American Journal of Cardiovascular Drugs

, Volume 11, Issue 3, pp 145–152 | Cite as

The Role of Proprotein Convertase Subtilisin/Kexin Type 9 in Hyperlipidemia

Focus on Therapeutic Implications
  • Michel Farnier
Leading Article


Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a key regulator of circulating levels of low-density lipoprotein (LDL) particles. PCSK9 acts mainly by enhancing degradation of the LDL receptor in the liver. Several gain-of-function and loss-of-function mutations in the PCSK9 gene have been identified and linked to hypercholesterolemia and hypocholesterolemia, respectively. Since the loss-of-function mutations in humans are associated with protection against coronary heart disease, and with no apparent deleterious effects, PCSK9 inhibition is becoming attractive as a new strategy for lowering LDL cholesterol (LDL-C) levels, particularly in combination with statins. Candidate patient populations for PCSK9 inhibition include those with familial hypercholesterolemia, patients at high risk of cardiovascular disease not controlled by statin therapy, and patients with poor tolerance or total intolerance to statin therapy. PCSK9 inhibition represents a very promising target for reducing LDL-C levels and decreasing the risk of atherosclerotic cardiovascular diseases, but human clinical trials will be crucial to assess the potency and safety of PCSK9 inhibitors.


Statin Statin Therapy Fenofibrate Ezetimibe Familial Hypercholesterolemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baigent C, Keech A, Kearney PM, et al. Cholesterol Treatment Trialists’ (CTT) Collaborators. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90 056 participants in 14 randomised trials of statins. Lancet 2005 Oct; 366: 1267–78.PubMedCrossRefGoogle Scholar
  2. 2.
    Grundy SM, Cleeman JI, Merz CNB, et al. Coordinating Committee of the National Cholesterol Education Program. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III Guidelines. Circulation 2004 Jul; 110(2): 227–39.PubMedCrossRefGoogle Scholar
  3. 3.
    Fourth Joint Task Force of the European Society of Cardiology and other Societies on Cardiovascular Disease Prevention in Clinical Practice. European guidelines on cardiovascular disease prevention in clinical practice: executive summary. Eur Heart J 2007 Oct; 28(19): 2375–414.CrossRefGoogle Scholar
  4. 4.
    Horton JD, Cohen JC, Hobbs HH. Molecular biology of PCSK9: its role in LDL metabolism. Trends Biochem Sci 2007 Feb; 32(2): 71–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Costet P, Krempf M, Cariou B. PCSK9 and LDL cholesterol: unravelling the target to design the bullet. Trends Biochem Sci 2008 Sep; 33(9): 426–34.PubMedCrossRefGoogle Scholar
  6. 6.
    Davignon J, Dubuc G, Seidah NG. The influence of PSCK9 polymorphisms on serum low-density lipoprotein cholesterol and risk of atherosclerosis. Curr Atheroscler Rep 2010 Sep; 12(5): 308–15.PubMedCrossRefGoogle Scholar
  7. 7.
    Mousavi SA, Berge KE, Leren TP. The unique role of proprotein convertase subtilisin/kexin 9 in cholesterol homeostatis. J Intern Med 2009 Dec; 266(6): 507–19.PubMedCrossRefGoogle Scholar
  8. 8.
    Abifadel M, Varret M, Rabès J-P, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nature Genetics 2003 Jun; 34(2): 154–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Seidah NG. PCSK9 as a therapeutic target of dyslipidemia. Expert Opin Ther Targets 2009 Jan; 13(1): 19–28.PubMedCrossRefGoogle Scholar
  10. 10.
    Zhang DW, Lagace TA, Garuti R, et al. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation. J Biol Chem 2007 Jun; 282(25): 18602–12.PubMedCrossRefGoogle Scholar
  11. 11.
    Poirier S, Mayer G, Poupon V, et al. Dissection of the endogenous cellular pathways of PCSK9-induced low density lipoprotein receptor degradation: evidence for an intracellular route. J Biol Chem 2009 Oct; 284(42): 28856–64.PubMedCrossRefGoogle Scholar
  12. 12.
    Li J, Tumanut C, Gavignan JA, et al. Secreted PCSK9 promotes LDL receptor degradation independently of proteolytic activity. Biochem J 2007 Sep; 406(2): 203–7.PubMedCrossRefGoogle Scholar
  13. 13.
    McNutt MC, Lagace TA, Horton JD. Catalytic activity is not required for secreted PCSK9 to reduce low density lipoprotein receptors in HepG2 cells. J Biol Chem 2007 Jul; 282(29): 20799–803.PubMedCrossRefGoogle Scholar
  14. 14.
    Timms KM, Wagner S, Samuels ME, et al. A mutation in PCSK9 causing autosomal-dominant hypercholesterolemia in a Utah pedigree. Hum Genet 2004 Mar; 114(4): 349–53.PubMedCrossRefGoogle Scholar
  15. 15.
    Allard D, Amsellem S, Abifadel M, et al. Novel mutations of the PSCK9 gene cause variable phenotype of autosomal dominant hypercholesterolemia. Hum Mutat 2005 Nov; 26(5): 497.PubMedCrossRefGoogle Scholar
  16. 16.
    Bourbon M, Alves AC, Medeiros AM, et al. on behalf of the investigators of the Portuguese FH Study. Familial hypercholesterolemia in Portugal. Atherosclerosis 2008 Feb; 196(2): 633–42.PubMedCrossRefGoogle Scholar
  17. 17.
    Cameron J, Holla OL, Laerdahl JK, et al. Characterization of novel mutations in the catalytic domain of the PCSK9 gene. J Intern Med 2008 Apr; 263(4): 420–31.PubMedCrossRefGoogle Scholar
  18. 18.
    Homer VM, Marais AD, Charlton F, et al. Identification and characterization of two non-secreted PCSK9 mutants associated with familial hypercholesterolemia in cohorts from New Zealand and South Africa. Atherosclerosis 2008 Feb; 196(2): 659–66.PubMedCrossRefGoogle Scholar
  19. 19.
    Noguchi T, Katsuda S, Kawashiri M-A, et al. The E32K variant of PCSK9 exacerbates the phenotype of familial hypercholesterolemia by increasing PCSK9 function and concentration in the circulation. Atherosclerosis 2010 May; 210(1): 166–72.PubMedCrossRefGoogle Scholar
  20. 20.
    Cohen J, Pertsemlidis A, Kotowski IK, et al. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nature Genetics 2005 Feb; 37(2): 161–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Cohen JC, Boerwinckle E, Mosley TH, et al. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 2006 Mar; 354(12): 1264–72.PubMedCrossRefGoogle Scholar
  22. 22.
    Abifadel M, Rabès JP, Devillers M, et al. Mutations and polymorphisms in the proprotein convertase subtilisin/kexin 9 (PCSK9) gene in cholesterol metabolism and disease. Hum Mutat 2009 Apr; 30(4): 520–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Huang C-C, Fornage M, Llyod-Jones DM, et al. Longitudinal association of PCSK9 sequence variations with low-density lipoprotein cholesterol levels. The Coronary Artery Risk Development In young Adults study. Circ Cardiovasc Genet 2009 Aug; 2(4): 354–61.PubMedCrossRefGoogle Scholar
  24. 24.
    Scartezini M, Hubbart C, Whittall RA, et al. The PCSK9 gene R46L variant is associated with lower plasma lipid levels and cardiovascular risk in healthy UK men. Clin Science 2007 Dec; 113(11): 435–41.CrossRefGoogle Scholar
  25. 25.
    Miyake Y, Kimura R, Kokubo Y, et al. Genetic variants in PCSK9 in the Japanese population: rare genetic variants in PCSK9 might collectively contribute to plasma LDL cholesterol levels in the general population. Atherosclerosis 2008 Jan; 196(1): 29–36.PubMedCrossRefGoogle Scholar
  26. 26.
    Hooper AJ, Marais AD, Tanyanyiwa DM, et al. The C679X mutation in PCSK9 is present and lowers blood cholesterol in a Southern African population. Atherosclerosis 2007 Aug; 193(2): 445–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Fasano T, Cefalù AB, Di Leo E, et al. A novel loss of function mutation of PCSK9 gene in white subjects with low-plasma low-density lipoprotein cholesterol. Arterioscler Thromb Vasc Biol 2007 Mar; 27(3): 677–81.PubMedCrossRefGoogle Scholar
  28. 28.
    Benn M, Nordestgaard BG, Grande P, et al. PCSK9 R46L, low-density lipoprotein cholesterol levels, and risk of ischemic heart disease: 3 independent studies and meta-analyses. J Am Coll Cardiol 2010 Jun; 55(25): 2833–42.PubMedCrossRefGoogle Scholar
  29. 29.
    Guella I, Asselta R, Ardissino D, et al. Effects of PSCK9 genetic variants on plasma LDL cholesterol levels and risk of premature myocardial infarction in the Italian population. J Lipid Res 2010 Nov; 51(11): 3342–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Polisecki E, Peter I, Roberston M, et al. Genetic variation at the PCSK9 locus moderately lowers low-density lipoprotein cholesterol levels, but does not significantly lower vascular disease risk in an elderly population. Atherosclerosis 2008 Sep; 200(1): 95–101.PubMedCrossRefGoogle Scholar
  31. 31.
    Hallman DM, Srinivasan SR, Chen W, et al. Relation of PCSK9 mutations to serum low-density lipoprotein cholesterol in childhood and adulthood (from the Bogalusa Heart Study). Am J Cardiol 2007 Jul; 100(1): 69–72.PubMedCrossRefGoogle Scholar
  32. 32.
    Herbert B, Patel D, Waddington SN, et al. Increased secretion of lipoproteins in transgenic mice expressing human D374Y PCSK9 under physiological genetic control. Arterioscler Thromb Vasc Biol 2010 Jul; 30(7): 1333–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Jeong HJ, Lee HS, Kim KS, et al. Sterol-dependent regulation of proprotein convertase subtilisin/kexin type 9 expression by sterol-regulatory element binding protein-2. J Lipid Res 2008 Feb; 49(2): 399–409.PubMedCrossRefGoogle Scholar
  34. 34.
    Dubuc G, Chamberland A, Wassef H, et al. Statins upregulate PCSK9, the gene encoding the proprotein convertase neural apoptosis-regulated convertase-1 implicated in familial hypercholesterolemia. Arterioscler Thromb Vasc Biol 2004 Aug; 24(8): 1454–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Costet P, Cariou B, Lambert G, et al. Hepatic PCSK9 expression is regulated by nutritional status via insulin and sterol regulatory element-binding protein 1c. J Biol Chem 2006 Mar; 281(10): 6211–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Berge KE, Ose L, Leren TP. Missense mutations in the PCSK9 gene are associated with hypocholesterolemia and possibly increased response to statin therapy. Arterioscler Thromb Vasc Biol 2006 May; 26(5): 1094–100.PubMedCrossRefGoogle Scholar
  37. 37.
    Browning JD, Horton JD. Fasting reduces plasma proprotein convertase, subtilisin/ kexin type 9 and cholesterol biosynthesis in humans. J Lipid Res 2010 Nov; 51(11): 3359–63.PubMedCrossRefGoogle Scholar
  38. 38.
    Langhi C, Le May C, Kourimate S, et al. Activation of the farnesoid X receptor represses PCSK9 expression in human hepatocytes. FEBS Lett 2008 Mar; 582(6): 949–55.PubMedCrossRefGoogle Scholar
  39. 39.
    Cameron J, Ranheim T, Kulseth MA, et al. Berberine decreases PCSK9 expression in HepG2 cells. Atherosclerosis 2008 Dec; 201(2): 266–73.PubMedCrossRefGoogle Scholar
  40. 40.
    Lambert G, Jarnoux AL, Pineau T, et al. Fasting induces hyperlipidemia in mice overexpressing PCSK9: lack of modulation of VLDL hepatic output by the LDLr. Endocrinology 2006 Oct; 147(10): 4985–95.PubMedCrossRefGoogle Scholar
  41. 41.
    Kourimate S, Le MC, Langhi C, et al. Dual mechanisms for the fibrate-mediated repression of proprotein convertase subtilisin/kexin type 9. J Biol Chem 2008 Apr; 283(15): 9666–73.PubMedCrossRefGoogle Scholar
  42. 42.
    Mayne J, Dewpura T, Raymond A, et al. Plasma PCSK9 levels are significantly modified by statins and fibrates in humans. Lipids Health Dis 2008 Jun; 7: 22.Google Scholar
  43. 43.
    Troutt JS, Alborn WE, Cao G, et al. Fenofibrate treatment increases human serum proprotein convertase subtilisin kexin type 9 levels. J Lipid Res 2010 Feb; 51(2): 345–51.PubMedCrossRefGoogle Scholar
  44. 44.
    Lambert G, Ancellin N, Charlton F, et al. Plasma PCSK9 concentrations correlate with LDL and total cholesterol in diabetic patients and are decreased by fenofibrate treatment. Clin Chem 2008 Jun; 54(6): 1038–45.PubMedCrossRefGoogle Scholar
  45. 45.
    Costet P, Hoffmann MM, Cariou B, et al. Plasma PCSK9 is increased by fenofibrate and atorvastatin in a non-additive fashion in diabetic patients. Atherosclerosis 2010 Sept; 212(1): 246–51.PubMedCrossRefGoogle Scholar
  46. 46.
    Alborn WE, Cao G, Careskey HE, et al. Serum proprotein convertase subtilisin kexin type 9 is correlated directly with serum LDL cholesterol. Clin Chem 2007 Oct; 53(10): 1814–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Davignon J, Dubuc G. Statins and ezetimibe modulate plasma proprotein convertase subtilisin kexin-9 (PCSK9) levels. Trans Am Clin Climatol Assoc 2009; 120: 163–73.PubMedGoogle Scholar
  48. 48.
    Dubuc G, Tremblay M, Paré G, et al. A new method for measurement of total plasma PCSK9: clinical applications. J Lipid Res 2010 Jan; 51(1): 140–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Lakoski SG, Lagace TA, Cohen JC, et al. Genetic and metabolic determinants of plasma PCSK9 levels. J Clin Endocrinol Metab 2009 Jul; 94(7): 2537–43.PubMedCrossRefGoogle Scholar
  50. 50.
    Zaid A, Roubtsova A, Essalmani R, et al. Proprotein convertase subtilisin/kexin type 9 (PCSK9): hepatocyte-specific low-density lipoprotein receptor degradation and critical role in mouse liver regeneration. Hepatology 2008 Aug; 48(2): 646–54.PubMedCrossRefGoogle Scholar
  51. 51.
    Mayne J, Raymond A, Chaplin A, et al. Plasma PCSK9 levels correlate with cholesterol in men but not in women. Biochem Biophys Res Commun 2007 Sep; 361(2): 451–6.PubMedCrossRefGoogle Scholar
  52. 52.
    Careskey HE, Davis RA, Alborn WE, et al. Atorvastatin increases human serum levels of proprotein convertase subtilisin/kexin type 9. J Lipid Res 2008 Feb; 49(2): 394–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Chan DC, Lambert G, Barrett PHB, et al. Plasma proprotein convertase subtilisin/kexin type 9: a marker of LDL apolipoprotein B-100 catabolism. Clin Chem 2009 Nov; 55(11): 2049–52.PubMedCrossRefGoogle Scholar
  54. 54.
    Welder G, Zineh I, Pacanowski MA, et al. High-dose atorvastatin causes a rapid sustained increase in human serum PCSK9 and disrupts its correlation with LDL cholesterol. J Lipid Res 2010 Sep; 51(9): 2714–21.PubMedCrossRefGoogle Scholar
  55. 55.
    Cannon CP, Steinberg BA, Murphy SA, et al. Meta-analysis of cardiovascular outcomes trials comparing intensive versus moderate statin therapy. J Am Coll Cardiol 2006 Aug; 48(3): 438–45.PubMedCrossRefGoogle Scholar
  56. 56.
    O’Keefe JH, Cordain L, Harris WH, et al. Optimal low-density lipoprotein is 50 to 70mg/dl: lower is better and physiologically normal. J Am Coll Cardiol 2004 Jun; 43(11): 2142–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Steinberg D, Glass CK, Witztum JL. Evidence mandating earlier and more aggressive treatment of hypercholesterolemia. Circulation 2008 Mar; 118(12): 672–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Waters DD, Brotons C, Chiang CW, et al. Lipid Treatment Assessment Project 2 Investigators. Lipid treatment assessment project 2: a multinational survey to evaluate the proportion of patients achieving low-density lipoprotein cholesterol goals. Circulation 2009 Jul; 120(1): 28–34.PubMedCrossRefGoogle Scholar
  59. 59.
    Peters BJ, Klungel OH, de Boer A, et al. Genetic determinants of response to statins. Expert Rev Cardiovasc Ther 2009 Aug; 7(8): 977–83.PubMedCrossRefGoogle Scholar
  60. 60.
    Thompson JF, Hyde CL, Wood LS, et al. Comprehensive whole-genome and candidate gene analysis for response to statin therapy in the Treating to New Targets (TNT) cohort. Circ Cardiovasc Genet 2009 Apr; 2(2): 173–81.PubMedCrossRefGoogle Scholar
  61. 61.
    Chien K-L, Wang K-C, Chen Y-C, et al. Common sequence variants in pharmacodynamic and pharmacokinetic pathway-related genes conferring LDL cholesterol response to statins. Pharmacogenomics 2010 Mar; 11(3): 309–17.PubMedCrossRefGoogle Scholar
  62. 62.
    Rashid S, Curtis DE, Garuti R, et al. Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9. Proc Natl Acad Sci USA 2005 Apr; 102(15): 5374–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Hedrick JA. Targeting PCSK9 for the treatment of hypercholesterolemia. Curr Opin Invest Drugs 2009 Sep; 10(9): 938–46.Google Scholar
  64. 64.
    Abifadel M, Pakradouni J, Collin M, et al. Strategies for proprotein convertase subtilisin kexin 9 modulation: a perspective on recent patents. Expert Opin Ther Pat 2010 Nov; 20(11): 1547–71.PubMedCrossRefGoogle Scholar
  65. 65.
    Graham MJ, Lemonidis KM, Whipple CP, et al. Antisense inhibition of proprotein convertase subtilisin/kexin type 9 reduces serum LDL in hyper-lipidemic mice. J Lipid Res 2007 Apr; 48(4): 763–7.PubMedCrossRefGoogle Scholar
  66. 66.
    Franck-Kamenetsky M, Grefhorst A, Anderson NN, et al. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc Natl Acad Sci 2008 Aug; 105(33): 11915–20.CrossRefGoogle Scholar
  67. 67.
    Gupta N, Fisker N, Asselin MC, et al. A locked nucleic acid antisense oligonucleotide (LNA) silences PCSK9 and enhances LDLR expression in vitro and in vivo. PLoS One 2010 May; 5(5): e10682.PubMedCrossRefGoogle Scholar
  68. 68.
    Chan JCY, Piper DE, Cao Q, et al. A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc Natl Acad Sci 2009 Jun; 106(24); 9820–5.PubMedCrossRefGoogle Scholar
  69. 69.
    Ni YG, Condra JH, Orsatti L, et al. A proprotein convertase subtilisin/kexin type 9 (PCSK9) C-terminal domain antibody antigen-binding fragment inhibits PCSK9 internalization and restores low density lipoprotein uptake. J Biol Chem 2010 Apr; 285(17): 12882–91.PubMedCrossRefGoogle Scholar
  70. 70.
    Palmer-Smith H, Basak A. Regulatory effects of peptides from the pro and catalytic domains of proprotein convertase subtilisin/kexin 9 (PCSK9) on low-density lipoprotein receptor (LDL-R). Curr Med Chem 2010; 17(20): 2168–82.PubMedCrossRefGoogle Scholar
  71. 71.
    Stein E, Stender S, Mata P, et al. Ezetimibe Study Group. Achieving lipoprotein goals in patients at high risk with severe hypercholesterolemia: efficacy and safety of ezetimibe co-administered with atorvastatin. Am Heart J 2004 Sep; 148(3): 447–55.PubMedCrossRefGoogle Scholar
  72. 72.
    Stein EA, Ose L, Retterstol K, et al. Further reduction of low-density lipoprotein cholesterol and C-reactive protein with the addition of ezetimibe to maximum-dose rosuvastatin in patients with severe hypercholesterolemia. J Clin Lipidol 2007 Aug; 1(4): 280–6.PubMedCrossRefGoogle Scholar
  73. 73.
    Langhi C, Le May C, Gmyr V, et al. PCSK9 is expressed in pancreatic delta-cells and does not alter insulin secretion. Biochem Biophys Res Commun 2009 Dec; 390(4): 1288–93.PubMedCrossRefGoogle Scholar
  74. 74.
    Mbikay M, Sirois F, Mayne J, et al. PCSK9-deficient mice exhibit impaired glucose tolerance and pancreatic islet abnormalities. FEBS Lett 2010 Feb; 584(4): 701–6.PubMedCrossRefGoogle Scholar
  75. 75.
    Regeneron Pharmaceuticals, Inc. 2010 PR Newswire [online]. Available from: [Accessed 2011 May 11].
  76. 76.
    Burlone ME, Budkowska A. Hepatitis C virus cell entry: role of lipoproteins and cellular receptors. J Gen Virol 2009 May; 90(Pt5): 1055–70.PubMedCrossRefGoogle Scholar
  77. 77.
    Zhao Z, Tuakli-Wosornu T, Lagace TA, et al. Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote. Am J Hum Genet 2006 Sep; 79(3): 514–23.PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2011

Authors and Affiliations

  1. 1.Point Médical, Rond Point de la NationDijonFrance

Personalised recommendations