Advertisement

Clinical Pharmacokinetics

, Volume 50, Issue 8, pp 493–503 | Cite as

A Reappraisal of Current Dosing Strategies for Intravenous Fosfomycin in Children and Neonates

  • Friederike Traunmüller
  • Martin Popovic
  • Karl-Heinz Konz
  • Patrick Vavken
  • Andreas Leithner
  • Christian Joukhadar
Review Article

Abstract

The rising incidence of multi-drug resistant bacterial pathogens has renewed interest in the long-known antibacterial fosfomycin. Not least because of its low toxicological potential, there is good clinical experience with intravenous fosfomycin for various Gram-positive and Gram-negative infections in the treatment of children and neonates. However, the current dosing recommendations for intravenous fosfomycin vary widely in paediatric patients.

In the present review, we summarized available plasma pharmacokinetic data derived from neonates or children following intravenous administration of fosfomycin. Subsequently, we used this information for recalculation of different dosing strategies and simulated a variety of clinically applied dosing regimens. The percentage of time above the minimal inhibitory concentration (T>MIC) was calculated for each dosing strategy, as this pharmacokinetic-pharmacodynamic parameter was shown to be most predictive of antimicrobial and clinical success of fosfomycin treatment.

Our data corroborate the current practice of selecting the dosage of intravenous fosfomycin primarily on the basis of bodyweight and age in paediatric patients. As with other ‘time-dependent’ antibacterials, a dosing interval of 6–8 hours should be preferred over 12 hours except for immature neonates. Given a T>MIC target of 40–70%, currently recommended dosing strategies appear to be insufficient in children aged 1–12 years, if pathogens with MICs of ±32mg/L are suspected and subjects are presenting with normal renal function. Likewise, the lowest recommended daily dose for neonates and infants (aged up to 12 months) of 100 mg/kg body weight of fosfomycin should be considered only for pre-term neonates with a postmenstrual age below 40 weeks.

Keywords

Fosfomycin Plasma Concentration Data Interstitial Space Fluid Effective Target Site Concentration Apparent Terminal Elimination Rate Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We very much appreciate Dieter Steinort’s personal input and significant dedication to make this interdisciplinary article possible. He is a consultant for J&P Medical Research Ltd (Vienna, Austria).

Transparency declarations: J&P Medical Research Ltd is an international independent life-science research institute, basically operating according to the public-private-partnership concept. C. Joukhadar is the managing director of J&P Medical Research Ltd, owns 100% options, and is also a consultant for pharmaceutical companies, including Sandoz and InfectoPharm, two manufacturers of fosfomycin. F. Traunmüller is an employee of J&P Medical Research Ltd. All other authors declare that they have no relationship with companies that make products relevant to the manuscript, and that they have no conflicts of interest with the present work. No funding was received for the present article.

List of authors and contributions: Friederike Traunmüller — primary author of the manuscript; Martin Popovic — pharmacokinetic modelling of data; Karl-Heinz Konz — substantive suggestions for revision; Patrick Vavken — co-author of the manuscript and figures; Andreas Leithner — proofreading and substantial revision of the manuscript; Christian Joukhadar — planning of the article, interpretation of data, approval of the final version of the manuscript and corresponding author.

References

  1. 1.
    Klevens RM, Morrisson MA, Nadle J, et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 2007; 298(15): 1763–71PubMedCrossRefGoogle Scholar
  2. 2.
    Jones RN, Jacobs MR, Sader HS. Evolving trends in Streptococcus pneumoniae resistance: implications for therapy of community-acquired bacterial pneumonia. Int J Antimicrob Agents 2010 Sep; 36(3): 197–204PubMedCrossRefGoogle Scholar
  3. 3.
    Kahan FM, Kahan JS, Cassidy PJ, et al. The mechanism of action of fosfomycin (phosphonomycin). Ann N Y Acad Sci 1974; 235: 364–86PubMedCrossRefGoogle Scholar
  4. 4.
    Popovic M, Steinort D, Pillai S, et al. Fosfomycin: an old, new friend?. Eur J Clin Microbiol Infect Dis 2010; 29: 127–42PubMedCrossRefGoogle Scholar
  5. 5.
    Sandoz GmbH. Fosfomycin “Sandoz” lg i.v.-Trockensubstanz zur Infusionsbereitung: summary of product characteristics [in German; online]. Available from URL: http://www.pharmazie.com/graphic/A/07/0-17307.pdf [Accessed 2011 May 5]
  6. 6.
    Daza R, Gutierrez J, Piedrola G, et al. Antibiotic susceptibility of bacterial strain isolated from patients with community-acquired urinary tract infections. Int J Antimicrob Agents 2001; 18: 211–5PubMedCrossRefGoogle Scholar
  7. 7.
    Bert F, Bruneau B, Lambert-Zechovsky N, et al. Epidemiological studies of the susceptibility of Pseudomonas aeruginosa to antibiotics [in French]. Pathol Biol (Paris) 1994; 42: 491–7Google Scholar
  8. 8.
    Witte W. Zur MRSA-Situation in Deutschland 2005 und 2006: Situationsbericht aus dem Nationalen Referenzzentrum für Staphylokokken. Epidemiologisches Bulletin 2007 Feb 9; (6): 41–6 [online]. Available from URL: http://www.rki.de/cln_109/nn_264978/DE/Content/Infekt/EpidBull/Archiv/2007/06__07,templateId=raw,property=publicationFile.pdf/06_07.pdf[Accessed 2011 May 31]Google Scholar
  9. 9.
    Falagas ME, Maraki S, Karageorgopoulos DE, et al. Antimicrobial susceptibility of Gram-positive non-urinary isolates to fosfomycin. Int J Antimicrob Agents 2010; 35: 497–9PubMedCrossRefGoogle Scholar
  10. 10.
    Falagas ME, Kastoris AC, Kapaskelis AM, et al. Fosfomycin for the treatment of multidrug-resistant, including extended-spectrum b-lactamase producing, Enterobacteriaceae infections: a systematic review. Lancet Infect Dis 2010; 10: 43–50PubMedCrossRefGoogle Scholar
  11. 11.
    Corti N, Sennhauser FH, Stauffer UG, et al. Fosfomycin in the initial treatment of acute haematogenous osteomyelitis. Arch Dis Child 2003; 88: 512–6PubMedCrossRefGoogle Scholar
  12. 12.
    Baquero F, Hortelano JG, Navarro M, et al. Antibiotherapy of Serratia marcescens septicemia in children. Chemotherapy 1977; 23 (Suppl. 1): 416–22PubMedCrossRefGoogle Scholar
  13. 13.
    Kirby WMM. Pharmacokinetics of fosfomycin. Chemotherapy 1977; 23: 141–51PubMedCrossRefGoogle Scholar
  14. 14.
    Frossard M, Joukhadar C, Erovic B, et al. Distribution and antimicrobial activity of fosfomycin in the interstitial fluid of human soft tissues. Antimicrob Agents Chemother 2000; 44(10): 2728–32PubMedCrossRefGoogle Scholar
  15. 15.
    Joukhadar C, Klein N, Dittrich P, et al. Target site penetration of fosfomycin in critically ill patients. J Antimicrob Chemother 2003; 51: 1247–52PubMedCrossRefGoogle Scholar
  16. 16.
    Legat FJ, Maier A, Dittrich P, et al. Penetration of fosfomycin into inflammatory lesions in patients with cellulitis and diabetic foot syndrome. Antimicrob Agents Chemother 2003 Jan; 47(1): 371–4PubMedCrossRefGoogle Scholar
  17. 17.
    Matzi V, Lindenmann J, Porubsky C, et al. Extracellular concentrations of fosfomycin in lung tissue of septic patients. J Antimicrob Chemother 2010; 65: 995–8PubMedCrossRefGoogle Scholar
  18. 18.
    Barbour A, Scaglione F, Derendorf H. Class-dependent relevance of tissue distribution in the interpretation of anti-infective pharmacokinetic-pharma-codynamic indices. Int J Antimicrob Agents 2010; 35: 431–8PubMedCrossRefGoogle Scholar
  19. 19.
    Kumon H, Ono N, Iida M, et al. Combination effect of fosfomycin and ofloxacin against Pseudomonas aeruginosa growing in a biofilm. Antimicrob Agents Chemother 1995; 39(5): 1038–44PubMedCrossRefGoogle Scholar
  20. 20.
    Grif K, Dierich MP, Pfaller K, et al. In vitro activity of fosfomycin in combination with various antistaphylococcal substances. J Antimicrob Chemother 2001; 48: 209–17PubMedCrossRefGoogle Scholar
  21. 21.
    Pfausler B, Spiss H, Dittrich P, et al. Concentrations of fosfomycin in the cerebrospinal fluid of neurointensive care patients with ventriculostomy-associated ventriculitis. J Antimicrob Chemother 2004; 53: 848–52PubMedCrossRefGoogle Scholar
  22. 22.
    Zeitlinger MA, Marsik C, Georgopoulos A, et al. Target site bacterial killing of cefpirome and fosfomycin in critically ill patients. Int J Antimicrob Agents 2003; 21: 562–7PubMedCrossRefGoogle Scholar
  23. 23.
    Frère JM. Proceedings: the molecular mechanism of action of beta-lactam antibacterials: the solution of an apparent paradox. Arch Int Physiol Biochim 1975; 83: 184–6PubMedCrossRefGoogle Scholar
  24. 24.
    Craig WA. Interrelationship between pharmacokinetics and pharmaco-dynamics in determining dosage regimens for broad-spectrum cephalospor-ins. Diagn Microbiol Infect Dis 1995; 22: 89–96PubMedCrossRefGoogle Scholar
  25. 25.
    Scaglione F, Paraboni L. Pharmacokinetics/pharmacodynamics of antibacterials in the intensive care unit: setting appropriate dosage regimens. Int J Antimicrob Agents 2008; 32: 294–301PubMedCrossRefGoogle Scholar
  26. 26.
    LLorens J, Ley G, Forés A, et al. Acute infantile pneumonopathies treated with fosfomycin. Chemotherapy 1977; 23 (Suppl. 1): 315–23PubMedCrossRefGoogle Scholar
  27. 27.
    Aoyagi S, Kawara T, Mizoguchi T, et al. Methicillin-resistant Staphylococcus aureus endocarditis following patch closure of a ventricular septal defect: report of a case. Jpn J Surg 1994; 24: 644–7Google Scholar
  28. 28.
    Infectopharm Arzneimittel und Consilium GmbH. Infectofos™ 2g/3g/5g/8g: summary of product characteristics [in German]. Heppenheim: Infectopharm Arzneimittel und Consilium GmbH, 2009 JunGoogle Scholar
  29. 29.
    Laboratorios Busto. Solufos™ intravenoso 4g 1 inyectable: summary of product characteristics [in Spanish; online]. Available from URL: http://prospec tos.org/prospectos/solufos-intravenoso-4g-1-inyectable/ [Accessed 2011 May 5]
  30. 30.
    Sanofi-Aventis France. Fosfocine™ 4g IV, poudre et solution préparation injectable pour perfusion: summary of product characteristics [in French; online]. Available from URL: http://www.therapeutique.info/rcp.php?code=4342 [Accessed 2011 May 5]
  31. 31.
    Iwai N, Nakamura H, Miyazu M, et al. A study of the absorption and excretion of fosfomycin in children. Jpn J Antibiot 1991 Mar; 44(3): 345–56PubMedGoogle Scholar
  32. 32.
    Guggenbichler JP, Kienel G, Frisch H. Fosfomycin, ein neues Antibiotikum. Padiatr Padol 1978; 13: 429–36PubMedGoogle Scholar
  33. 33.
    Molina MA, Olay T, Quero J. Pharmacodynamic data on fosfomycin in underweight infants during the neonatal period. Chemotherapy 1977; 23 (Suppl. 1): 217–22PubMedCrossRefGoogle Scholar
  34. 34.
    Gabrielsson J, Weiner D. Pharmacokinetic and pharmacodynamic data analysis: concepts and applications. 3rd ed. Stockholm: Apotekarsocieteten, 2000Google Scholar
  35. 35.
    Goto S. Fosfomycin, antimicrobial activity in vitro and in vivo. Chemotherapy 1977; 23 Suppl. 1: 63–74PubMedCrossRefGoogle Scholar
  36. 36.
    Toutain PL, Bousquet-Mélou A. Plasma terminal half-life. J Vet Pharmacol Ther 2004; 27: 427–39PubMedCrossRefGoogle Scholar
  37. 37.
    Bogdanovich T, Ednie LM, Shapiro S, et al. Antistaphylococcal activity of ceftobiprole, a new broad-spectrum cephalosporin. Antimicrob Agents Chemother 2005 Oct; 49(10): 4210–9PubMedCrossRefGoogle Scholar
  38. 38.
    Allerberger F, Klare I. In-vitro activity of fosfomycin against vancomycin-resistant enterococci. J Antimicrob Chemother 1999; 43: 211–7PubMedCrossRefGoogle Scholar
  39. 39.
    Schito GC, Naber KG, Botto H, et al. The ARESC study: an international survey on the antimicrobial resistance of pathogens involved in uncomplicated urinary tract infections. Int J Antimicrob Agents 2009; 34: 497–513CrossRefGoogle Scholar
  40. 40.
    Alcorn J, McNamara PJ. Pharmacokinetics in the newborn. Adv Drug Del Rev 2003; 55: 667–86CrossRefGoogle Scholar
  41. 41.
    Galaske RG. Renal functional maturation: renal handling of proteins by mature and immature newborns. Eur J Pediatr 1986; 145: 368–71PubMedCrossRefGoogle Scholar
  42. 42.
    Atiyeh BA, Dabbagh SS, Gruskin AB. Evaluation of renal function during childhood. Pediatr Rev 1996; 17: 175–80PubMedCrossRefGoogle Scholar
  43. 43.
    Rhodin MM, Anderson BJ, Peters AM, et al. Human renal function maturation: a quantitative description using weight and postmenstrual age. Pediatr Nephrol 2009; 24: 67–76PubMedCrossRefGoogle Scholar
  44. 44.
    Olavarría F, Dölz H, Krause S, et al. Influence of gestational age and postnatal kidney maturation on the kinetics of gentamicin. Rev Chil Pediatr 1990 Mar-Apr; 61(2): 86–90PubMedCrossRefGoogle Scholar
  45. 45.
    American Academy of Pediatrics. Policy statement: age terminology during the neonatal period. Pediatrics 2004; 114: 1362–4CrossRefGoogle Scholar
  46. 46.
    European Committee on Antimicrobial Susceptibility Testing. Clinical breakpoints [online]. Available from URL: http://www.eucast.org/clinical_breakpoints/ [Accessed 2011 May 4]
  47. 47.
    Members of the SFM Antibiogram Committee. Comité de l’Antibiogramme de la Société Française de Microbiologie report 2003. Int J Antimicrob Agents 2003; 21: 364–91CrossRefGoogle Scholar
  48. 48.
    Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing: eighteenth informational supplement [document reference M100-S18; online]. Available from URL: http://www.clsi.org [Accessed 2011 Apr 4]
  49. 49.
    Suzuki S, Murayama Y, Sugiyama E, et al. Dose estimation for renal-excretion drugs in neonates and infants based on physiological development of renal function. Yakugaku Zhassi 2009; 129(7): 829–42CrossRefGoogle Scholar
  50. 50.
    Fernandez Lastra C, Mariño EL, Dominguez-Gil A, et al. The influence of uremia on the accessibility of phosphomycin into interstitial tissue fluid. Eur J Clin Pharmacol 1983; 25: 333–8PubMedCrossRefGoogle Scholar
  51. 51.
    Al-Dahhan J, Haycock GB, Chantler C, et al. Sodium homeostasis in term and preterm neonates. Arch Dis Child 1983; 58: 335–42PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2011

Authors and Affiliations

  • Friederike Traunmüller
    • 1
  • Martin Popovic
    • 1
    • 2
  • Karl-Heinz Konz
    • 3
  • Patrick Vavken
    • 4
    • 5
  • Andreas Leithner
    • 6
  • Christian Joukhadar
    • 1
    • 5
    • 7
  1. 1.J&P Medical Research LtdViennaAustria
  2. 2.Department of Radiology, Division of Interventional and Cardiovascular RadiologyMedical University of ViennaViennaAustria
  3. 3.Department of Angiology and DiabetologyHospital St Kamillus der Kliniken Maria HilfMönchengladbachGermany
  4. 4.Department of Orthopedic SurgeryChildren’s HospitalBostonUSA
  5. 5.Harvard Medical SchoolBostonUSA
  6. 6.Department of Orthopedic SurgeryMedical University of GrazGrazAustria
  7. 7.Beth Israel Deaconess Medical CenterBostonUSA

Personalised recommendations