Advertisement

Pediatric Drugs

, Volume 13, Issue 6, pp 357–370 | Cite as

Medical Management of Chronic Liver Diseases in Children (Part I)

Focus on Curable or Potentially Curable Diseases
  • Mortada H. F. El-ShabrawiEmail author
  • Naglaa M. Kamal
Review Article

Abstract

The management of children with chronic liver disease (CLD) mandates a multidisciplinary approach. CLDs can be classified into ‘potentially’ curable, treatable non-curable, and end-stage diseases. Goals pertaining to the management of CLDs can be divided into prevention or minimization of progressive liver damage in curable CLD by treating the primary cause; prevention or control of complications in treatable CLD; and prediction of the outcome in end-stage CLD in order to deliver definitive therapy by surgical procedures, including liver transplantation.

Curative, specific therapies aimed at the primary causes of CLDs are, if possible, best considered by a pediatric hepatologist. Medical management of CLDs in children will be reviewed in two parts, with part I (this article) specifically focusing on ‘potentially’ curable CLDs.

Dietary modification is the cornerstone of management for galactosemia, hereditary fructose intolerance, and certain glycogen storage diseases, as well as non-alcoholic steatohepatitis. It is also essential in tyrosinemia, in addition to nitisinone [2-(nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione] therapy, as well as in Wilson disease along with copper-chelating agents such as D-penicillamine, triethylenetetramine dihydrochloride, and ammonium tetrathiomolybdate. Zinc and antioxidants are adjuvant drugs in Wilson disease. New advances in chronic viral hepatitis have been made with the advent of oral antivirals. In children, currently available drugs for the treatment of chronic hepatitis B virus infection are standard interferon (IFN)-α-2, pegylated IFN-α-2 (PG-IFN), and lamivudine. In adults, adefovir and entecavir have also been licensed, whereas telbivudine, emtricitabine, tenofovir disoproxil fumarate, clevudine, and thymosin α-1 are currently undergoing clinical testing. For chronic hepatitis C virus infection, the most accepted treatment is PG-IFN plus ribavirin. Corticosteroids, with or without azathioprine, remain the basic strategy for inducing remission in autoimmune hepatitis. Ciclosporin (cyclosporine) and other immune suppressants may be used for patients who do not achieve remission, or who have significant side effects, with corticosteroid/azathioprine therapy.

The above therapies can prevent, or at least minimize, progression of liver damage, particularly if started early, leading to an almost normal quality of life in affected children.

Keywords

NASH Orthotopic Liver Transplantation Glycogen Storage Disease Silibinin Wilson Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest directly relevant to the content of this review.

References

  1. 1.
    El-Shabrawi MHF, Kamal NM. Medical management of chronic liver diseases (CLD) in children (part II): focus on the complications of CLD, and CLD that require special considerations. Pediatr Drugs 2011; 13(6): 371–83Google Scholar
  2. 2.
    Elsas LJ. Galactosemia. In: Pagon RA, Bird TD, Dolan CR, et al., editors. GeneReviews. Seattle (WA): University of Washington, Seattle, 1993–2000 Feb 4 [updated 2010 Oct 26]Google Scholar
  3. 3.
    Elsas LJ. Prenatal diagnosis of galactose-1-phosphate uridyltransferase (GALT)-deficient galactosemia. Prenat Diagn 2001; 21: 302–3PubMedGoogle Scholar
  4. 4.
    Zlatunich CO, Packman S. Galactosaemia: early treatment with an elemental formula. J Inherit Metab Dis 2005; 28: 163–8PubMedGoogle Scholar
  5. 5.
    Berry GT, Moate PJ, Reynolds RA, et al. The rate of de novo galactose synthesis in patients with galactose-1-phosphate uridyltransferase deficiency. Mol Genet Metab 2004; 81: 22–30PubMedGoogle Scholar
  6. 6.
    Bosch AM, Bakker HD, Wenniger-Prick LJ, et al. High tolerance for oral galactose in classical galactosaemia: dietary implications. Arch Dis Child 2004; 89: 1034–6PubMedGoogle Scholar
  7. 7.
    Schadewaldt P, Kamalanathan L, Hammen HW, et al. Age dependence of endogenous galactose formation in Q188R homozygous galactosemic patients. Mol Genet Metab 2004; 81: 31–44PubMedGoogle Scholar
  8. 8.
    Elsas L, Acosta P. Nutritional support of inherited metabolic disease. In: Shils M, Olson J, Shike M, et al., editors. Modern nutrition in health and disease. 9th ed. Baltimore (MD): Williams & Wilkins, 1998: 1003–56Google Scholar
  9. 9.
    Elsas LJ, Acosta PB. Inherited metabolic disease: aminoacids, organic acids and galactose. In: Shils ME, Shike M, Ross AC, et al., editors. Modern nutrition in health and disease. 10th ed. Philadelphia (PA): Lippincott Williams & Wilkins, 2006: 909–59Google Scholar
  10. 10.
    Hardy S, Kleinman RE. Cirrhosis and chronic liver failure. In: Suchy FJ, Sokol RJ, Balistreri WF, editors. Liver disease in children. 3rd ed. New York: Cambridge University Press, 2007: 97–137Google Scholar
  11. 11.
    Panis B, Vermeer C, van Kroonenburgh MJ, et al. Effect of calcium, vitamins K1 and D3 on bone in galactosemia. Bone 2006; 39: 1123–9PubMedGoogle Scholar
  12. 12.
    Menezo YJ, Lescaille M, Nicollet B, et al. Pregnancy and delivery after stimulation with rFSH of a galatosemia patient suffering hypergonadotropic hypogonadism: case report. J Assist Reprod Genet 2004; 21: 89–90PubMedGoogle Scholar
  13. 13.
    Rubio-Gozalbo M, Gubbels C, Bakker J, et al. Gonadal function in male and female patients with classic galactosemia. Hum Reprod Update 2010; 16: 177–88PubMedGoogle Scholar
  14. 14.
    Tang M, Wierenga K, Elsas LJ, et al. Molecular and biochemical characterization of human galactokinase and its small molecule inhibitors. Chem Biol Interact 2010 Dec 5; 188(3): 376–85PubMedGoogle Scholar
  15. 15.
    Ghishan FK, Zawaideh M. Inborn errors of carbohydrate metabolism. In: Suchy FJ, Sokol RJ, Balistreri WF, editors. Liver disease in children. 3rd ed. New York: Cambridge University Press, 2007: 595–625Google Scholar
  16. 16.
    Nordlie RC. Fine tuning of blood glucose concentrations. Trends Biochem Sci 1985; 10: 70–5Google Scholar
  17. 17.
    Chen YT. Glycogen storage diseases. In: Scriver CR, Beaudet AL, Sly WS, et al., editors. The metabolic and molecular bases of inherited disease. 8th ed. New York: McGraw-Hill, 2001: 1521–51Google Scholar
  18. 18.
    Chen YT. Glycogen storage disease and other inherited disorders of carbohydrate metabolism. In: Kasper DL, Braunwald E, Fauci A, et al., editors. Harrison’s principles of internal medicine. 16th ed. New York: McGraw-Hill, 2004Google Scholar
  19. 19.
    Chen YT, Bali DS. Glycogen storage diseases. In: Fuchs J, Podda M, editors. Encyclopedia of diagnostic genomics and proteomics. New York: Marcel Dekker Inc, 2004: 543–9Google Scholar
  20. 20.
    Matern D, Seydewitz HH, Bali D, et al. Glycogen storage disease type I: diagnosis and phenotype/genotype correlation. Eur J Pediatr 2002; 161Suppl. 1: S10–9PubMedGoogle Scholar
  21. 21.
    Hiraiwa H, Pan CJ, Lin B, et al. Inactivation of the glucose 6-phosphate transporter causes glycogen storage disease type 1b. J Biol Chem 1999; 274: 5532–6PubMedGoogle Scholar
  22. 22.
    Rake JP, Visser G, Labrune P, et al. Guidelines for management of glycogen storage disease type I: European Study on Glycogen Storage Disease Type I (ESGSD I). Eur J Pediatr 2002; 161: 112–9Google Scholar
  23. 23.
    Rake JP, Visser G, Labrune P, et al. Glycogen storage disease type I: diagnosis, management, clinical course and outcome. Results of the European Study on Glycogen Storage Disease Type I (ESGSD I). Eur J Pediatr 2002; 161Suppl. 1: S20–34PubMedGoogle Scholar
  24. 24.
    Veiga-da-Cunha M, Gerin I, Chen YT, et al. A gene on chromosome 11q23 coding for a putative glucose- 6-phosphate translocase is mutated in glyco-gen-storage disease types Ib and Ic. Am J Hum Genet 1998; 63: 976–83PubMedGoogle Scholar
  25. 25.
    Ekstein J, Rubin BY, Anderson SL, et al. Mutation frequencies for glycogen storage disease Ia in the Ashkenazi Jewish population. Am J Med Genet A 2004; 129A: 162–4PubMedGoogle Scholar
  26. 26.
    Chou JY, Matern D, Mansfield BC, et al. Type I glycogen storage diseases: disorders of the glucose-6-phosphatase complex. Curr Mol Med 2002; 2: 121–43PubMedGoogle Scholar
  27. 27.
    Bali DS, Chen YT, Goldstein JL. Glycogen storage disease type I. In: Pagon RA, Bird TD, Dolan CR, et al., editors. GeneReviews. Seattle (WA): University of Washington, Seattle, 1993–2006 Apr 19 [updated 2010 Dec 23]Google Scholar
  28. 28.
    Schwenk WF, Haymond MW. Optimal rate of enteral glucose administration in children with glycogen storage disease type I. N Engl J Med 1986; 314: 682–5PubMedGoogle Scholar
  29. 29.
    Ghishan FK, Greene HL. Inborn errors of metabolism that cause permanent injury to the liver. In: Zakim D, Boyer T, editors. Hepatology: a textbook of liver disease. 2nd ed. Philadelphia (PA): WB Saunders, 1990; 49: 1300–48Google Scholar
  30. 30.
    Chen Y-T, Cornblath M, Sidbury JB. Cornstarch therapy in type I glycogen storage disease. N Engl J Med 1984; 310: 171–5PubMedGoogle Scholar
  31. 31.
    Wolfsdorf JI, Crigler JF. Effect of continuous glucose therapy began in infancy on the long-term clinical course of patients with type I glycogen storage disease. J Pediatr Gastroenterol Nutr 1999; 29: 136–43PubMedGoogle Scholar
  32. 32.
    Weinstein DA, Wolfsdorf JI. Effect of continuous glucose therapy with uncooked cornstarch on the long-term clinical course of type 1a glycogen storage disease. Eur J Pediatr 2002; 161Suppl. 1: S35–9PubMedGoogle Scholar
  33. 33.
    Weinstein DA, Somers MJ, Wolfsdorf JI. Decreased urinary citrate excretion in type 1a glycogen storage disease. J Pediatr 2001; 138: 378–82PubMedGoogle Scholar
  34. 34.
    Wolfsdorf JI, Weinstein DA. Glycogen storage diseases. Rev Endocr Metab Disord 2003; 4: 95–102PubMedGoogle Scholar
  35. 35.
    Myrup B, Valerius NH, Mortensen PB. Treatment of enteritis in chronic granulomatous disease with granulocyte colony stimulating factor. Gut 1998; 42: 127–30PubMedGoogle Scholar
  36. 36.
    Visser G, Rake JP, Fernandes J, et al. Neutropenia, neutrophil dysfunction, and inflammatory bowel disease in glycogen storage disease type Ib: results of the European Study on Glycogen Storage Disease type I. J Pediatr 2000; 137: 187–91PubMedGoogle Scholar
  37. 37.
    Calderwood S, Kilpatrick L, Douglas SD, et al. Recombinant human gran-ulocyte colony-stimulating factor therapy for patients with neutropenia and/or neutrophil dysfunction secondary to glycogen storage disease type 1b. Blood 2001; 97: 376–82PubMedGoogle Scholar
  38. 38.
    Steinmetz BA, Martin MG, Roberts RL. Granulocyte-macrophage colony-stimulating factor for treating gastrostomy tube site healing in a child with glycogen storage disease type Ib. J Pediatr Gastroenterol Nutr 2001; 33: 94–6PubMedGoogle Scholar
  39. 39.
    Visser G, Rake JP, Labrune P, et al. Consensus guidelines for management of glycogen storage disease type 1b-European Study on Glycogen Storage Disease Type 1. Eur J Pediatr 2002; 161: 120–3Google Scholar
  40. 40.
    Bhattacharya K, Orton RC, Qi X, et al. A novel starch for the treatment of glycogen storage diseases. J Inherit Metab Dis 2007; 30: 350–7PubMedGoogle Scholar
  41. 41.
    Yiu WH, Pan CJ, Allamarvdasht M, et al. Glucose-6-phosphate transporter gene therapy corrects metabolic and myeloid abnormalities in glycogen storage disease type Ib mice. Gene Ther 2007; 14: 219–26PubMedGoogle Scholar
  42. 42.
    Dagli AI, Weinstein DA. Glycogen storage disease type VI. In: Pagon RA, Bird TC, Dolan CR, et al., editors. GeneReviews. Seattle (WA): University of Washington, Seattle, 1993–2009 Apr 23 [updated 2011 May 17]Google Scholar
  43. 43.
    Bell L, Sherwood WG. Current practices and improved recommendations for treating hereditary fructose intolerance. J Am Diet Assoc 1987; 87: 721–30PubMedGoogle Scholar
  44. 44.
    Fox IH, Kelley WN. Studies on the mechanism of fructose induced hyperuricemia in man. Metabolism 1972; 21: 713–21PubMedGoogle Scholar
  45. 45.
    Narins RG, Weisberg JS, Myers AR. Effects of carbohydrates on uric acid metabolism. Metabolism 1974; 23: 455–65PubMedGoogle Scholar
  46. 46.
    Heuckenkamp P-U, Zollner N. Fructose-induced hyperuricaemia. Lancet 1971; II: 808–9Google Scholar
  47. 47.
    Sahebjami H, Scalettar R. Effects of fructose infusion on lactate and uric acid metabolism. Lancet 1971; I: 366–9Google Scholar
  48. 48.
    Levin B, Snodgrass GJ, Oberholzer VG, et al. Fructosaemia: observations on seven cases. Am J Med 1968; 45: 826–38PubMedGoogle Scholar
  49. 49.
    Cornblath M, Rosenthal IM, Reisner SH, et al. Hereditary fructose intolerance. N Engl J Med 1963; 269: 1271–8PubMedGoogle Scholar
  50. 50.
    Froesch ER, Wolf HP, Baitsch H, et al. Hereditary fructose intolerance: an inborn defect of hepatic fructose-1-phosphate splitting aldolase. Am J Med 1963; 34: 151–67PubMedGoogle Scholar
  51. 51.
    Perheentupa J, Raivio KO, Nikkila EA. Hereditary fructose intolerance. Acta Med Scand 1972; 542 Suppl.: 65–75Google Scholar
  52. 52.
    Bouteldja N, Timson DJ. The biochemical basis of hereditary fructose intolerance. J Inherit Metab Dis 2010 Apr; 33(2): 105–12PubMedGoogle Scholar
  53. 53.
    Anderson TA. Recent trends in carbohydrate consumption. Annu Rev Nutr 1982; 2: 113–32PubMedGoogle Scholar
  54. 54.
    Gitzelmann R, Steinmann B, Van den Berghe G. Disorders of fructose metabolism. In: Stanbury JB, Wyngaarden JB, Fredrickson DS, editors. The metabolic basis of inherited disease. 6th ed. New York: McGraw-Hill, 1989: 399–424Google Scholar
  55. 55.
    Oberhaensli RD, Rajagopalan B, Taylor DJ, et al. Study of hereditary fructose intolerance by use of 31P magnetic resonance spectroscopy. Lancet 1987; II: 931–7Google Scholar
  56. 56.
    Mock DM, Perman JA, Thaler MM, et al. Chronic fructose intoxication after infancy in children with hereditary fructose intolerance: a cause of growth retardation. N Engl J Med 1983; 309: 764–70PubMedGoogle Scholar
  57. 57.
    Shallenberger RS. Occurrence of various sugars in foods. In: Sipple HL, McNutt KW, editors. Sugars in nutrition. New York: Academic Press, 1974: 67–80Google Scholar
  58. 58.
    Hardinge MG, Swarner JB, Crooks H. Carbohydrates in foods. J Am Diet Assoc 1965; 46: 197–204PubMedGoogle Scholar
  59. 59.
    Somogyi JC, Trautner K. Der Glukose-, Fructose- und Saccharosegehalt verschiedener Gemusearten. Schweiz MedWochenschr 1974; 104: 177–82Google Scholar
  60. 60.
    Wyke RJ, Rajkovic IA, Eddleston AL, et al. Defective opsonization and complement deficiency in serum from patients with fulminant hepatic failure. Gut 1980; 21: 643–9PubMedGoogle Scholar
  61. 61.
    Odievre M, Gentil C, Gautier M, et al. Hereditary fructose intolerance in childhood. Am J Dis Child 1978; 132: 605–8PubMedGoogle Scholar
  62. 62.
    Carey RG, Balistreri WF. Metabolic diseases of the liver. In: Kliegman RM, Behrman RE, Jenson HB, et al., editors. Nelson textbook of pediatrics. 18th ed. Philadelphia (PA): Saunders Elsevier, 2008: 1675–80Google Scholar
  63. 63.
    Cox DW, Roberts E. Wilson Disease. In: Pagon RA, Bird TC, Dolan CR, et al., editors. GeneReviews. Seattle (WA): University of Washington, Seattle, 1993–1999 Oct 22 [updated 2006 Jan 24]Google Scholar
  64. 64.
    Farber M, Knuppel RA, Binkiewicz A, et al. Pregnancy and von Gierke’s disease. Obstet Gynecol 1976; 47: 226–8PubMedGoogle Scholar
  65. 65.
    Brewer GJ, Yuzbasiyan-Gurkan V, Dick R, et al. Does a vegetarian diet control Wilson’s disease? J Am Coll Nutr 1993 Oct; 12(5): 527–30PubMedGoogle Scholar
  66. 66.
    Roberts EA, Schilsky ML. A practice guideline on Wilson disease. Hepatology 2003; 37: 1475–92PubMedGoogle Scholar
  67. 67.
    Koeberl DD, Pinto C, Sun B, et al. AAV vector-mediated reversal of hypoglycemia in canine and murine glycogen storage disease type Ia. Mol Ther 2008; 16: 665–72PubMedGoogle Scholar
  68. 68.
    O’Connor JA, Sokol RJ. Copper metabolism and copper storage disease. In: Suchy FJ, Sokol RJ, Balistreri WF, editors. Liver disease in children. 3rd ed. New York: Cambridge University Press, 2007: 626–60Google Scholar
  69. 69.
    Schilsky ML, Scheinberg IH, Sternlieb I. Liver transplantation for Wilson’s disease: indications and outcome. Hepatology 1994; 19: 583–7PubMedGoogle Scholar
  70. 70.
    Emre S, Atillasoy EO, Ozdemir S, et al. Orthotopic liver transplantation for Wilson’s disease: a single-center experience. Transplantation 2001; 72: 1232–6PubMedGoogle Scholar
  71. 71.
    Sutcliffe RP, Maguire DD, Muiesan P, et al. Liver transplantation for Wilson’s disease: long-term results and quality-of-life assessment. Transplantation 2003; 75: 1003–6PubMedGoogle Scholar
  72. 72.
    Merja A, Sari P, Matti KS, et al. Current strategies for the treatment of hereditary tyrosinemia type I. Pediatr Drugs 2006; 8(1): 47–54Google Scholar
  73. 73.
    Sniderman King L, Trahms C, Scott CR. Tyrosinemia type 1. In: Pagon RA, Bird TC, Dolan CR, et al., editors. GeneReviews. Seattle (WA): University of Washington, Seattle, 1993–2006 Jul 24 [updated 2008 Oct 21]Google Scholar
  74. 74.
    Mitchell GA, Rezvani I. Tyrosine. In: Kliegman RM, Behrman RE, Jenson HB, et al., editors. Nelson textbook of pediatrics. 18th ed. Philadelphia (PA): Saunders Elsevier, 2008Google Scholar
  75. 75.
    El-Karaksy H, Rashed M, El-Sayed R, et al. Clinical practice. NTBC therapy for tyrosinemia type 1: how much is enough? Eur J Pediatr 2010 Jun; 169(6): 689–93PubMedGoogle Scholar
  76. 76.
    Musso G, Gambino R, Cassader M. Non-alcoholic fatty liver disease from pathogenesis to management: an update. Obes Rev 2010 Jun; 11(6): 430–45PubMedGoogle Scholar
  77. 77.
    Xanthakos SA, Balistreri WF. Liver disease associated with systemic disorders. In: Kliegman RM, Behrman RE, Jenson HB, et al., editors. Nelson textbook of pediatrics. 18th ed. Philadelphia (PA): Saunders Elsevier, 2008Google Scholar
  78. 78.
    Federico A, Niosi M, Vecchio Blanco CD, et al. Emerging drugs for nonalcoholic fatty liver disease. Expert Opin Emerg Drugs 2008 Mar; 13(1): 145–58PubMedGoogle Scholar
  79. 79.
    Portincasa P, Grattagliano I, Palmieri VO, et al. Current pharmacological treatment of nonalcoholic fatty liver. Curr Med Chem 2006; 13(24): 2889–900PubMedGoogle Scholar
  80. 80.
    Marchesini G, Brizi M, Bianchi G, et al. Metformin in non-alcoholic steato-hepatitis. Lancet 2001; 358(9285): 893–4PubMedGoogle Scholar
  81. 81.
    Nair S, Diehl AM, Wiseman M, et al. Metformin in the treatment of nonalcoholic steatohepatitis: a pilot open label trial. Aliment Pharmacol Ther 2004; 20(1): 23–8PubMedGoogle Scholar
  82. 82.
    Angelico F, Burattin M, Alessandri C, et al. Drugs improving insulin resistance for non-alcoholic fatty liver disease and/or non-alcoholic steatohepatitis. Cochrane Database Syst Rev 2007; (1): CD005166Google Scholar
  83. 83.
    Socha P, Horvath A, Vajro P, et al. Pharmacological interventions for nonalcoholic fatty liver disease in adults and in children: a systematic review. J Pediatr Gastroenterol Nutr 2009; 48(5): 587–96PubMedGoogle Scholar
  84. 84.
    Trappoliere M, Tuccillo C, Federico A, et al. The treatment of NAFLD. Eur Rev Med Pharmacol Sci 2005 Sep–Oct; 9(5): 299–304PubMedGoogle Scholar
  85. 85.
    Trappoliere M, Federico A, Tuccillo C, et al. Effects of a new pharmacological complex (silybin+vitamin-E+phospholipids) on some markers of the metabolic syndrome and of liver fibrosis in patients with hepatic steatosis. Preliminary study. Minerva Gastroenterol Dietol 2005 Jun; 51(2): 193–9PubMedGoogle Scholar
  86. 86.
    Cuestas ML, Mathet VL, Oubiña JR, et al. Drug delivery systems and liver targeting for the improved pharmacotherapy of the hepatitis B virus (HBV) infection. Pharm Res 2010 Jul; 27(7): 1184–202PubMedGoogle Scholar
  87. 87.
    Doerig C, Antonino A, Pache I, et al. Management of chronic hepatitis B [in French]. Rev Med Suisse 2010 Jan 27; 6(233): 168–70, 172-3PubMedGoogle Scholar
  88. 88.
    Balsano C, Alisi A. Viral hepatitis B: established and emerging therapies. Curr Med Chem 2008; 15(9): 930–9PubMedGoogle Scholar
  89. 89.
    Shah U, Kelly D, Chang MH, et al. Management of chronic hepatitis B in children. J Pediatr Gastroenterol Nutr 2009 Apr; 48(4): 399–404PubMedGoogle Scholar
  90. 90.
    Chang MH. Natural history and clinical management of chronic hepatitis B virus infection in children. Hepatol Int 2008 May; 2Suppl. 1: 28–36PubMedGoogle Scholar
  91. 91.
    Hochman JA, Balistreri WF. Acute and chronic viral hepatitis. In: Suchy FJ, Sokol RJ, Balistreri WF, editors. Liver disease in children. 3rd ed. New York: Cambridge University Press, 2007: 369–446Google Scholar
  92. 92.
    Liaw Y-F, the ACT-HBV Asia Pacific Steering Committee Members. Chronic hepatitis B: treatment alert. Liver Int 2006; 26: 47–58Google Scholar
  93. 93.
    Liaw YF, Leung N, Guan R, et al. Asian-Pacific consensus statement on the management of chronic hepatitis B: a 2005 update. Liver Int 2005; 25: 472–89PubMedGoogle Scholar
  94. 94.
    Lok AS, McMahon BJ. Chronic hepatitis B (AASLD practice guidelines). Hepatology 2001; 34: 1225–41PubMedGoogle Scholar
  95. 95.
    Anand AC, Puri P. Treatment of chronic hepatitis B: will entecavir and telbivudine do the trick? Trop Gastroenterol 2008 Apr–Jun; 29(2): 71–5PubMedGoogle Scholar
  96. 96.
    Yazigi N, Balistreri WF. Viral hepatitis. In: Kliegman RM, Behrman RE, Jenson HB, et al., editors. Nelson textbook of pediatrics. 18th ed. Philadelphia (PA): Saunders Elsevier, 2008Google Scholar
  97. 97.
    Sokal E. Drug treatment of pediatric chronic hepatitis B. Paediatr Drugs 2002; 4(6): 361–9PubMedGoogle Scholar
  98. 98.
    Susan KJ, Lesley SJ. Lamivudine: in children and adolescents with chronic hepatitis B virus infection. Pediatr Drugs 2002; 4(10): 687–94Google Scholar
  99. 99.
    Keeffe EB, Dieterich DT, Pawlotsky JM, et al. Chronic hepatitis B: preventing, detecting, and managing viral resistance. Clin Gastroenterol Hepatol 2008 Mar; 6(3): 268–74PubMedGoogle Scholar
  100. 100.
    Neely MN, Rakhmanina NY. Pharmacokinetic optimization of antiretroviral therapy in children and adolescents. Clin Pharmacokinet 2011 Mar 1; 50(3): 143–89PubMedGoogle Scholar
  101. 101.
    Lee C, Custer JW, Rau RE. Formulary: penicillamine. In: Custer JW, Rau RE, editors. The Harriet Lane handbook, 18th ed. Philadelphia (PA): Mosby Elsevier, 2008: 938–9Google Scholar
  102. 102.
    Vcev A. Management of side effects during antiviral therapy. Acta Med Croatica 2009 Dec; 63(5): 463–7PubMedGoogle Scholar
  103. 103.
    Fontana RJ, Keeffe EB, Carey W, et al., for the National Institutes of Health Hepatitis B Virus Orthotopic Liver Transplantation Study Group. Effect of lamivudine treatment on survival of 309 North American patients awaiting liver transplantation for chronic hepatitis B. Liver Transpl 2002 May; 8(5): 433–9PubMedGoogle Scholar
  104. 104.
    Adusumilli S. Tenofovir disoproxil fumarate for the treatment of hepatitis B infection. Drugs Today (Barc) 2009 Sep; 45(9): 679–85Google Scholar
  105. 105.
    Duong A, Mousa SA. Current status of nucleoside antivirals in chronic hepatitis B. Drugs Today (Barc) 2009 Oct; 45(10): 751–61Google Scholar
  106. 106.
    Jonas MM, Kelly D, Pollack H, et al. Safety, efficacy, and pharmacokinetics of adefovir dipivoxil in children and adolescents (age 2 to <18 years) with chronic hepatitis B. Hepatology 2008 Jun; 47(6): 1863–71PubMedGoogle Scholar
  107. 107.
    Sokal EM, Kelly D, Wirth S, et al. The pharmacokinetics and safety of adefovir dipivoxil in children and adolescents with chronic hepatitis B virus infection. J Clin Pharmacol 2008 Apr; 48(4): 512–7PubMedGoogle Scholar
  108. 108.
    Mubareka S, Leung V, Aoki FY, et al. Famciclovir: a focus on efficacy and safety. Expert Opin Drug Saf 2010 Jul; 9(4): 643–58PubMedGoogle Scholar
  109. 109.
    Borgia G, Gentile I. Treating chronic hepatitis B: today and tomorrow. Curr Med Chem 2006; 13(23): 2839–55PubMedGoogle Scholar
  110. 110.
    Mao HY, Shi TD. Treatment with interferon and thymosin alpha-1 versus interferon monotherapy for HBeAg positivie chronic hepatitis B: a meta analysis [in Chinese]. Zhonghua Gan Zang Bing Za Zhi 2011 Jan; 19(1): 29–33PubMedGoogle Scholar
  111. 111.
    Galoppo M, Galoppo C. Management of hepatitis C virus infection in childhood. Ann Hepatol 2010; 9 Suppl.: 98–102PubMedGoogle Scholar
  112. 112.
    Davison SM, Kelly DA. Management strategies for hepatitis C virus infection in children. Paediatr Drugs 2008; 10(6): 357–65PubMedGoogle Scholar
  113. 113.
    Lee C, Custer JW, Rau RE. Formulary: ribavirin. In: Custer JW, Rau RE, editors. The Harriet Lane handbook. 18th ed. Philadelphia (PA): Mosby Elsevier, 2008: 975–6Google Scholar
  114. 114.
    Garg G, Kar P. Management of HCV infection: current issues and future options. Trop Gastroenterol 2009 Jan–Mar; 30(1): 11–8PubMedGoogle Scholar
  115. 115.
    Cross TJ, Antoniades CG, Harrison PM. Current and future management of chronic hepatitis C infection. Postgrad Med J 2008 Apr; 84(990): 172–6PubMedGoogle Scholar
  116. 116.
    Rai R, Deval J. New opportunities in anti-hepatitis C virus drug discovery: targeting NS4B. Antiviral Res 2011 May; 90(2): 93–101PubMedGoogle Scholar
  117. 117.
    Lee C, Custer JW, Rau RE. Formulary: azathioprine. In: Custer JW, Rau RE, editors. The Harriet Lane Handbook. 18th ed. Philadelphia (PA): Mosby Elsevier, 2008: 742–3Google Scholar
  118. 118.
    Strassburg CP, Manns MP. Treatment of autoimmune hepatitis. Semin Liver Dis 2009 Aug; 29(3): 273–85PubMedGoogle Scholar
  119. 119.
    Sherman KE, Narkewicz M, Pinto PC. Cyclosporine in the management of corticosteroid-resistant type I autoimmune chronic active hepatitis. J Hepatol 1994 Dec; 21(6): 1040–7PubMedGoogle Scholar
  120. 120.
    El-Shabrawi M, Wilkinson ML, Portmann B, et al. Primary sclerosing cholangitis in childhood. Gastroenterology 1987 May; 92 (5 Pt 1): 1226–35PubMedGoogle Scholar

Copyright information

© Adis Data Information BV 2011

Authors and Affiliations

  1. 1.Faculty of MedicineCairo UniversityCairoEgypt

Personalised recommendations