 2007 May 14; 26(22): 3291–310PubMedCrossRefGoogle Scholar
  16. 16.
    Tibes R, Trent J, Kurzrock R. Tyrosine kinase inhibitors and the dawn of molecular cancer therapeutics. Annu Rev Pharmacol Toxicol 2005; 45: 357–84PubMedCrossRefGoogle Scholar
  17. 17.
    Gleevec (imatinib mesylate) tablets for oral use: US prescribing information [online]. Available from URL: http://www.pharma.us.novartis.com/product/pi/pdf/gleevec_tabs.pdf [Accessed 2011 Jun 28]
  18. 18.
    Keam SJ. Dasatinib. Biodrugs 2008; 22(1): 59–69PubMedCrossRefGoogle Scholar
  19. 19.
    Steinberg M. Dasatinib: a tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia. Clin Ther 2007 Nov; 29(11): 2289–308PubMedCrossRefGoogle Scholar
  20. 20.
    Sprycel® (dasatinib) tablet for oral use: US prescribing information [online]. Available from URL: http://packageinserts.bms.com/pi/pi_sprycel.pdf [Accessed 2011 Jun 28]
  21. 21.
    Mcfarland KL, Wetzstein GA. Chronic myeloid leukemia therapy: focus on second-generation tyrosine kinase inhibitors. Cancer Control 2009 Apr; 16(2): 132–40PubMedGoogle Scholar
  22. 22.
    Giles FJ, Abruzzese E, Rosti G, et al. Nilotinib is active in chronic and accelerated phase chronic myeloid leukemia following failure of imatinib and dasatinib therapy. Leukemia 2010 Jul; 24(7): 1299–301PubMedCrossRefGoogle Scholar
  23. 23.
    Tasigna® (nilotinib) capsules: US prescribing information [online]. Available from URL: http://www.pharma.us.novartis.com/product/pi/pdf/tasigna.pdf [Accessed 2011 Jun 28]
  24. 24.
    Takahashi K, Saishin Y, Saishin Y, et al. Suppression and regression of choroidal neovascularization by the multitargeted kinase inhibitor pazopanib. Arch Ophthalmol 2009 Apr; 127(4): 494–9PubMedCrossRefGoogle Scholar
  25. 25.
    Podar K, Tonon G, Sattler M, et al. The small-molecule VEGF receptor inhibitor pazopanib (GW786034B) targets both tumor and endothelial cells in multiple myeloma. Proc Natl Acad Sci U S A 2006 Dec 19; 103(51): 19478–83PubMedCrossRefGoogle Scholar
  26. 26.
    Hurwitz HI, Dowlati A, Saini S, et al. Phase I trial of pazopanib in patients with advanced cancer. Clin Cancer Res 2009 Jun 15; 15(12): 4220–7PubMedCrossRefGoogle Scholar
  27. 27.
    Cowey CL, Sonpavde G, Hutson TE. New advancements and developments in treatment of renal cell carcinoma: focus on pazopanib. Onco Targets Ther 2010 Oct 5; 3: 147–55PubMedGoogle Scholar
  28. 28.
    Votrient (pazopanib) tablets: US prescribing information [online]. Available from URL: http://www.accessdata.fda.gov/drugsatfda_docs/label/2009/022465lbl.pdf [Accessed 2011 Jun 28]
  29. 29.
    Smith RA, Barbosa J, Blum CL, et al. Discovery of heterocyclic ureas as a new class of raf kinase inhibitors: identification of a second generation lead by a combinatorial chemistry approach. Bioorg Med Chem Lett 2001 Oct 22; 11(20): 2775–8PubMedCrossRefGoogle Scholar
  30. 30.
    Lyons JF, Wilhelm S, Hibner B, et al. Discovery of a novel Raf kinase inhibitor. Endocr Relat Cancer 2001 Sep; 8(3): 219–25PubMedCrossRefGoogle Scholar
  31. 31.
    Wilhelm SM, Carter C, Tang L, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 2004 Oct 1; 64(19): 7099–109PubMedCrossRefGoogle Scholar
  32. 32.
    Wilhelm S, Carter C, Lynch M, et al. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov 2006 Oct; 5(10): 835–44PubMedCrossRefGoogle Scholar
  33. 33.
    Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008 Jul 24; 359(4): 378–90PubMedCrossRefGoogle Scholar
  34. 34.
    Escudier B, Eisen T, Stadler WM, et al. Sorafenib in advanced clear-cell renalcell carcinoma. N Engl J Med 2007 Jan 11; 356(2): 125–34PubMedCrossRefGoogle Scholar
  35. 35.
    Nexavar (sorafenib) tablets, oral: US prescribing information [online]. Available from URL: http://berlex.bayerhealthcare.com/html/products/pi/Nexavar_PI.pdf [Accessed 2011 Jun 28]
  36. 36.
    Rini BI. Sunitinib. Expert Opin Pharmacother 2007 Oct; 8(14): 2359–69PubMedCrossRefGoogle Scholar
  37. 37.
    Sablin MP, Dreyer C, Colichi C, et al. Benefits from pharmacological and pharmacokinetic properties of sunitinib for clinical development. Expert Opin Drug Metab Toxicol 2010 Aug; 6(8): 1005–15PubMedCrossRefGoogle Scholar
  38. 38.
    Wildiers H, Fontaine C, Vuylsteke P, et al. Multicenter phase II randomized trial evaluating antiangiogenic therapy with sunitinib as consolidation after objective response to taxane chemotherapy in women with HER2-negative metastatic breast cancer. Breast Cancer Res Treat 2010 Sep; 123(2): 463–9PubMedCrossRefGoogle Scholar
  39. 39.
    Mendel DB, Laird AD, Xin X, et al. In vivo antitumor activity of SU1 1248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res 2003 Jan; 9: 327–37PubMedGoogle Scholar
  40. 40.
    Chow LQM, Eckhardt SG. Sunitinib: from rational design to clinical efficacy. J Clin Oncol 2007 Mar 1; 25(7): 884–96PubMedCrossRefGoogle Scholar
  41. 41.
    Sutent® (sunitinib malate) capsules: US prescribing information [online]. Available from URL: http://labeling.pfizer.com/ShowLabeling.aspx?id=607 [Accessed 2011 Jun 28]
  42. 42.
    Shayani S. Dasatinib, a multikinase inhibitor: therapy, safety, and appropriate management of adverse events. Ther Drug Monit 2010 Dec; 32(6): 680–7PubMedCrossRefGoogle Scholar
  43. 43.
    Lombardo LJ, Lee FY, Chen P, et al. Discovery of N-(2-chloro-6-methyl-phenyl)-2-(6-(4-(2-hydroxyethyl)-piperazin-1-yl)-2-methylpyrimidin-4-ylami no)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J Med Chem 2004 Dec 30; 47(27): 6658–61PubMedCrossRefGoogle Scholar
  44. 44.
    Thomas J, Wang L, Clark RE, et al. Active transport of imatinib into and out of cells: implications for drug resistance. Blood 2004 Dec 1; 104(12): 3739–45PubMedCrossRefGoogle Scholar
  45. 45.
    Lee FY, Wen ML, Bhide R, et al. Dasatinib (BMS-354825) overcomes multiple mechanisms of imatinib resistance in chronic myeloid leukemia (CML) [abstract no. 1994]. Blood 2005; 106(11): 1994Google Scholar
  46. 46.
    O’Hare T, Walters DK, Stoffregen EP, et al. In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res 2005 Jun 1; 65(11): 4500–5PubMedCrossRefGoogle Scholar
  47. 47.
    Talpaz M, Shah NP, Kantarjian H, et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med 2006 Jun 15; 354: 2531–41PubMedCrossRefGoogle Scholar
  48. 48.
    Brave M, Goodman V, Kaminskas E, et al. Sprycel for chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia resistant to or intolerant of imatinib mesylate. Clin Cancer Res 2008 Jan 15; 14(2): 352–9PubMedCrossRefGoogle Scholar
  49. 49.
    Golemovic M, Verstovsek S, Giles F, et al. AMN107, a novel aminopyrimidine inhibitor of bcr-Abl, has in vitro activity against imatinib-resistant chronic myeloid leukemia. Clin Cancer Res 2005 Jul 1; 11(13): 4941–7PubMedCrossRefGoogle Scholar
  50. 50.
    Bergsland EK. Vascular endothelial growth factor as a therapeutic target in cancer. Am J Health Syst Pharm 2004 Nov 1; 61(21 Suppl. 5): 4–11Google Scholar
  51. 51.
    Parikh AA, Ellis LM. The vascular endothelial growth factor family and its receptors. Hematol Oncol Clin North Am 2004 Oct; 18(5): 951–71PubMedCrossRefGoogle Scholar
  52. 52.
    Vaziri SA, Kim J, Ganapathi MK, et al. Vascular endothelial growth factor polymorphisms: role in response and toxicity of tyrosine kinase inhibitors. Curr Oncol Rep 2010 Mar; 12(2): 102–8PubMedCrossRefGoogle Scholar
  53. 53.
    Sloan B, Scheinfeld NS. Pazopanib, a VEGF receptor tyrosine kinase inhibitor for cancer therapy. Curr Opin Investig Drugs 2008 Dec; 9: 1324–35PubMedGoogle Scholar
  54. 54.
    Gotink KJ, Verheul HMW. Anti-angiogenic tyrosine kinase inhibitors: what is their mechanism of action? Angiogenesis 2010 Mar; 13: 1–14PubMedCrossRefGoogle Scholar
  55. 55.
    Wan PT, Baker SD, Zandvliet AS, et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 2004 Mar 19; 116(6): 855–67PubMedCrossRefGoogle Scholar
  56. 56.
    Carlomagno F, Anaganti S, Guida T, et al. BAY 43-9006 inhibition of oncogenic RET mutants. J Natl Cancer Inst 2006 Mar 1; 98(5): 326–34PubMedCrossRefGoogle Scholar
  57. 57.
    Duensing A, Heinrich MC, Fletcher CD, et al. Biology of gastrointestinal stromal tumors: KIT mutations and beyond. Cancer Invest 2004; 22(1): 106–16PubMedCrossRefGoogle Scholar
  58. 58.
    Faivre S, Demetri G, Sargent W, et al. Molecular basis for sunitinib efficacy and future clinical development. Nat Rev Drug Discov 2007 Sep; 6(9): 734–45PubMedCrossRefGoogle Scholar
  59. 59.
    Gorre ME, Sawyers CL. Molecular mechanisms of resistance to STI571 in chronic myeloid leukemia. Curr Opin Hematol 2002 Jul; 9(4): 303–7PubMedCrossRefGoogle Scholar
  60. 60.
    Sierra JR, Cepero V, Giordano S. Molecular mechanisms of acquired resistance to tyrosine kinase targeted therapy. Mol Cancer 2010 Apr 12; 9: 75PubMedCrossRefGoogle Scholar
  61. 61.
    Peng B, Lloyd P, Schran H. Clinical pharmacokinetics of imatinib. Clin Pharmacokinet 2005; 44(9): 879–94PubMedCrossRefGoogle Scholar
  62. 62.
    European Medicines Agency. Tasigna capsules: summary of product characteristics [online]. Available from URL: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000798/WC500034394.pdf [Accessed 2011 Jun 28]
  63. 63.
    Goodman VL, Rock EP, Dagher R, et al. Approval summary: sunitinib for the treatment of imatinib refractory or intolerant gastrointestinal stromal tumors and advanced renal cell carcinoma. Clin Cancer Res 2007 Mar 1; 13(5): 1367–73PubMedCrossRefGoogle Scholar
  64. 64.
    De Bruijn P, Sleijfer S, Lam MH, et al. Bioanalytical method for the quantification of sunitinib and its n-desethyl metabolite SU12662 in human plasma by ultra performance liquid chromatography/tandem triple-quadrupole mass spectrometry. J Pharm Biomed Anal 2010 Mar 11; 51(4): 934–41PubMedCrossRefGoogle Scholar
  65. 65.
    Bakhtiar R, Lohne J, Ramos L, et al. High-throughput quantification of the anti-leukemia drug STI571 (Gleevec) and its main metabolite (CGP 74588) in human plasma using liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2002 Mar 5; 768(2): 325–40PubMedCrossRefGoogle Scholar
  66. 66.
    Parise RA, Ramanathan RK, Hayes MJ, et al. Liquid chromatographic-mass spectrometric assay for quantitation of imatinib and its main metabolite (CGP 74588) in plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2003 Jul 5; 791(1–2): 39–44PubMedGoogle Scholar
  67. 67.
    Widmer N, Beguin A, Rochat B, et al. Determination of imatinib (Gleevec) in human plasma by solid-phase extraction-liquid chromatography-ultraviolet absorbance detection. J Chromatogr B Analyt Technol Biomed Life Sci 2004 Apr 25; 803(2): 285–92PubMedCrossRefGoogle Scholar
  68. 68.
    Le Coutre P, Kreuzer KA, Pursche S, et al. Pharmacokinetics and cellular uptake of imatinib and its main metabolite CGP74588. Cancer Chemother Pharmacol 2004 Apr; 53(4): 313–23PubMedCrossRefGoogle Scholar
  69. 69.
    Haouala A, Zanolari B, Rochat B, et al. Therapeutic drug monitoring of the new targeted anticancer agents imatinib, nilotinib, dasatinib, sunitinib, sorafenib and lapatinib by LC tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2009 Jul 15; 877(22): 1982–96PubMedCrossRefGoogle Scholar
  70. 70.
    Roche S, McMahon G, Clynes M, et al. Development of a high-performance liquid chromatographic-mass spectrometric method for the determination of cellular levels of the tyrosine kinase inhibitors lapatinib and dasatinib. J Chromatogr B Analyt Technol Biomed Life Sci 2009 Dec 1; 877(31): 3982–90PubMedCrossRefGoogle Scholar
  71. 71.
    De Francia S, D’Avolio A, De Martino F, et al. New HPLC-MS method for the simultaneous quantification of the antileukemia drugs imatinib, dasatinib, and nilotinib in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2009 Jun 15; 877(18–19): 1721–6PubMedGoogle Scholar
  72. 72.
    Zhou L, Meng F, Yin O, et al. Nilotinib for imatinib-resistant or -intolerant chronic myeloid leukemia in chronic phase, accelerated phase, or blast crisis: a single- and multiple-dose, open-label pharmacokinetic study in Chinese patients. Clin Ther 2009 Jul; 31(7): 1568–75PubMedCrossRefGoogle Scholar
  73. 73.
    Parise RA, Egorin MJ, Christner SM, et al. A high-performance liquid chromatography-mass spectrometry assay for quantitation of the tyrosine kinase inhibitor nilotinib in human plasma and serum. J Chromatogr B Analyt Technol Biomed Life Sci 2009 Jul 1; 877(20–21): 1894–900PubMedGoogle Scholar
  74. 74.
    Kumar R, Knick VB, Rudolph SK, et al. Pharmacokinetic-pharmacodynamic correlation from mouse to human with pazopanib, a multikinase angiogenesis inhibitor with potent antitumor and antiangiogenic activity. Mol Cancer Ther 2007 Jul; 6(7): 2012–21PubMedCrossRefGoogle Scholar
  75. 75.
    Zhao M, Rudek MA, He P, et al. A rapid and sensitive method for determination of sorafenib in human plasma using a liquid chromatography/tandem mass spectrometry assay. J Chromatogr B Analyt Technol Biomed Life Sci 2007 Feb 1; 846(1–2): 1–7PubMedGoogle Scholar
  76. 76.
    Jain L, Gardner ER, Venitz J, et al. Development of a rapid and sensitive LC-MS/MS assay for the determination of sorafenib in human plasma. J Pharm Biomed Anal 2008 Jan 22; 46(2): 362–7PubMedCrossRefGoogle Scholar
  77. 77.
    Jain L, Gardner ER, Figg WD, et al. Lack of association between excretion of sorafenib in sweat and hand-foot skin reaction. Pharmacotherapy 2010 Jan; 30(1): 52–6PubMedCrossRefGoogle Scholar
  78. 78.
    Minami H, Kawada K, Ebi H, et al. Phase I and pharmacokinetic study of sorafenib, an oral multikinase inhibitor, in Japanese patients with advanced refractory solid tumors. Cancer Sci 2008 Jul; 99(7): 1492–8PubMedCrossRefGoogle Scholar
  79. 79.
    Blanchet B, Billemont B, Cramard J, et al. Validation of an HPLC-UV method for sorafenib determination in human plasma and application to cancer patients in routine clinical practice. J Pharm Biomed Anal 2009 May 1; 49(4): 1109–14PubMedCrossRefGoogle Scholar
  80. 80.
    Heinz WJ, Kahle K, Helle-Beyersdorf A, et al. High-performance liquid chromatographic method for the determination of sorafenib in human serum and peritoneal fluid. Cancer Chemother Pharmacol 2011 Jul; 68(1): 239–45PubMedCrossRefGoogle Scholar
  81. 81.
    Minkin P, Zhao M, Chen ZY, et al. Quantification of sunitinib in human plasma by high-performance liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life 2008 Oct 15; 874(1–2): 84–8CrossRefGoogle Scholar
  82. 82.
    Faivre S, Delbaldo C, Vera K, et al. Safety, pharmacokinetic, and antitumor activity of SU 11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J Clin Oncol 2006 Jan 1; 24(1): 25–35PubMedCrossRefGoogle Scholar
  83. 83.
    Fiedler W, Serve H, Dohner H, et al. A phase 1 study of SU11248 in the treatment of patients with refractory or resistant acute myeloid leukemia (AML) or not amenable to conventional therapy for the disease. Blood 2005 Feb 1; 105(3): 986–93PubMedCrossRefGoogle Scholar
  84. 84.
    Bello CL, Sherman L, Zhou J, et al. Effect of food on the pharmacokinetics of sunitinib malate (SU11248), a multi-targeted receptor tyrosine kinase inhibitor: results from a phase I study in healthy subjects. Anticancer Drugs 2006 Mar; 17(3): 353–8PubMedCrossRefGoogle Scholar
  85. 85.
    Lindauer A, Di Gion P, Kanefendt F, et al. Pharmacokinetic/pharmacodynamic modeling of biomarker response to sunitinib in healthy volunteers. Clin Pharmacol Ther 2010 May; 87(5): 601–8PubMedCrossRefGoogle Scholar
  86. 86.
    Etienne-Grimaldi MC, Renée N, Izzedine H, et al. A routine feasible HPLC analysis for the anti-angiogenic tyrosine kinase inhibitor, sunitinib, and its main metabolite, SU 12662, in plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2009 Nov 1; 877(29): 3757–61PubMedCrossRefGoogle Scholar
  87. 87.
    Gschwind H, Pfaar U, Waldmeier F, et al. Metabolism and disposition of Gleevec™ (STI571) in healthy volunteers [abstract]. Drug Metab Rev 2001; 33(1): 217Google Scholar
  88. 88.
    Peng B, Dutreix C, Mehring G, et al. Absolute bioavailability of imatinib (Glivec) orally versus intravenous infusion. J Clin Pharmacol 2004 Feb; 44(2): 158–62PubMedCrossRefGoogle Scholar
  89. 89.
    Nikolova Z, Peng B, Hubert M, et al. Bioequivalence, safety, and tolerability of imatinib tablets compared with capsules. Cancer Chemother Pharmacol 2004 May; 53(5): 433–8PubMedCrossRefGoogle Scholar
  90. 90.
    Sparano BA, Egorin MJ, Parise RA, et al. Effect of antacid on imatinib absorption. Cancer Chemother Pharmacol 2009 Feb; 63(3): 525–8PubMedCrossRefGoogle Scholar
  91. 91.
    Bolton AE, Peng B, Hubert M, et al. Effect of rifampicin on the pharmacokinetics of imatinib mesylate (Gleevec, STI571) in healthy subjects. Cancer Chemother Pharmacol 2004 Feb; 53(2): 102–6PubMedCrossRefGoogle Scholar
  92. 92.
    Dutreix C, Peng B, Mehring G, et al. Pharmacokinetic interaction between ketoconazole and imatinib mesylate (Glivec) in healthy subjects. Cancer Chemother Pharmacol 2004 Oct; 54(4): 290–4PubMedCrossRefGoogle Scholar
  93. 93.
    Frye RF, Fitzgerald SM, Lagattuta TF, et al. Effect of St John’s wort on imatinib mesylate pharmacokinetics. Clin Pharmacol Ther 2004 Oct; 76(4): 323–9PubMedCrossRefGoogle Scholar
  94. 94.
    Smith P, Bullock JM, Booker BM, et al. The influence of St John’s wort on the pharmacokinetics and protein binding of imatinib mesylate. Pharmacotherapy 2004 Nov; 24(11): 1508–14PubMedCrossRefGoogle Scholar
  95. 95.
    Bornhäuser M, Pursche S, Bonin M, et al. Elimination of imatinib mesylate and its metabolite N-desmethyl-imatinib. J Clin Oncol 2005 Jun 1; 23(16): 3855–6; author reply 3857–8PubMedCrossRefGoogle Scholar
  96. 96.
    Gambacorti-Passerini C, Zucchetti M, Russo D, et al. Alpha1 acid glycoprotein binds to imatinib (STI571) and substantially alters its pharmacokinetics in chronic myeloid leukemia patients. Clin Cancer Res 2003 Feb; 9(2): 625–32PubMedGoogle Scholar
  97. 97.
    Boddy AV, Sludden J, Griffin MJ, et al. Pharmacokinetic investigation of imatinib using accelerator mass spectrometry in patients with chronic myeloid leukemia. Clin Cancer Res 2007 Jul 15; 13(14): 4164–9PubMedCrossRefGoogle Scholar
  98. 98.
    Delbaldo C, Chatelut E, Re M, et al. Pharmacokinetic-pharmacodynamic relationships of imatinib and its main metabolite in patients with advanced gastrointestinal stromal tumors. Clin Cancer Res 2006 Oct 15; 12(20 Pt 1): 6073–8PubMedCrossRefGoogle Scholar
  99. 99.
    Judson I, Ma P, Peng B, et al. Imatinib pharmacokinetics in patients with gastrointestinal stromal tumour: a retrospective population pharmacokinetic study over time. EORTC Soft Tissue and Bone Sarcoma Group. Cancer Chemother Pharmacol 2005 Apr; 55(4): 379–86PubMedCrossRefGoogle Scholar
  100. 100.
    Schmidli H, Peng B, Riviere GJ, et al. Population pharmacokinetics of imatinib mesylate in patients with chronic-phase chronic myeloid leukaemia: results of a phase III study. Br J Clin Pharmacol 2005 Jul; 60(1): 35–44PubMedCrossRefGoogle Scholar
  101. 101.
    Widmer N, Decosterd LA, Csajka C, et al. Population pharmacokinetics of imatinib and the role of alpha-acid glycoprotein [published erratum appears in Br J Clin Pharmacol 2010 Aug; 70 (2): 316]. Br J Clin Pharmacol 2006 Jul; 62(1): 97–112PubMedCrossRefGoogle Scholar
  102. 102.
    Treiber G, Wex T, Schleyer E, et al. Imatinib for hepatocellular cancer: focus on pharmacokinetic/pharmacodynamic modelling and liver function. Cancer Lett 2008 Feb 18; 260(1–2): 146–54PubMedCrossRefGoogle Scholar
  103. 103.
    Eckel F, Von DS, Mayr M, et al. Pharmacokinetic and clinical phase II trial of imatinib in patients with impaired liver function and advanced hepatocellular carcinoma. Oncology 2005; 69(5): 363–71PubMedCrossRefGoogle Scholar
  104. 104.
    Van Erp N, Gelderblom H, van Glabbeke M, et al. Effect of cigarette smoking on imatinib in patients in the Soft Tissue and Bone Sarcoma Group of the EORTC. Clin Cancer Res 2008 Dec 15; 14(24): 8308–13PubMedCrossRefGoogle Scholar
  105. 105.
    Petain A, Kattygnarath D, Azard J, et al. Population pharmacokinetics and pharmacogenetics of imatinib in children and adults. Clin Cancer Res 2008 Nov 1; 14(21): 7102–9PubMedCrossRefGoogle Scholar
  106. 106.
    Menon-Andersen D, Mondick JT, Jayaraman B, et al. Population pharmacokinetics of imatinib mesylate and its metabolite in children and young adults. Cancer Chemother Pharmacol 2009 Jan; 63(2): 229–38PubMedCrossRefGoogle Scholar
  107. 107.
    Champagne MA, Capdeville R, Krailo M, et al. Imatinib mesylate (STI571) for treatment of children with Philadelphia chromosome-positive leukemia: results from a Children’s Oncology Group phase 1 study. Blood 2004 Nov 1; 104(9): 2655–60PubMedCrossRefGoogle Scholar
  108. 108.
    Ramanathan RK, Egorin MJ, Takimoto CH, et al. Phase I and pharmacokinetic study of imatinib mesylate in patients with advanced malignancies and varying degrees of liver dysfunction: a study by the National Cancer Institute Organ Dysfunction Working Group. J Clin Oncol 2008 Feb 1; 26(4): 563–9PubMedCrossRefGoogle Scholar
  109. 109.
    Gibbons J, Egorin MJ, Ramanathan RK, et al. Phase I and pharmacokinetic study of imatinib mesylate in patients with advanced malignancies and varying degrees of renal dysfunction: a study by the National Cancer Institute Organ Dysfunction Working Group. J Clin Oncol 2008 Feb 1; 26(4): 570–6PubMedCrossRefGoogle Scholar
  110. 110.
    Van Erp NP, Oostendorp RL, Guchelaar HJ, et al. Is rectal administration an alternative route for imatinib? Cancer Chemother Pharmacol 2007 Sep; 60(4): 623–4PubMedCrossRefGoogle Scholar
  111. 111.
    Beumer JH, Natale JJ, Lagattuta TF, et al. Disposition of imatinib and its metabolite CGP74588 in a patient with chronic myelogenous leukemia and short-bowel syndrome. Pharmacotherapy 2006 Jul; 26(7): 903–7PubMedCrossRefGoogle Scholar
  112. 112.
    Burger H, Nooter K. Pharmacokinetic resistance to imatinib mesylate: role of the ABC drug pumps ABCG2 (BCRP) and ABCB1 (MDR1) in the oral bioavailability of imatinib. Cell Cycle 2004 Dec; 3(12): 1502–5PubMedCrossRefGoogle Scholar
  113. 113.
    Cusatis G, Sparreboom A. Pharmacogenomic importance of ABCG2. Pharmacogenomics 2008 Aug; 9(8): 1005–9PubMedCrossRefGoogle Scholar
  114. 114.
    Christopher LJ, Cui D, Wu C, et al. Metabolism and disposition of dasatinib after oral administration to humans. Drug Metab Dispos 2008 Jul; 36: 1357–64PubMedCrossRefGoogle Scholar
  115. 115.
    Eley T, Luc FR, Agrawal S, et al. Phase I study of the effect of gastric acid pH modulators of oral dasatinib in healthy subjects. J Clin Pharmacol 2009 Jun; 49: 700–9PubMedCrossRefGoogle Scholar
  116. 116.
    Kim DW, Goh YT, Hsiao HH, et al. Clinical profile of dasatinib in Asian and non-Asian patients with chronic myeloid leukemia. Int J Hematol 2009 Jun; 89: 664–72PubMedCrossRefGoogle Scholar
  117. 117.
    Demetri GD, Lo Russo P, MacPherson IR, et al. Phase I dose-escalation and pharmacokinetic study of dasatinib in patients with advanced solid tumors. Clin Cancer Res 2009 Oct 1; 15(19): 6232–40PubMedCrossRefGoogle Scholar
  118. 118.
    Kamath AV, Wang J, Lee FY, et al. Preclinical pharmacokinetics and in vitro metabolism of dasatinib (BMS-354825): a potent oral multi-targeted kinase inhibitor against SRC and BCR-ABL. Cancer Chemother Pharmacol 2008 Mar; 61(3): 365–76PubMedCrossRefGoogle Scholar
  119. 119.
    Luo FR, Yang Z, Camuso A, et al. Dasatinib (BMS-354825) pharmacokinetics and pharmacodynamic biomarkers in animal models predict optimal clinical exposure. Clin Cancer Res 2006 Dec 1; 12(23): 7180–6PubMedCrossRefGoogle Scholar
  120. 120.
    Dai H, Marbach P, Lemaire M, et al. Distribution of STI-571 to the brain is limited by P-glycoprotein-mediated efflux. J Pharmacol Exp Ther 2003 Mar; 304(3): 1085–92PubMedCrossRefGoogle Scholar
  121. 121.
    Demetri GD, Casali PG, Blay JY, et al. A phase I study of single-agent nilotinib or in combination with imatinib in patients with imatinib-resistant gastrointestinal stromal tumors. Clin Cancer Res 2009 Sep 15; 15(18): 5910–6PubMedCrossRefGoogle Scholar
  122. 122.
    Tojo A, Usuki K, Urabe A, et al. A phase I/II study of nilotinib in Japanese patients with imatinib-resistant or -intolerant Ph+ CML or relapsed/refractory Ph+ ALL. Int J Hematol 2009 Jun; 89(5): 679–88PubMedCrossRefGoogle Scholar
  123. 123.
    Yin OQ, Gallagher N, Li A, et al. Effect of grapefruit juice on the pharmacokinetics of nilotinib in healthy participants. J Clin Pharmacol 2010 Feb; 50(2): 188–94PubMedCrossRefGoogle Scholar
  124. 124.
    Tanaka C, Yin OQ, Smith T, et al. Effects of rifampin and ketoconazole on the pharmacokinetics of nilotinib in healthy participants. J Clin Pharmacol 2011 Jan; 51(1): 75–83PubMedCrossRefGoogle Scholar
  125. 125.
    Kantarjian H, Giles F, Wunderle L, et al. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med 2006 Jun 15; 354: 2524–51CrossRefGoogle Scholar
  126. 126.
    Tanaka C, Smith T, Kantarjian H, et al. Clinical pharmacokinetics (PK) of AMN107, a novel inhibitor of Bcr-Abl, in healthy subjects and patients with imatinib resistant or intolerant chronic myelogenous leukemia (CML) or relapsed/refractory Ph+ acute lymphocytic leukemia (Ph+ ALL) [abstract no. 3095]. J Clin Oncol 2006; 24(18 Suppl.): 3095Google Scholar
  127. 127.
    Kagan M, Tran P, Fischer V, et al. Safety, pharmacokinetics (PK), metabolism, and mass balance of 14C-AMN107, a novel aminopyrimidine inhibitor of Bcr-Abl tyrosine kinase, in healthy subjects [abstract no. 4887]. Blood 2005; 106(11): 4887Google Scholar
  128. 128.
    Trent J, Molimard M. Pharmacokinetics and pharmacodynamics of nilotinib in gastrointestinal stromal tumors. Semin Oncol 2011 Apr; 38 Suppl. 1: 28–33CrossRefGoogle Scholar
  129. 129.
    Tanaka C, Yin OQ, Sethuraman V, et al. Clinical pharmacokinetics of the BCR-ABL tyrosine kinase inhibitor nilotinib. Clin Pharmacol Ther 2010 Feb; 87(2): 197–203PubMedCrossRefGoogle Scholar
  130. 130.
    Hazarika M, Jiang X, Liu Q, et al. Tasigna for chronic and accelerated phase Philadelphia chromosome-positive chronic myelogenous leukemia resistant to or intolerant of imatinib. Clin Cancer Res 2008 Sep 1; 14(17): 5325–31PubMedCrossRefGoogle Scholar
  131. 131.
    Kim KP, Ryu MH, Yoo C, et al. Nilotinib in patients with GIST who failed imatinib and sunitinib: importance of prior surgery on drug bioavailability. Cancer Chemother Pharmacol. Epub 2010 Oct 19Google Scholar
  132. 132.
    Deininger MW. Nilotinib. Clin Cancer Res 2008 Jul 1; 14(13): 4027–31PubMedCrossRefGoogle Scholar
  133. 133.
    GlaxoSmithKline. An open-label, two-part study to characterize the pharmacokinetics of a single intravenous dose of pazopanib (GW786034) and the absorption, distribution, metabolism and elimination of a single oral [14C] labeled dose of pazopanib in subjects with solid tumor malignancies [study no. VEG10004; online]. Available from URL: http://download.gsk-clinicalstudyregister.com/files/21149.pdf [Accessed 2011 Jun 28]
  134. 134.
    Heath EI, Chiorean EG, Sweeney CJ, et al. A phase I study of the pharmacokinetic and safety profiles of oral pazopanib with a high-fat or low-fat meal in patients with advanced solid tumors. Clin Pharmacol Ther 2010 Dec; 88(6): 818–23PubMedCrossRefGoogle Scholar
  135. 135.
    Shibata SLJ, Chung VM, Lenz H, et al. A phase I and pharmacokinetic single agent study of pazopanib in patients with advanced malignancies and varying degrees of liver dysfunction [abstract no. 2571]. J Clin Oncol 2010; 28 (Suppl.): 15SGoogle Scholar
  136. 136.
    Lang JM, Harrison MR. Pazopanib for the treatment of patients with advanced renal cell carcinoma. Clin Med Insights Oncol 2010 Oct 1; 4: 95–105PubMedGoogle Scholar
  137. 137.
    GlaxoSmithKline. Votrient® tablets: Australian product information [online]. Available from URL: http://gsk.com.au/resources.ashx/prescriptionmedicinesproductschilddataproinfo/989/FileName/77D7CF3E1F4D30BF6D045C51F6F34C95/Votrient_PI_(Clean).pdf [Accessed 2011 Jun 28]
  138. 138.
    GlaxoSmithKline. An open-label, two-period, randomized, crossover study, to evaluate the effect of food on the pharmacokinetics of single doses of pazopanib in cancer patients [study no. VEG10005; online]. Available from URL: http://download.gsk-clinicalstudyregister.com/files/21150.pdf [Accessed 2011 Jun 28]
  139. 139.
    Strumberg D, Richly H, Hilger RA, et al. Phase I clinical and pharmacokinetic study of the novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43-9006 in patients with advanced refractory solid tumors. J Clin Oncol 2005 Feb 10; 23(5): 965–72PubMedCrossRefGoogle Scholar
  140. 140.
    Awada A, Hendlisz A, Gil T, et al. Phase I safety and pharmacokinetics of BAY 43-9006 administered for 21 days on/7 days off in patients with advanced, refractory solid tumours. Br J Cancer 2005 May 23; 92(10): 1855–61PubMedCrossRefGoogle Scholar
  141. 141.
    Clark JW, Eder JP, Ryan D, et al. Safety and pharmacokinetics of the dual action Raf kinase and vascular endothelial growth factor receptor inhibitor, BAY 43-9006, in patients with advanced, refractory solid tumors. Clin Cancer Res 2005 Aug 1; 11(15): 5472–80PubMedCrossRefGoogle Scholar
  142. 142.
    Moore M, Hirte HW, Siu L, et al. Phase I study to determine the safety and pharmacokinetics of the novel Raf kinase and VEGFR inhibitor BAY 43-9006, administered for 28 days on/7 days off in patients with advanced, refractory solid tumors. Ann Oncol 2005 Oct; 16(10): 1688–94PubMedCrossRefGoogle Scholar
  143. 143.
    Abou-Alfa GK, Schwartz L, Ricci S, et al. Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. J Clin Oncol 2006 Sep 10; 24(26): 4293–300PubMedCrossRefGoogle Scholar
  144. 144.
    Furuse J, Ishii H, Nakachi K, et al. Phase I study of sorafenib in Japanese patients with hepatocellular carcinoma. Cancer Sci 2008 Jan; 99(1): 159–65PubMedGoogle Scholar
  145. 145.
    Miller AA, Murry DJ, Owzar K, et al. Phase I and pharmacokinetic study of sorafenib in patients with hepatic or renal dysfunction: CALGB 60301. J Clin Oncol 2009 Apr 10; 27(11): 1800–5PubMedCrossRefGoogle Scholar
  146. 146.
    Lathia C, Lettieri J, Cihon F, et al. Lack of effect of ketoconazole-mediated CYP3A inhibition on sorafenib clinical pharmacokinetics. Cancer Chemother Pharmacol 2006 May; 57(5): 685–92PubMedCrossRefGoogle Scholar
  147. 147.
    Hu S, Chen Z, Franke R, et al. Interaction of the multikinase inhibitors sorafenib and sunitinib with solute carriers and ATP-binding cassette transporters. Clin Cancer Res 2009 Oct 1; 15(19): 6062–9PubMedCrossRefGoogle Scholar
  148. 148.
    Gnoth MJ, Sandmann S, Engel K, et al. In vitro to in vivo comparison of the substrate characteristics of sorafenib tosylate toward P-glycoprotein. Drug Metab Dispos 2010 Aug; 38(8): 1341–6PubMedCrossRefGoogle Scholar
  149. 149.
    Kane RC, Farrell AT, Saber H, et al. Sorafenib for the treatment of advanced renal cell carcinoma. Clin Cancer Res 2006 Dec 15; 12(24): 7271–8PubMedCrossRefGoogle Scholar
  150. 150.
    Washington C, Eli M, Bello C. The effect of ketoconazole (KETO), a potent CYP 3A4 inhibitor, on SU011248 pharmacokinetics (PK) in Caucasian and Asian healthy subjects [abstract no. 553]. 39th Annual Meeting, American Society of Clinical Oncology; 2003 May 31-Jun 3; Chicago (IL)Google Scholar
  151. 151.
    Britten CD, Kabbinavar F, Randolph HJ, et al. A phase I and pharmacokinetic study of sunitinib administered daily for 2 weeks, followed by a 1-week off period. Cancer Chemother Pharmacol 2008 Mar; 61(3): 515–24PubMedCrossRefGoogle Scholar
  152. 152.
    Bello C, Toh M, Garrett M, et al. Pharmacokinetics of sunitinib in patients with severe renal impairment or end stage renal disease on hemodialysis [abstract no. 162]. 33rd Conference of the European Society for Medical Oncology; 2008 Sep 12–16; StockholmGoogle Scholar
  153. 153.
    Bello CL, Garrett M, Sherman L, et al. Pharmacokinetics of sunitinib malate in subjects with hepatic impairment. Cancer Chemother Pharmacol 2010 Sep; 66(4): 699–707PubMedCrossRefGoogle Scholar
  154. 154.
    George S, Blay JY, Casali PG, et al. Clinical evaluation of continuous daily dosing of sunitinib malate in patients with advanced gastrointestinal stromal tumour after imatinib failure. Eur J Cancer 2009 Jul; 45(11): 1959–68PubMedCrossRefGoogle Scholar
  155. 155.
    Fountzilas G, Fragkoulidi A, Kalogera-Fountzila A, et al. A phase II study of sunitinib in patients with recurrent and/or metastatic non-nasopharyngeal head and neck cancer. Cancer Chemother Pharmacol 2010 Mar; 65(4): 649–60PubMedCrossRefGoogle Scholar
  156. 156.
    European Medicines Agency. Sutent capsules: summary of product characteristics [online]. Available from URL: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000687/WC500057737.pdf [Accessed 2011 Jun 28]
  157. 157.
    Haznedar J, Patyna S, Bello C, et al. Single- and multiple-dose disposition kinetics of sunitinib malate, a multitargeted receptor tyrosine kinase inhibitor: comparative plasma kinetics in non-clinical species. Cancer Chemother Pharmacol 2009 Sep; 64(4): 691–706PubMedCrossRefGoogle Scholar
  158. 158.
    O’Farrell AM, Foran JM, Fiedler W, et al. An innovative phase I clinical study demonstrates inhibition of FLT3 phosphorylation by SU11248 in acutemyeloid leukemia patients. Clin Cancer Res 2003 Nov 15; 9(15): 5465–76PubMedGoogle Scholar
  159. 159.
    Burstein HJ, Elias AD, Rugo HS, et al. Phase II study of sunitinib malate, an oral multitargeted tyrosine kinase inhibitor, in patients with metastatic breast cancer previously treated with an anthracycline and a taxane. J Clin Oncol 2008 Apr 10; 26(11): 1810–6PubMedCrossRefGoogle Scholar
  160. 160.
    Bornhäuser M, Jenke A, Freiberg-Richter J, et al. CNS blast crisis of chronic myelogenous leukemia in a patient with a major cytogenetic response in bone marrow associated with low levels of imatinib mesylate and its N-desmethylated metabolite in cerebral spinal fluid. Ann Hematol 2004 Jun; 83: 401–2PubMedCrossRefGoogle Scholar
  161. 161.
    Breedveld P, Pluim D, Cipriani G, et al. The effect of Bcrp1 (Abcg2) on the in vivo pharmacokinetics and brain penetration of imatinib mesylate (Gleevec): implications for the use of breast cancer resistance protein and P-glycoprotein inhibitors to enable the brain penetration of imatinib in patients. Cancer Res 2005 Apr 1; 65(7): 2577–82PubMedCrossRefGoogle Scholar
  162. 162.
    Kilic T, Alberta JA, Zdunek PR, et al. Intracranial inhibition of platelet-derived growth factor-mediated glioblastoma cell growth by an orally active kinase inhibitor of the 2-phenylaminopyrimidine class. Cancer Res 2000 Sep 15; 60(18): 5143–50PubMedGoogle Scholar
  163. 163.
    Takayama N, Sato N, O’Brien SG, et al. Imatinib mesylate has limited activity against the central nervous system involvement of Philadelphia chromosome-positive acute lymphoblastic leukaemia due to poor penetration into cerebrospinal fluid. Br J Haematol 2002 Oct; 119: 106–8PubMedCrossRefGoogle Scholar
  164. 164.
    Patel S, Zalcberg JR. Optimizing the dose of imatinib for treatment of gastrointestinal stromal tumours: lessons from the phase 3 trials. Eur J Cancer 2008 Mar; 44(4): 501–9PubMedCrossRefGoogle Scholar
  165. 165.
    Kretz O, Weiss HM, Schumacher MM, et al. In vitro blood distribution and plasma protein binding of the tyrosine kinase inhibitor imatinib and its active metabolite, CGP74588, in rat, mouse, dog, monkey, healthy humans and patients with acute lymphatic leukaemia. Br J Clin Pharmacol 2004 Aug; 58(2): 212–6PubMedCrossRefGoogle Scholar
  166. 166.
    Gambacorti-Passerini CB, Tornaghi L, Marangon E, et al. Imatinib concentrations in human milk. Blood 2007 Feb 15; 109(4): 1790PubMedGoogle Scholar
  167. 167.
    Russell MA, Carpenter MW, Akhtar MS, et al. Imatinib mesylate and metabolite concentrations in maternal blood, umbilical cord blood, placenta and breast milk. J Perinatol 2007 Apr; 27(4): 241–3PubMedCrossRefGoogle Scholar
  168. 168.
    Ali R, Ozkalemkas F, Kimya Y, et al. Imatinib use during pregnancy and breast feeding: a case report and review of the literature. Arch Gynecol Obstet 2009 Aug; 280(2): 169–75PubMedCrossRefGoogle Scholar
  169. 169.
    European Medicines Agency. Sprycel tablets: summary of product characteristics [online]. Available from URL: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000709/WC500056998.pdf [Accessed 2011 Jun 28]
  170. 170.
    Porkka K, Koskenvesa P, Lundan T, et al. Dasatinib crosses the blood-brain barrier and is an efficient therapy for central nervous system Philadelphia chromosome-positive leukemia. Blood 2008 Aug 15; 112(4): 1005–12PubMedCrossRefGoogle Scholar
  171. 171.
    Chen Y, Agarwal S, Shaik NM, et al. P-glycoprotein and breast cancer resistance protein influence brain distribution of dasatinib. J Pharmacol Exp Ther 2009 Sep; 330(3): 956–63PubMedCrossRefGoogle Scholar
  172. 172.
    Iwamoto FM, Lamborn KR, Robins HI, et al. Phase II trial of pazopanib (GW786034), an oral multi-targeted angiogenesis inhibitor, for adults with recurrent glioblastoma (North American Brain Tumor Consortium Study 06-02). Neuro Oncol 2010 Aug; 12(8): 855–61PubMedCrossRefGoogle Scholar
  173. 173.
    Jain L, Woo S, Gardner ER, et al. Population pharmacokinetic analysis of sorafenib in patients with solid tumors. Br J Clin Pharmacol 2011 Aug; 72(2): 294–305PubMedCrossRefGoogle Scholar
  174. 174.
    Lagas JS, van Waterschoot RA, Sparidans RW, et al. Breast cancer resistance protein and P-glycoprotein limit sorafenib brain accumulation. Mol Cancer Ther 2010 Feb; 9(2): 319–26PubMedCrossRefGoogle Scholar
  175. 175.
    Tang SC, Lagas JS, Lankheet NA, et al. Brain accumulation of sunitinib is restricted by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and can be enhanced by oral elacridar and sunitinib coadministration. Int J Cancer. Epub 2011 Feb 23Google Scholar
  176. 176.
    Sherman L, Peng G, Patyna S, et al. Open-label, single-dose, phase I study evaluating the mass balance and pharmacokinetics (PKs) of sunitinib (SU) in healthy male subjects [abstract no. 731]. 14th European Cancer Conference; 2007 Sep 23–27; BarcelonaGoogle Scholar
  177. 177.
    Kremer JM, Wilting J, Janssen LH. Drug binding to human alpha-1-acid glycoprotein in health and disease. Pharmacol Rev 1988 Mar; 40(1): 1–47PubMedGoogle Scholar
  178. 178.
    Fournier T, Medjoubi NN, Porquet D. Alpha-1-acid glycoprotein. Biochim Biophys Acta 2000 Oct 18; 1482(1–2): 157–71PubMedCrossRefGoogle Scholar
  179. 179.
    Israili ZH, Dayton PG. Human alpha-1-glycoprotein and its interactions with drugs. Drug Metab Rev 2001 May; 33(2): 161–235PubMedCrossRefGoogle Scholar
  180. 180.
    Rochat B, Fayet A, Widmer N, et al. Imatinib metabolite profiling in parallel to imatinib quantification in plasma of treated patients using liquid chromatography-mass spectrometry. J Mass Spectrom 2008 Jun; 43(6): 736–52PubMedCrossRefGoogle Scholar
  181. 181.
    Van Erp NP, Gelderblom H, Karlsson MO, et al. Influence of CYP3A4 inhibition on the steady-state pharmacokinetics of imatinib. Clin Cancer Res 2007 Dec 15; 13(24): 7394–400PubMedCrossRefGoogle Scholar
  182. 182.
    Nebot N, Crettol S, d’Esposito F, et al. Participation of CYP2C8 and CYP3A4 in the N-demethylation of imatinib in human hepatic microsomes. Br J Pharmacol 2010 Nov; 161(5): 1059–69PubMedCrossRefGoogle Scholar
  183. 183.
    Rochat B, Zoete V, Grosdidier A, et al. In vitro biotransformation of imatinib by the tumor expressed CYP1A1 and CYP1B1. Biopharm Drug Dispos 2008 Mar; 29(2): 103–18PubMedCrossRefGoogle Scholar
  184. 184.
    Gréen H, Skoglund K, Rommel F, et al. CYP3A activity influences imatinib response in patients with chronic myeloid leukemia: a pilot study on in vivo CYP3A activity. Eur J Clin Pharmacol 2010 Apr; 66(4): 383–6PubMedCrossRefGoogle Scholar
  185. 185.
    Cashman JR. Human flavin-containing monooxygenase: substrate specificity and role in drug metabolism. Curr Drug Metab 2000 Sep; 1(2): 181–91PubMedCrossRefGoogle Scholar
  186. 186.
    Zhou SF, Wang B, Yang LP, et al. Structure, function, regulation and polymorphism and the clinical significance of human cytochrome P450 1A2. Drug Metab Rev 2010 May; 42(2): 268–354PubMedCrossRefGoogle Scholar
  187. 187.
    Gurney H, Wong M, Balleine RL, et al. Imatinib disposition and ABCB1 (MDR1, P-glycoprotein) genotype. Clin Pharmacol Ther 2007 Jul; 82(1): 33–40PubMedCrossRefGoogle Scholar
  188. 188.
    Wang Y, Zhou L, Dutreix C, et al. Effects of imatinib (Glivec) on the pharmacokinetics of metoprolol, a CYP2D6 substrate, in Chinese patients with chronic myelogenous leukaemia. Br J Clin Pharmacol 2008 Jun; 65(6): 885–92PubMedCrossRefGoogle Scholar
  189. 189.
    Gora-Tybor J, Robak T. Targeted drugs in chronic myeloid leukaemia. Curr Med Chem 2008; 15(29): 3036–51PubMedCrossRefGoogle Scholar
  190. 190.
    Deremer DL, Ustun C, Natarajan K. Nilotinib: a second-generation tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia. Clin Ther 2008 Nov; 30(11): 1956–75PubMedCrossRefGoogle Scholar
  191. 191.
    Dejonge MSS, Verweij J, Collins TS, et al. A phase I, open-label study of the safety and pharmacokinetics of pazopanib and lapatinib administered concurrently [abstract no. 3088]. J Clin Oncol 2006; 24 (Suppl.): 142SGoogle Scholar
  192. 192.
    Meza-Junco J, Chu QS, Christensen O, et al. UGT1A1 polymorphism and hyperbilirubinemia in a patient who received sorafenib. Cancer Chemother Pharmacol 2009 Dec; 65(1): 1–4PubMedCrossRefGoogle Scholar
  193. 193.
    Houk BE, Bello CL, Kang D, et al. A population pharmacokinetic meta-analysis of sunitinib malate (SU11248) and its primary metabolite (SU12662) in healthy volunteers and oncology patients. Clin Cancer Res 2009 Apr 1; 15(7): 2497–506PubMedCrossRefGoogle Scholar
  194. 194.
    Takahashi N, Miura M. Therapeutic drug monitoring of imatinib for chronic myeloid leukemia patients in the chronic phase. Pharmacology 2011 Apr 6; 87(5–6): 241–8PubMedCrossRefGoogle Scholar
  195. 195.
    Ramalingam S, Lagattuta TF, Egorin MJ, et al. Biliary excretion of imatinib mesylate and its metabolite CGP 74588 in humans. Pharmacotherapy 2004 Sep; 24(9): 1232–5PubMedCrossRefGoogle Scholar
  196. 196.
    Takahashi N, Miura M, Scott SA, et al. Influence of CYP3A5 and drug transporter polymorphisms on imatinib trough concentration and clinical response among patients with chronic phase chronic myeloid leukemia. J Hum Genet 2010 Nov; 55(11): 731–7PubMedCrossRefGoogle Scholar
  197. 197.
    Dagher R, Cohen M, Williams G, et al. Approval summary: imatinib mesylate in the treatment of metastatic and/or unresectable malignant gastrointestinal stromal tumors. Clin Cancer Res 2002 Oct; 8(10): 3034–8PubMedGoogle Scholar
  198. 198.
    Aplenc R, Blaney SM, Strauss LC, et al. Pediatric phase I trial and pharmacokinetic study of dasatinib: a report from the Children’s Oncology Group Phase I Consortium. J Clin Oncol 2011 Mar 1; 29(7): 839–44PubMedCrossRefGoogle Scholar
  199. 199.
    Dubois SG, Shusterman S, Ingle AM, et al. Phase I and pharmacokinetic study of sunitinib in pediatric patients with refractory solid tumors: a Children’s Oncology Group study. Clin Cancer Res. Epub 2011 Jun 20Google Scholar
  200. 200.
    Desar IM, Burger DM, van Hoesel QG, et al. Pharmacokinetics of sunitinib in an obese patient with a GIST. Ann Oncol 2009 Mar; 20(3): 599–600PubMedCrossRefGoogle Scholar
  201. 201.
    Shirao K, Nishida T, Doi T, et al. Phase I/II study of sunitinib malate in Japanese patients with gastrointestinal stromal tumor after failure of prior treatment with imatinib mesylate. Invest New Drugs 2010 Dec; 28(6): 866–75PubMedCrossRefGoogle Scholar
  202. 202.
    Yin OQ, Gallagher N, Tanaka C, et al. Effects of hepatic impairment on the pharmacokinetics of nilotinib: an open-label, single-dose, parallel-group study. Clin Ther 2009; 31(Pt 2): 2459–69PubMedCrossRefGoogle Scholar
  203. 203.
    Keisner SV, Shah SR. Pazopanib: the newest tyrosine kinase inhibitor for the treatment of advanced or metastatic renal cell carcinoma. Drugs 2011 Mar 5; 71(4): 443–54PubMedGoogle Scholar
  204. 204.
    Franke RM, Sparreboom A. Inhibition of imatinib transport by uremic toxins during renal failure. J Clin Oncol 2008 Sep 1; 26(25): 4226–7PubMedCrossRefGoogle Scholar
  205. 205.
    Judson IR. Imatinib for patients with liver or kidney dysfunction: no need to modify the dose. J Clin Oncol 2008 Feb 1; 26(4): 521–2PubMedCrossRefGoogle Scholar
  206. 206.
    Kennoki T, Kondo T, Kimata N, et al. Clinical results and pharmacokinetics of sorafenib in chronic hemodialysis patients with metastatic renal cell carcinoma in a single center. Jpn J Clin Oncol 2011 May; 41(5): 647–55PubMedCrossRefGoogle Scholar
  207. 207.
    Hilger RA, Richly H, Grubert M, et al. Pharmacokinetics of sorafenib in patients with renal impairment undergoing hemodialysis. Int J Clin Pharmacol Ther 2009 Jan; 47(1): 61–4PubMedGoogle Scholar
  208. 208.
    Ferraris E, Di Cesare P, Lasagna A, et al. Use of sorafenib in two metastatic renal cell cancer patients with end-stage renal impairment undergoing replacement hemodialysis. Tumori 2009 Jul–Aug; 95(4): 542–4PubMedGoogle Scholar
  209. 209.
    Shinsako K, Mizuno T, Terada T, et al. Tolerable sorafenib therapy for a renal cell carcinoma patient with hemodialysis: a case study. Int J Clin Oncol 2010 Oct; 15(5): 512–4PubMedCrossRefGoogle Scholar
  210. 210.
    Adams VR, Leggas M. Sunitinib malate for the treatment of metastatic renal cell carcinoma and gastrointestinal stromal tumors. Clin Ther 2007 Jul; 29(7): 1338–53PubMedCrossRefGoogle Scholar
  211. 211.
    Khosravan R, Toh M, Garrett M, et al. Pharmacokinetics and safety of sunitinib malate in subjects with impaired renal function. J Clin Pharmacol 2010 Apr; 50(4): 472–81PubMedCrossRefGoogle Scholar
  212. 212.
    Izzedine H, Etienne-Grimaldi MC, Renée N, et al. Pharmacokinetics of sunitinib in hemodialysis. Ann Oncol 2009 Jan; 20(1): 190–2PubMedCrossRefGoogle Scholar
  213. 213.
    Lainakis G, Bamias A, Psimenou E, et al. Sunitinib treatment in patients with severe renal function impairment: a report of four cases by the Hellenic Cooperative Oncology Group. Clin Nephrol 2009 Jul; 72(1): 73–8PubMedGoogle Scholar
  214. 214.
    Park S, Lee J, Park SH, et al. Treatment of hemodialyzed patients with sunitinib in renal cell carcinoma. Chemotherapy 2010; 56(6): 485–91PubMedCrossRefGoogle Scholar
  215. 215.
    Leblond FA, Giroux L, Villeneuve JP, et al. Decreased in vivo metabolism of drugs in chronic renal failure. Drug Metab Dispos 2000 Nov; 28(11): 1317–20PubMedGoogle Scholar
  216. 216.
    Dowling TC, Briglia AE, Fink JC, et al. Characterization of hepatic cytochrome p4503A activity in patients with end-stage renal disease. Clin Pharmacol Ther 2003 May; 73(5): 427–34PubMedCrossRefGoogle Scholar
  217. 217.
    Michaud J, Nolin TD, Naud J, et al. Effect of hemodialysis on hepatic cytochrome P450 functional expression. J Pharmacol Sci 2008 Oct; 108(2): 157–63PubMedCrossRefGoogle Scholar
  218. 218.
    Egorin MJ, Shah DD, Christner SM, et al. Effect of a proton pump inhibitor on the pharmacokinetics of imatinib. Br J Clin Pharmacol 2009 Sep; 68(3): 370–4PubMedCrossRefGoogle Scholar
  219. 219.
    Shukla S, Sauna ZE, Ambudkar SV. Evidence for the interaction of imatinib at the transport-substrate site(s) of the multidrug-resistance-linked ABC drug transporters ABCB1 (P-glycoprotein) and ABCG2. Leukemia 2008 Feb; 22(2): 445–7PubMedCrossRefGoogle Scholar
  220. 220.
    Shen T, Kuang YH, Ashby CR, et al. Imatinib and nilotinib reverse multidrug resistance in cancer cells by inhibiting the efflux activity of the MRP7 (ABCC10). PLoS One 2009 Oct 20; 4(10): e7520PubMedCrossRefGoogle Scholar
  221. 221.
    Illmer T, Schaich M, Platzbecker U, et al. P-glycoprotein-mediated drug efflux is a resistance mechanism of chronic myelogenous leukemia cells to treatment with imatinib mesylate. Leukemia 2004 Mar; 18(3): 401–8PubMedCrossRefGoogle Scholar
  222. 222.
    White DL, Saunders VA, Quinn SR, et al. Imatinib increases the intracellular concentration of nilotinib, which may explain the observed synergy between these drugs. Blood 2007 Apr 15; 109(8): 3609–10PubMedCrossRefGoogle Scholar
  223. 223.
    Cohen MH, Williams G, Johnson JR, et al. Approval summary for imatinib mesylate capsules in the treatment of chronic myelogenous leukemia. Clin Cancer Res 2002 May; 8(5): 935–42PubMedGoogle Scholar
  224. 224.
    Reardon DA, Desjardins A, Vredenburgh JJ, et al. Safety and pharmacokinetics of dose-intensive imatinib mesylate plus temozolomide: phase 1 trial in adults with malignant glioma. Neuro Oncol 2008 Jun; 10(3): 330–40PubMedCrossRefGoogle Scholar
  225. 225.
    Bilgi N, Bell K, Ananthakrishnan AN, et al. Imatinib and Panax ginseng: a potential interaction resulting in liver toxicity. Ann Pharmacother 2010 May; 44(5): 926–8PubMedCrossRefGoogle Scholar
  226. 226.
    O’Brien SG, Meinhardt P, Bond E, et al. Effects of imatinib mesylate (STI571, Glivec) on the pharmacokinetics of simvastatin, a cytochrome p450 3A4 substrate, in patients with chronic myeloid leukaemia. Br J Cancer 2003 Nov 17; 89(10): 1855–9PubMedCrossRefGoogle Scholar
  227. 227.
    Watkins PB. The role of cytochromes P-450 in cyclosporine metabolism. J Am Acad Dermatol 1990 Dec; 23: 301–11CrossRefGoogle Scholar
  228. 228.
    Connolly RM, Rudek MA, Garrett-Mayer E, et al. Docetaxel metabolism is not altered by imatinib: findings from an early phase study in metastatic breast cancer. Breast Cancer Res Treat 2011 May; 127(1): 153–62PubMedCrossRefGoogle Scholar
  229. 229.
    Kim DW, Tan EY, Jin Y, et al. Effects of imatinib mesylate on the pharmacokinetics of paracetamol (acetaminophen) in Korean patients with chronic myelogenous leukaemia. Br J Clin Pharmacol 2011 Feb; 71(2): 199–206PubMedCrossRefGoogle Scholar
  230. 230.
    Hegedus C, Ozvegy-Laczka C, Apáti A, et al. Interactions of nilotinib, dasatinib and bosutinib with ABCB1 and ABCG2: implications for altered anti-cancer effects and pharmacological properties. Br J Pharmacol 2009 Oct; 158(4): 1153–64PubMedCrossRefGoogle Scholar
  231. 231.
    Eley T, Varga D, Sanil A, et al. The effects of rifampin on the pharmacokinetics of dasatinib and two metabolites in healthy subjects. AAPS J 2006; 8 (Suppl. 2) [online]. Available from URL: http://www.aapsj.org/abstracts/AM_2006/AAPS2006-003076.pdf [Accessed 2011 Jul 7]
  232. 232.
    Johnson FM, Agrawal S, Burris H, et al. Phase 1 pharmacokinetic and drug-interaction study of dasatinib in patients with advanced solid tumors. Cancer 2010 Mar 15; 116(6): 1582–91PubMedCrossRefGoogle Scholar
  233. 233.
    Singer JB, Shou Y, Giles F, et al. UGT1A1 promoter polymorphism increases risk of nilotinib-induced hyperbilirubinemia. Leukemia 2007 Nov; 21(11): 2311–5PubMedCrossRefGoogle Scholar
  234. 234.
    Fujita K, Sugiyama M, Akiyama Y, et al. The small-molecule tyrosine kinase inhibitor nilotinib is a potent noncompetitive inhibitor of the SN-38 glucuronidation by human UGT1A1. Cancer Chemother Pharmacol 2011 Jan; 67(1): 237–41PubMedCrossRefGoogle Scholar
  235. 235.
    Tiwari AK, Sodani K, Wang SR, et al. Nilotinib (AMN107, Tasigna) reverses multidrug resistance by inhibiting the activity of the ABCB1/Pgp and ABCG2/BCRP/MXR transporters. Biochem Pharmacol 2009 Jul 15; 78(2): 153–61PubMedCrossRefGoogle Scholar
  236. 236.
    Yin OQ, Gallagher N, Fischer D, et al. Effect of the proton pump inhibitor esomeprazole on the oral absorption and pharmacokinetics of nilotinib. J Clin Pharmacol 2010 Aug; 50(8): 960–7PubMedCrossRefGoogle Scholar
  237. 237.
    Yin OQ, Gallagher N, Fischer D, et al. Effects of nilotinib on single-dose warfarin pharmacokinetics and pharmacodynamics: a randomized, single-blind, two-period crossover study in healthy subjects. Clin Drug Investig 2011; 31(3): 169–79PubMedCrossRefGoogle Scholar
  238. 238.
    Goh BC, Reddy NJ, Dandamudi U, et al. An evaluation of the drug interaction potential of pazopanib, an oral vascular endothelial growth factor receptor tyrosine kinase inhibitor, using a modified Cooperstown 5+1 cocktail in patients with advanced solid tumors. Clin Pharmacol Ther 2010 Nov; 88(5): 652–9PubMedCrossRefGoogle Scholar
  239. 239.
    GlaxoSmithKline. An open-label, two-period, fixed-sequence study in healthy volunteers to evaluate the effects of repeat oral dosing of ketoconazole on the pharmacokinetics of a single dose of pazopanib (GW786034) administered as eye drops [study no. MD7110861; online]. Available from URL: http://download.gsk-clinicalstudyregister.com/files/20890.pdf [Accessed 2011 Jun 28]
  240. 240.
    GlaxoSmithKline. An open-label, safety, pharmacokinetic and pharmacodynamic study of multiple doses of GW786034 and lapatinib concomitantly administered in cancer patients [study no. VEG10006; online]. Available from URL: http://download.gsk-clinicalstudyregister.com/files/21151.pdf [Accessed 2011 Jun 28]
  241. 241.
    Tan AR, Dowlati A, Jones SF, et al. Phase I study of pazopanib in combination with weekly paclitaxel in patients with advanced solid tumors. J Clin Oncol 2010; 15(12): 1253–61Google Scholar
  242. 242.
    Flaherty KT, Lathia C, Frye RF, et al. Interaction of sorafenib and cytochrome P450 isoenzymes in patients with advanced melanoma: a phase I/II pharmacokinetic interaction study. Cancer Chemother Pharmacol. Epub 2011 Feb 25Google Scholar
  243. 243.
    Reardon DA, Vredenburgh JJ, Desjardins A, et al. Effect of CYP3A-inducing anti-epileptics on sorafenib exposure: results of a phase II study of sorafenib plus daily temozolomide in adults with recurrent glioblastoma. J Neurooncol 2011 Jan; 101(1): 57–66PubMedCrossRefGoogle Scholar
  244. 244.
    Vaishampayan UN, Burger AM, Sausville EA, et al. Safety, efficacy, pharmacokinetics, and pharmacodynamics of the combination of sorafenib and tanespimycin. Clin Cancer Res 2010 Jul 15; 16(14): 3795–804PubMedCrossRefGoogle Scholar
  245. 245.
    Gomo C, Coriat R, Faivre L, et al. Pharmacokinetic interaction involving sorafenib and the calcium-channel blocker felodipine in a patient with hepatocellular carcinoma. Invest New Drugs. Epub 2010 Aug 13Google Scholar
  246. 246.
    Duran I, Hotté SJ, Hirte H, et al. Phase I targeted combination trial of sorafenib and erlotinib in patients with advanced solid tumors. Clin Cancer Res 2007 Aug 15; 13(16): 4849–57PubMedCrossRefGoogle Scholar
  247. 247.
    Quintela-Fandino M, Le Tourneau C, Duran I, et al. Phase I combination of sorafenib and erlotinib therapy in solid tumors: safety, pharmacokinetic, and pharmacodynamic evaluation from an expansion cohort. Mol Cancer Ther 2010 Mar; 9(3): 751–60PubMedCrossRefGoogle Scholar
  248. 248.
    Adjei AA, Molina JR, Mandrekar SJ, et al. Phase I trial of sorafenib in combination with gefitinib in patients with refractory or recurrent non-small cell lung cancer. Clin Cancer Res 2007 Mar 1; 13(9): 2684–91PubMedCrossRefGoogle Scholar
  249. 249.
    Flaherty KT, Schiller J, Schuchter LM, et al. A phase I trial of the oral, multikinase inhibitor sorafenib in combination with carboplatin and paclitaxel. Clin Cancer Res 2008 Aug 1; 14(15): 4836–42PubMedCrossRefGoogle Scholar
  250. 250.
    Mross K, Steinbild S, Baas F, et al. Drug-drug interaction pharmacokinetic study with the Raf kinase inhibitor (RKI) BAY 43-9006 administered in combination with irinotecan (CPT-11) in patients with solid tumors. Int J Clin Pharmacol Ther 2003 Dec; 41(12): 618–9PubMedGoogle Scholar
  251. 251.
    European Medicines Agency. Nexavar (sorafenib) 200 mg film-coated tablets: summary of product characteristics [online]. Available from URL: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000690/WC500027704.pdf [Accessed 2011 Jun 28]
  252. 252.
    Richly H, Henning BF, Kupsch P, et al. Results of a phase I trial of sorafenib (BAY 43-9006) in combination with doxorubicin in patients with refractory solid tumors. Ann Oncol 2006 May; 17(5): 866–73PubMedCrossRefGoogle Scholar
  253. 253.
    Brendel E, Ludwig M, Lathia C, et al. Pharmacokinetic results of a phase I trial of sorafenib in combination with dacarbazine in patients with advanced solid tumors. Cancer Chemother Pharmacol 2011 Jul; 68(1): 53–61PubMedCrossRefGoogle Scholar
  254. 254.
    Escudier B, Lassau N, Angevin E, et al. Phase I trial of sorafenib in combination with IFN alpha-2a in patients with unresectable and/or metastatic renal cell carcinoma or malignant melanoma. Clin Cancer Res 2007 Mar 15; 13(6): 1801–9PubMedCrossRefGoogle Scholar
  255. 255.
    Niwakawa M, Hashine K, Yamaguchi R, et al. Phase I trial of sorafenib in combination with interferon-alpha in Japanese patients with unresectable or metastatic renal cell carcinoma. Invest New Drugs. Epub 2011 Jan 19Google Scholar
  256. 256.
    Kupsch P, Henning BF, Passarge K, et al. Results of a phase I trial of sorafenib (BAY 43-9006) in combination with oxaliplatin in patients with refractory solid tumors, including colorectal cancer. Clin Colorectal Cancer 2005 Sep; 5(3): 188–96PubMedCrossRefGoogle Scholar
  257. 257.
    Siu LL, Awada A, Takimoto CH, et al. Phase I trial of sorafenib and gemcitabine in advanced solid tumors with an expanded cohort in advanced pancreatic cancer. Clin Cancer Res 2006 Jan 1; 12(1): 144–51PubMedCrossRefGoogle Scholar
  258. 258.
    Infante JR, Jones SF, Bendell JC, et al. A drug interaction study evaluating the pharmacokinetics and toxicity of sorafenib in combination with capecitabine. Cancer Chemother Pharmacol. Epub 2011 May 28Google Scholar
  259. 259.
    Awada A, Gil T, Whenham N, et al. Safety and pharmacokinetics of sorafenib combined with capecitabine in patients with advanced solid tumors: results of a phase 1 trial. J Clin Pharmacol. Epub 2011 Jan 5Google Scholar
  260. 260.
    Desar IM, Timmer-Bonte JN, Burger DM, et al. A phase I dose-escalation study to evaluate safety and tolerability of sorafenib combined with sirolimus in patients with advanced solid cancer. Br J Cancer 2010 Nov 23; 103(11): 1637–43PubMedCrossRefGoogle Scholar
  261. 261.
    Bello C, Houk B, Sherman L, et al. The effect of rifampin on the pharmacokinetics of sunitinib malate (SU11248) in Caucasian and Japanese populations [abstract no. 430]. 13th European Cancer Conference; 2005 Oct 30–Nov 3; ParisGoogle Scholar
  262. 262.
    Hamberg P, Steeghs N, Loos WJ, et al. Decreased exposure to sunitinib due to concomitant administration of ifosfamide: results of a phase I and pharmacokinetic study on the combination of sunitiniband ifosfamide in patients with advanced solid malignancies. Br J Cancer 2010 Jun 8; 102(12): 1699–706PubMedCrossRefGoogle Scholar
  263. 263.
    Van Erp NP, Baker SD, Zandvliet AS, et al. Marginal increase of sunitinib exposure by grapefruit juice. Cancer Chemother Pharmacol 2011 Mar; 67(3): 695–703PubMedCrossRefGoogle Scholar
  264. 264.
    Motzer RJ, Hudes GR, Ginsberg MS, et al. Phase I/II trial of sunitinib plus gefitinib in patients with metastatic renal cell carcinoma. Am J Clin Oncol 2010 Dec; 33(6): 614–8PubMedCrossRefGoogle Scholar
  265. 265.
    Kozloff M, Chuang E, Starr A, et al. An exploratory study of sunitinib plus paclitaxel as first-line treatment for patients with advanced breast cancer. Ann Oncol 2010 Jul; 21(7): 1436–41PubMedCrossRefGoogle Scholar
  266. 266.
    Heath EI, Blumenschein Jr GR, Cohen RB, et al. Sunitinib in combination with paclitaxel plus carboplatin in patients with advanced solid tumors: phase I study results. Cancer Chemother Pharmacol. Epub 2010 Dec 8Google Scholar
  267. 267.
    Robert F, Sandler A, Schiller JH, et al. Sunitinib in combination with docetaxel in patients with advanced solid tumors: a phase I dose-escalation study. Cancer Chemother Pharmacol 2010 Sep; 66(4): 669–80PubMedCrossRefGoogle Scholar
  268. 268.
    de Jonge MJ, Dumez H, Kitzen JJ, et al. Phase I safety and pharmacokinetic study of SU-014813 in combination with docetaxel in patients with advanced solid tumours. Eur J Cancer 2011 Jun; 47(9): 1328–35PubMedCrossRefGoogle Scholar
  269. 269.
    Boven E, Massard C, Armand JP, et al. A phase I, dose-finding study of sunitinib in combination with irinotecan in patients with advanced solid tumours. Br J Cancer 2010 Sep 28; 103(7): 993–1000PubMedCrossRefGoogle Scholar
  270. 270.
    Reck M, Frickhofen N, Cedres S, et al. Sunitinib in combination with gemcitabine plus cisplatin for advanced non-small cell lung cancer: a phase I dose-escalation study. Lung Cancer 2010 Nov; 70(2): 180–7PubMedCrossRefGoogle Scholar
  271. 271.
    Okamoto I, Shimizu T, Miyazaki M, et al. Feasibility study of two schedules of sunitinib in combination with pemetrexed in patients with advanced solid tumors. Invest New Drugs. Epub 2010 Oct 20Google Scholar
  272. 272.
    Sweeney CJ, Chiorean EG, Verschraegen CF, et al. A phase I study of sunitinib plus capecitabine in patients with advanced solid tumors. J Clin Oncol 2010 Oct 10; 28(29): 4513–20PubMedCrossRefGoogle Scholar
  273. 273.
    Cornely OA, Böhme A, Buchheidt D, et al. Primary prophylaxis of invasive fungal infections in patients with hematologic malignancies: recommendations of the Infectious Diseases Working Party of the German Society for Haematology and Oncology. Haematologica 2009 Jan; 94(1): 113–22PubMedCrossRefGoogle Scholar
  274. 274.
    Rochat B. Role of cytochrome P450 activity in the fate of anticancer agents and in drug resistance: focus on tamoxifen, paclitaxel and imatinib metabolism. Clin Pharmacokinet 2005; 44(4): 349–66PubMedCrossRefGoogle Scholar
  275. 275.
    Hu S, Franke RM, Filipski KK, et al. Interaction of imatinib with human organic ion carriers. Clin Cancer Res 2008 May 15; 14: 3141–8PubMedCrossRefGoogle Scholar
  276. 276.
    Eechoute K, Franke RM, Loos WJ, et al. Environmental and genetic factors affecting transport of imatinib by OATP1A2. Clin Pharmacol Ther 2011 Jun; 89(6): 816–20PubMedCrossRefGoogle Scholar
  277. 277.
    Gardner ER, Burger H, van Schaik RH, et al. Association of enzyme and transporter genotypes with the pharmacokinetics of imatinib. Clin Pharmacol Ther 2006 Aug; 80(2): 192–201PubMedCrossRefGoogle Scholar
  278. 278.
    Yamakawa Y, Hamada A, Shuto T, et al. Pharmacokinetic impact of SLCO1A2 polymorphisms on imatinib disposition in patients with chronic myeloid leukemia. Clin Pharmacol Ther 2011 Jul; 90(1): 157–63PubMedCrossRefGoogle Scholar
  279. 279.
    Yamakawa Y, Hamada A, Nakashima R, et al. Association of genetic polymorphisms in the influx transporter SLCO1B3 and the efflux transporter ABCB1 with imatinib pharmacokinetics in patients with chronic myeloid leukemia. Ther Drug Monit 2011 Apr; 33(2): 244–50PubMedGoogle Scholar
  280. 280.
    Dulucq S, Bouchet S, Turcq B, et al. Multidrug resistance gene (MDR1) polymorphisms are associated with major molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood 2008 Sep 1; 112(5): 2024–7PubMedCrossRefGoogle Scholar
  281. 281.
    Hiwase DK, Saunders V, Hewett D, et al. Dasatinib cellular uptake and efflux in chronic myeloid leukemia cells: therapeutic implications. Clin Cancer Res 2008 Jun 15; 14(12): 3881–8PubMedCrossRefGoogle Scholar
  282. 282.
    Xu CF, Reck BH, Xue Z, et al. Pazopanib-induced hyperbilirubinemia is associated with Gilbert’s syndrome UGT1A1 polymorphism. Br J Cancer 2010 Apr 27; 102(9): 1371–7PubMedCrossRefGoogle Scholar
  283. 283.
    Van Erp NP, Eechoute K, van der Veldt AA, et al. Pharmacogenetic pathway analysis for determination of sunitinib-induced toxicity. J Clin Oncol 2009 Sep 10; 27(26): 4406–12PubMedCrossRefGoogle Scholar
  284. 284.
    Van der Veldt AA, Eechoute K, Gelderblom H, et al. Genetic polymorphisms associated with a prolonged progression-free survival in patients with metastatic renal cell cancer treated with sunitinib. Clin Cancer Res 2011 Feb 1; 17(3): 620–9PubMedCrossRefGoogle Scholar
  285. 285.
    Jabbour E, Cortes JE, Kantarjian HM. Suboptimal response to or failure of imatinib treatment for chronic myeloid leukemia: what is the optimal strategy? Mayo Clin Proc 2009 Feb; 84(2): 161–9PubMedCrossRefGoogle Scholar
  286. 286.
    Picard S, Titier K, Etienne G, et al. Trough imatinib plasma levels are associated with both cytogenetic and molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood 2007 Apr 15; 109(8): 3496–9PubMedCrossRefGoogle Scholar
  287. 287.
    Sohn SK, Oh SJ, Kim BS, et al. Trough plasma imatinib levels are correlated with optimal cytogenetic responses at 6 months after treatment with standard dose of imatinib in newly diagnosed chronic myeloid leukemia. Leuk Lymphoma 2011 Jun; 52(6): 1024–9PubMedCrossRefGoogle Scholar
  288. 288.
    Von Mehren M, Widmer N. Correlations between imatinib pharmacokinetics, pharmacodynamics, adherence, and clinical response in advanced metastatic gastrointestinal stromal tumor (GIST): an emerging role for drug blood level testing? Cancer Treat Rev 2011 Jun; 37(4): 291–9CrossRefGoogle Scholar
  289. 289.
    Champagne MA, Fu CH, Chang M, et al. Higher dose imatinib for children with de novo chronic phase chronic myelogenous leukemia: a report from the Children’s Oncology Group. Pediatr Blood Cancer 2011 Jul 15; 57(1): 56–62PubMedCrossRefGoogle Scholar
  290. 290.
    Condorelli F, Genazzani AA. Dasatinib: is it all in the dose? BioDrugs 2010 Jun; 24(3): 157–63PubMedCrossRefGoogle Scholar
  291. 291.
    Demetri GD, Heinrich MC, Fletcher JA, et al. Molecular target modulation, imaging, and clinical evaluation of gastrointestinal stromal tumor patients treated with sunitinib malate after imatinib failure. Clin Cancer Res 2009 Sep 15; 15(18): 5902–9PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2011

Authors and Affiliations

  • Paola Di Gion
    • 1
  • Friederike Kanefendt
    • 2
  • Andreas Lindauer
    • 2
  • Matthias Scheffler
    • 3
  • Oxana Doroshyenko
    • 1
  • Uwe Fuhr
    • 1
  • Jürgen Wolf
    • 3
  • Ulrich Jaehde
    • 2
  1. 1.Clinical Pharmacology Unit, Department of PharmacologyUniversity Hospital, University of CologneCologneGermany
  2. 2.Department of Clinical Pharmacy, Pharmaceutical FacultyUniversity of BonnBonnGermany
  3. 3.Lung Cancer Group Cologne, 1st Department of Internal MedicineUniversity Hospital, University of CologneCologneGermany
  4. 4.Institut für Pharmakologie, Klinische PharmakologieUniversität zu KölnKölnGermany

Personalised recommendations