CNS Drugs

, Volume 25, Issue 9, pp 765–781 | Cite as

Role of Serotonin in Alzheimer’s Disease

A New Therapeutic Target?
  • Werner J. Geldenhuys
  • Cornelis J. Van der Schyf
Review Article


Mounting evidence accumulated over the past few years indicates that the neurotransmitter serotonin plays a significant role in cognition. As a drug target, serotonin receptors have received notable attention due in particular to the role of several serotonin-receptor subclasses in cognition and memory. The intimate anatomical and neurochemical association of the serotonergic system with brain areas that regulate memory and learning has directed current drug discovery programmes to focus on this system as a major therapeutic drug target. Thus far, none of these programmes has yielded unambiguous data that suggest that any of the new drug entities possesses disease-modifying properties, and significantly more research in this promising area of investigation is required. Compounds are currently being investigated for activity against serotonin 5-HT1, 5-HT4 and 5-HT6 receptors. This review concludes that most work done in the development of selective serotonin receptor ligands is in the pre-clinical or early clinical phase. Also, while many of these compounds will likely find application as adjuvant therapy in the symptomatic treatment of Alzheimer’s disease, there are currently only a few drug entities with activity against serotonin receptors that may offer the potential to alter the progression of the disease.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Geldenhuys WJ, Van der Schyf CJ. The serotonin 5-HT6 receptor: a viable drug target for treating cognitive deficits in Alzheimer’s disease. Expert Rev Neurother 2009 Jul; 9 (7): 1073–85PubMedCrossRefGoogle Scholar
  2. 2.
    Geldenhuys WJ, Van der Schyf CJ. Serotonin 5-HT6 receptor antagonists for the treatment of Alzheimer’s disease. Curr Top Med Chem 2008; 8 (12): 1035–48PubMedCrossRefGoogle Scholar
  3. 3.
    Glennon RA, Siripurapu U, Roth BL, et al. The medicinal chemistry of 5-HT6 receptor ligands with a focus on arylsulfonyltryptamine analogs. Curr Top Med Chem 2010; 10 (5): 579–95PubMedCrossRefGoogle Scholar
  4. 4.
    Holenz J, Pauwels PJ, Diaz JL, et al. Medicinal chemistry strategies to 5-HT(6) receptor ligands as potential cognitive enhancers and antiobesity agents. Drug Discov Today 2006 Apr; 11 (7–8): 283–99PubMedCrossRefGoogle Scholar
  5. 5.
    King MV, Marsden CA, Fone KC. A role for the 5-HT(1A), 5-HT4 and 5-HT6 receptors in learning and memory. Trends Pharmacol Sci 2008 Sep; 29 (9): 482–92PubMedCrossRefGoogle Scholar
  6. 6.
    Hebert LE, Scherr PA, Bienias JL, et al. Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol 2003 Aug; 60 (8): 1119–22PubMedCrossRefGoogle Scholar
  7. 7.
    LaFerla FM. Pathways linking Abeta and tau pathologies. Biochem Soc Trans 2010 Aug; 38 (4): 993–5PubMedCrossRefGoogle Scholar
  8. 8.
    Carter MD, Simms GA, Weaver DF. The development of new therapeutics for Alzheimer’s disease. Clin Pharmacol Ther 2010 Oct; 88 (4): 475–86PubMedCrossRefGoogle Scholar
  9. 9.
    Macmillan KS, Naidoo J, Liang J, et al. Development of proneurogenic, neuroprotective small molecules. J Am Chem Soc 2011; 133 (5): 1428–37PubMedCrossRefGoogle Scholar
  10. 10.
    Robert SJ, Zugaza JL, Fischmeister R, et al. The human serotonin 5-HT4 receptor regulates secretion of nonamyloidogenic precursor protein. J Biol Chem 2001 Nov 30; 276 (48): 44881–8PubMedCrossRefGoogle Scholar
  11. 11.
    Consolo S, Arnaboldi S, Giorgi S, et al. 5-HT4 receptor stimulation facilitates acetylcholine release in rat frontal cortex. Neuroreport 1994 Jun 2; 5 (10): 1230–2PubMedCrossRefGoogle Scholar
  12. 12.
    Marcos B, Garcia-Alloza M, Gil-Bea FJ, et al. Involvement of an altered 5-HT6 receptor function in behavioral symptoms of Alzheimer’s disease. J Alzheimers Dis 2008 May; 14 (1): 43–50PubMedGoogle Scholar
  13. 13.
    Marcos B, Chuang TT, Gil-Bea FJ, et al. Effects of 5-HT6 receptor antagonism and cholinesterase inhibition in models of cognitive impairment in the rat. Br J Pharmacol 2008 Oct; 155 (3): 434–40PubMedCrossRefGoogle Scholar
  14. 14.
    Da Silva Costa V, Duchatelle P, Boulouard M, et al. Selective 5-HT6 receptor blockade improves spatial recognition memory and reverses age-related deficits in spatial recognition memory in the mouse. Neuropsycho-pharmacology 2009 Jan; 34 (2): 488–500CrossRefGoogle Scholar
  15. 15.
    Roth BL, Hanizavareh SM, Blum AE. Serotonin receptors represent highly favorable molecular targets for cognitive enhancement in schizophrenia and other disorders. Psychopharmacology (Berl) 2004 Jun; 174 (1): 17–24CrossRefGoogle Scholar
  16. 16.
    Sumiyoshi T, Bubenikova-Valesova V, Horacek J, et al. Serotonin 1A receptors in the pathophysiology of schizophrenia: development of novel cognition-enhancing therapeutics. Adv Ther 2008 Oct; 25 (10): 1037–56PubMedCrossRefGoogle Scholar
  17. 17.
    Strittmatter WJ, Saunders AM, Schmechel D, et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A 1993 Mar 1; 90(5): 1977–81PubMedCrossRefGoogle Scholar
  18. 18.
    Eto M, Watanabe K, Ishii K. A racial difference in apolipoprotein E allele frequencies between the Japanese and Caucasian populations. Clin Genet 1986 Nov; 30 (5): 422–7PubMedCrossRefGoogle Scholar
  19. 19.
    Martorana A, Esposito Z, Koch G. Beyond the cholinergic hypothesis: do current drugs work in Alzheimer’s disease? CNS Neurosci Ther 2010 Aug; 16 (4): 235–45PubMedGoogle Scholar
  20. 20.
    Bartus RT, Dean 3rd RL, Beer B, et al. The cholinergic hypothesis of geriatric memory dysfunction. Science 1982 Jul 30; 217 (4558): 408–14PubMedCrossRefGoogle Scholar
  21. 21.
    Scarpini E, Scheltens P, Feldman H. Treatment of Alzheimer’s disease: current status and new perspectives. Lancet Neurol 2003 Sep; 2 (9): 539–47PubMedCrossRefGoogle Scholar
  22. 22.
    Nakajima Y, Nakajima S, Obata K, et al. Dissociated cell culture of cholinergic neurons from nucleus basalis of Meynert and other basal forebrain nuclei. Proc Natl Acad Sci U S A 1985 Sep; 82 (18): 6325–9PubMedCrossRefGoogle Scholar
  23. 23.
    Wilkinson DG, Francis PT, Schwam E, et al. Cholinesterase inhibitors used in the treatment of Alzheimer’s disease: the relationship between pharmacological effects and clinical efficacy. Drugs Aging 2004; 21 (7): 453–78PubMedCrossRefGoogle Scholar
  24. 24.
    Cummings JL, Frank JC, Cherry D, et al. Guidelines for managing Alzheimer’s disease: part II. Treatment. Am Fam Physician 2002 Jun 15; 65 (12): 2525–34PubMedGoogle Scholar
  25. 25.
    Cummings JL, Frank JC, Cherry D, et al. Guidelines for managing Alzheimer’s disease: part I. Assessment. Am Fam Physician 2002 Jun 1; 65 (11): 2263–72Google Scholar
  26. 26.
    Burns A, O’Brien J, Auriacombe S, et al. Clinical practice with anti-dementia drugs: a consensus statement from British Association for Psychopharmacology. J Psychopharmacol 2006 Nov; 20 (6): 732–55PubMedCrossRefGoogle Scholar
  27. 27.
    Palmer AM. Neuroprotective therapeutics for Alzheimer’s disease: progress and prospects. Trends Pharmacol Sci 2011; 32 (3): 141–7PubMedCrossRefGoogle Scholar
  28. 28.
    LaFerla FM, Green KN, Oddo S. Intracellular amyloidbeta in Alzheimer’s disease. Nat Rev Neurosci 2007 Jul; 8 (7): 499–509PubMedCrossRefGoogle Scholar
  29. 29.
    Small SA, Duff K. Linking Abeta and tau in late-onset Alzheimer’s disease: a dual pathway hypothesis. Neuron 2008 Nov 26; 60 (4): 534–42PubMedCrossRefGoogle Scholar
  30. 30.
    Olsen RE, Marcin LR. Secretase inhibitors and modulators for the treatment of Alzheimer’s disease. Annu Rep Med Chem 2007; 42: 27–43CrossRefGoogle Scholar
  31. 31.
    Pimplikar SW, Nixon RA, Robakis NK, et al. Amyloid-independent mechanisms in Alzheimer’s disease pathogenesis. J Neurosci 2010; 30 (45): 14946–54PubMedCrossRefGoogle Scholar
  32. 32.
    Bossy-Wetzel E, Schwarzenbacher R, Lipton SA. Molecular pathways to neurodegeneration. Nat Med 2004 Jul; 10 Suppl.: S2–9PubMedCrossRefGoogle Scholar
  33. 33.
    Jellinger KA. Alzheimer 100: highlights in the history of Alzheimer research. J Neural Transm 2006 Nov; 113 (11): 1603–23PubMedCrossRefGoogle Scholar
  34. 34.
    Lahiri DK, Farlow MR, Sambamurti K, et al. A critical analysis of new molecular targets and strategies for drug developments in Alzheimer’s disease. Curr Drug Targets 2003 Feb; 4 (2): 97–112PubMedCrossRefGoogle Scholar
  35. 35.
    Shankar GM, Li S, Mehta TH, et al. Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 2008 Aug; 14 (8): 837–42PubMedCrossRefGoogle Scholar
  36. 36.
    Iqbal K, Liu F, Gong CX, et al. Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res 2010; 7 (8): 656–64PubMedCrossRefGoogle Scholar
  37. 37.
    Iqbal K, Wang X, Blanchard J, et al. Alzheimer’s disease neurofibrillary degeneration: pivotal and multifactorial. Biochem Soc Trans 2010 Aug; 38 (4): 962–6PubMedCrossRefGoogle Scholar
  38. 38.
    Gentles RG, Hu S, Dubowchik GM. Recent advances in the discovery of GSK-3 inhibitors and a perspective on their utility for the treatment of Alzheimer’s disease. Annu Rep Med Chem 2009; 44: 3–26CrossRefGoogle Scholar
  39. 39.
    Auffret A, Mariani J, Rovira C. Age-related progressive synaptic dysfunction: the critical role of presenilin 1. Rev Neurosci 2010; 21 (4): 239–50PubMedCrossRefGoogle Scholar
  40. 40.
    Nelson RB. Back to the plaque: emerging studies that refocus attention on the neuritic plaque in Alzheimer’s disease. Annu Rep Med Chem 2010; 45: 315–27Google Scholar
  41. 41.
    Buhot MC, Martin S, Segu L. Role of serotonin in memory impairment. Ann Med 2000 Apr; 32 (3): 210–21PubMedCrossRefGoogle Scholar
  42. 42.
    Buhot MC, Malleret G, Segu L. Serotonin receptors and cognitive behaviour: an update. IDrugs 1999 May; 2 (5): 426–37PubMedGoogle Scholar
  43. 43.
    Perez-Garcia G, Meneses A. Memory formation, amnesia, improved memory and reversed amnesia: 5-HT role. Behav Brain Res 2008 Dec 16; 195 (1): 17–29PubMedCrossRefGoogle Scholar
  44. 44.
    Meltzer CC, Smith G, DeKosky ST, et al. Serotonin in aging, late-life depression, and Alzheimer’s disease: the emerging role of functional imaging. Neuropsychopharmacology 1998 Jun; 18 (6): 407–30PubMedCrossRefGoogle Scholar
  45. 45.
    Leonard BE. Sub-types of serotonin receptors: biochemical changes and pharmacological consequences. Int Clin Psychopharmacol 1992; 7 (1): 13–21PubMedCrossRefGoogle Scholar
  46. 46.
    Childers Jr WE, Robichaud AJ. Recent advances in selective serotonergic agents. Annu Rep Med Chem 2005; 40: 17–33CrossRefGoogle Scholar
  47. 47.
    Chalmers DT, Watson SJ. Comparative anatomical distribution of 5-HT1A receptor mRNA and 5-HT1A binding in rat brain: a combined in situ hybridisation/in vitro receptor autoradiographic study. Brain Res 1991 Oct 4; 561 (1): 51–60PubMedCrossRefGoogle Scholar
  48. 48.
    Lacivita E, Leopoldo M, Berardi F, et al. 5-HT1A receptor, an old target for new therapeutic agents. Curr Top Med Chem 2008; 8 (12): 1024–34PubMedCrossRefGoogle Scholar
  49. 49.
    Childers Jr WE, Havran LM, Asselin M, et al. The synthesis and biological evaluation of quinolyl-piperazinyl piperidines as potent serotonin 5-HT1 A antagonists. J Med Chem 2010 May 27; 53 (10): 4066–84PubMedCrossRefGoogle Scholar
  50. 50.
    Lai MK, Tsang SW, Francis PT, et al. Reduced serotonin 5-HT1A receptor binding in the temporal cortex correlates with aggressive behavior in Alzheimer disease. Brain Res 2003 Jun 6; 974 (1–2): 82–7PubMedCrossRefGoogle Scholar
  51. 51.
    Millan MJ, Gobert A, Roux S, et al. The serotonin1A receptor partial agonist S15535 [4-(benzodioxan-5-yl)1-(indan-2-yl)piperazine] enhances cholinergic transmission and cognitive function in rodents: a combined neurochemical and behavioral analysis. J Pharmacol Exp Ther 2004 Oct; 311 (1): 190–203PubMedCrossRefGoogle Scholar
  52. 52.
    Vilaro MT, Cortes R, Gerald C, et al. Localization of 5-HT4 receptor mRNA in rat brain by in situ hybridization histochemistry. Brain Res Mol Brain Res 1996 Dec 31; 43 (1–2): 356–60PubMedCrossRefGoogle Scholar
  53. 53.
    Cho S, Hu Y. Activation of 5-HT4 receptors inhibits secretion of beta-amyloid peptides and increases neuronal survival. Exp Neurol 2007 Jan; 203 (1): 274–8PubMedCrossRefGoogle Scholar
  54. 54.
    Cachard-Chastel M, Lezoualc’h F, Dewachter I, et al. 5-HT4 receptor agonists increase sAPPalpha levels in the cortex and hippocampus of male C57BL/6j mice. Br J Pharmacol 2007 Apr; 150 (7): 883–92PubMedCrossRefGoogle Scholar
  55. 55.
    Manuel-Apolinar L, Rocha L, Pascoe D, et al. Modifications of 5-HT4 receptor expression in rat brain during memory consolidation. Brain Res 2005 Apr 25; 1042 (1): 73–81PubMedCrossRefGoogle Scholar
  56. 56.
    Moser PC, Bergis OE, Jegham S, et al. SL65.0155, a novel 5-hydroxytryptamine(4) receptor partial agonist with potent cognition-enhancing properties. J Pharmacol Exp Ther 2002 Aug; 302 (2): 731–41PubMedCrossRefGoogle Scholar
  57. 57.
    Letty S, Child R, Dumuis A, et al. 5-HT4 receptors improve social olfactory memory in the rat. Neuropharmacology 1997 Apr-May; 36 (4–5): 681–7PubMedCrossRefGoogle Scholar
  58. 58.
    Marchetti E, Chaillan FA, Dumuis A, et al. Modulation of memory processes and cellular excitability in the dentate gyrus of freely moving rats by a 5-HT4 receptors partial agonist, and an antagonist. Neuropharmacology 2004 Dec; 47 (7): 1021–35PubMedCrossRefGoogle Scholar
  59. 59.
    Marchetti E, Jacquet M, Jeltsch H, et al. Complete recovery of olfactory associative learning by activation of 5-HT4 receptors after dentate granule cell damage in rats. Neurobiol Learn Mem 2008 Jul; 90 (1): 185–91PubMedCrossRefGoogle Scholar
  60. 60.
    Galeotti N, Ghelardini C, Bartolini A. Role of 5-HT4 receptors in the mouse passive avoidance test. J Pharmacol Exp Ther 1998 Sep; 286 (3): 1115–21PubMedGoogle Scholar
  61. 61.
    Micale V, Leggio GM, Mazzola C, et al. Cognitive effects of SL65.0155, a serotonin 5-HT4 receptor partial agonist, in animal models of amnesia. Brain Res 2006 Nov 22; 1121 (1): 207–15PubMedCrossRefGoogle Scholar
  62. 62.
    Cachard-Chastel M, Devers S, Sicsic S, et al. Prucalopride and donepezil act synergistically to reverse scopolamine-induced memory deficit in C57Bl/6j mice. Behav Brain Res 2008 Mar 5; 187 (2): 455–61PubMedCrossRefGoogle Scholar
  63. 63.
    Mohler EG, Shacham S, Noiman S, et al. VRX-03011, a novel 5-HT4 agonist, enhances memory and hippocampal acetylcholine efflux. Neuropharmacology 2007 Sep; 53 (4): 563–73PubMedCrossRefGoogle Scholar
  64. 64.
    Orsetti M, Dellarole A, Ferri S, et al. Acquisition, retention, and recall of memory after injection of RS67333, a 5-HT(4) receptor agonist, into the nucleus basalis magnocellularis of the rat. Learn Mem 2003 Sep-Oct; 10 (5): 420–6PubMedCrossRefGoogle Scholar
  65. 65.
    Lieben CK, Blokland A, Sik A, et al. The selective 5-HT6 receptor antagonist Ro4368554 restores memory performance in cholinergic and serotonergic models of memory deficiency in the rat. Neuropsychopharmacology 2005 Dec; 30 (12): 2169–79PubMedCrossRefGoogle Scholar
  66. 66.
    Schaffhauser H, Mathiasen JR, Dicamillo A, et al. Dimebolin is a 5-HT6 antagonist with acute cognition enhancing activities. Biochem Pharmacol 2009 Oct 15; 78 (8): 1035–42PubMedCrossRefGoogle Scholar
  67. 67.
    Matveeva IA. Action of dimebon on histamine receptors. Farmakol Toksikol 1983 Jul–Aug; 46 (4): 27–9PubMedGoogle Scholar
  68. 68.
    Okun I, Tkachenko SE, Khvat A, et al. From anti-allergic to anti-Alzheimer’s: molecular pharmacology of dimebon. Curr Alzheimer Res 2009 Mar; 7 (2): 97–112CrossRefGoogle Scholar
  69. 69.
    Lermontova NN, Lukoyanov NV, Serkova TP, et al. Dimebon improves learning in animals with experimental Alzheimer’s disease. Bull Exp Biol Med 2000 Jun; 129 (6): 544–6PubMedCrossRefGoogle Scholar
  70. 70.
    Bezprozvanny I. The rise and fall of dimebon. Drug News Perspect 2010 Oct; 23 (8): 518–23PubMedGoogle Scholar
  71. 71.
    Bachurin S, Bukatina E, Lermontova N, et al. Antihistamine agent dimebon as a novel neuroprotector and a cognition enhancer. Ann N Y Acad Sci 2001 Jun; 939: 425–35PubMedCrossRefGoogle Scholar
  72. 72.
    Doody RS, Gavrilova SI, Sano M, et al. Effect of dimebon on cognition, activities of daily living, behaviour, and global function in patients with mild-to-moderate Alzheimer’s disease: a randomised, double-blind, placebo-controlled study. Lancet 2008 Jul 19; 372 (9634): 207–15PubMedCrossRefGoogle Scholar
  73. 73.
    Lermontova NN, Redkozubov AE, Shevtsova EF, et al. Dimebon and tacrine inhibit neurotoxic action of beta-amyloid in culture and block L-type Ca(2+) channels. Bull Exp Biol Med 2001 Nov; 132 (5): 1079–83PubMedCrossRefGoogle Scholar
  74. 74.
    Monsma Jr FJ, Shen Y, Ward RP, et al. Cloning and expression of a novel serotonin receptor with high affinity for tricyclic psychotropic drugs. Mol Pharmacol 1993 Mar; 43 (3): 320–7PubMedGoogle Scholar
  75. 75.
    Ruat M, Traiffort E, Arrang JM, et al. A novel rat serotonin (5-HT6) receptor: molecular cloning, localization and stimulation of cAMP accumulation. Biochem Biophys Res Commun 1993 May 28; 193 (1): 268–76PubMedCrossRefGoogle Scholar
  76. 76.
    Fone KC. An update on the role of the 5-hydroxytryptamine6 receptor in cognitive function. Neuropharmacology 2008 Nov; 55 (6): 1015–22PubMedCrossRefGoogle Scholar
  77. 77.
    Woolley ML, Marsden CA, Fone KC. 5-ht6 receptors. Curr Drug Targets CNS Neurol Disord 2004 Feb; 3 (1): 59–79PubMedCrossRefGoogle Scholar
  78. 78.
    West PJ, Marcy VR, Marino MJ, et al. Activation of the 5-HT(6) receptor attenuates long-term potentiation and facilitates GABAergic neurotransmission in rat hippocampus. Neuroscience 2009 Dec 1; 164 (2): 692–701PubMedCrossRefGoogle Scholar
  79. 79.
    Hirst WD, Abrahamsen B, Blaney FE, et al. Differences in the central nervous system distribution and pharmacology of the mouse 5-hydroxytryptamine-6 receptor compared with rat and human receptors investigated by radioligand binding, site-directed mutagenesis, and molecular modeling. Mol Pharmacol 2003 Dec; 64 (6): 1295–308PubMedCrossRefGoogle Scholar
  80. 80.
    Bonasera SJ, Chu HM, Brennan TJ, et al. A null mutation of the serotonin 6 receptor alters acute responses to ethanol. Neuropsychopharmacology 2006 Aug; 31 (8): 1801–13PubMedCrossRefGoogle Scholar
  81. 81.
    Svenningsson P, Tzavara ET, Qi H, et al. Biochemical and behavioral evidence for antidepressant-like effects of 5-HT6 receptor stimulation. J Neurosci 2007 Apr 11; 27 (15): 4201–9PubMedCrossRefGoogle Scholar
  82. 82.
    Woolley ML, Marsden CA, Sleight AJ, et al. Reversal of a cholinergic-induced deficit in a rodent model of recognition memory by the selective 5-HT6 receptor antagonist, Ro 04–6790. Psychopharmacology (Berl) 2003 Dec; 170 (4): 358–67CrossRefGoogle Scholar
  83. 83.
    Woolley ML, Bentley JC, Sleight AJ, et al. A role for 5-ht6 receptors in retention of spatial learning in the Morris water maze. Neuropharmacology 2001 Aug; 41 (2): 210–9PubMedCrossRefGoogle Scholar
  84. 84.
    Hirst WD, Stean TO, Rogers DC, et al. SB-399885 is a potent, selective 5-HT6 receptor antagonist with cognitive enhancing properties in aged rat water maze and novel object recognition models. Eur J Pharmacol 2006 Dec 28; 553 (1–3): 109–19PubMedCrossRefGoogle Scholar
  85. 85.
    Perez-Garcia G, Meneses A. Oral administration of the 5-HT6 receptor antagonists SB-357134 and SB-399885 improves memory formation in an autoshaping learning task. Pharmacol Biochem Behav 2005 Jul; 81 (3): 673–82PubMedCrossRefGoogle Scholar
  86. 86.
    Foley AG, Murphy KJ, Hirst WD, et al. The 5-HT(6) receptor antagonist SB-271046 reverses scopolamine-disrupted consolidation of a passive avoidance task and ameliorates spatial task deficits in aged rats. Neuropsychopharmacology 2004 Jan; 29 (1): 93–100PubMedCrossRefGoogle Scholar
  87. 87.
    Riemer C, Borroni E, Levet-Trafit B, et al. Influence of the 5-HT6 receptor on acetylcholine release in the cortex: pharmacological characterization of 4-(2-bromo-6-pyrrolidin-1-ylpyridine-4-sulfonyl)phenylamine, a potent and selective 5-HT6 receptor antagonist. J Med Chem 2003 Mar 27; 46 (7): 1273–6PubMedCrossRefGoogle Scholar
  88. 88.
    Gerard C, Martres MP, Lefevre K, et al. Immunolocalization of serotonin 5-HT6 receptor-like material in the rat central nervous system. Brain Res 1997 Jan 23; 746 (1–2): 207–19PubMedCrossRefGoogle Scholar
  89. 89.
    Upton N, Chuang TT, Hunter AJ, et al. 5-HT6 receptor antagonists as novel cognitive enhancing agents for Alzheimer’s disease. Neurotherapeutics 2008 Jul; 5 (3): 458–69PubMedCrossRefGoogle Scholar
  90. 90.
    King MV, Sleight AJ, Woolley ML, et al. 5-HT6 receptor antagonists reverse delay-dependent deficits in novel object discrimination by enhancing consolidation: an effect sensitive to NMDA receptor antagonism. Neuropharmacology 2004 Aug; 47 (2): 195–204PubMedCrossRefGoogle Scholar
  91. 91.
    Schechter LE, Lin Q, Smith DL, et al. Neuropharmacological profile of novel and selective 5-HT6 receptor agonists: WAY-181187 and WAY-208466. Neuropsychopharmacology 2008 May; 33 (6): 1323–35PubMedCrossRefGoogle Scholar
  92. 92.
    Foley AG, Hirst WD, Gallagher HC, et al. The selective 5-HT6 receptor antagonists SB-271046 and SB-399885 potentiate NCAM PSA immunolabeling of dentate granule cells, but not neurogenesis, in the hippocampal formation of mature Wistar rats. Neuropharmacology 2008 Jun; 54 (8): 1166–74PubMedCrossRefGoogle Scholar
  93. 93.
    Fiorino F, Severino B, De Angelis F, et al. New 5-HT(1A) receptor ligands containing a N′-cyanoisonicotinamidine nucleus: synthesis and in vitro pharmacological evaluation. Bioorg Med Chem Lett 2010 May 1; 20 (9): 2978–82PubMedCrossRefGoogle Scholar
  94. 94.
    Flynn DL, Zabrowski DL, Becker DP, et al. SC-53116: the first selective agonist at the newly identified serotonin 5-HT4 receptor subtype. J Med Chem 1992 Apr 17; 35 (8): 1486–9PubMedCrossRefGoogle Scholar
  95. 95.
    Buchheit KH, Gamse R, Giger R, et al. The serotonin 5-HT4 receptor: 1. Design of a new class of agonists and receptor map of the agonist recognition site. J Med Chem 1995 Jun 23; 38 (13): 2326–30PubMedCrossRefGoogle Scholar
  96. 96.
    Buchheit KH, Gamse R, Giger R, et al. The serotonin 5-HT4 receptor: 2. Structure-activity studies of the indole carbazimidamide class of agonists. J Med Chem 1995 Jun 23; 38 (13): 2331–8PubMedCrossRefGoogle Scholar
  97. 97.
    Yang D, Soulier JL, Sicsic S, et al. New esters of 4-amino-5-chloro-2-methoxybenzoic acid as potent agonists and antagonists for 5-HT4 receptors. J Med Chem 1997 Feb 14; 40 (4): 608–21PubMedCrossRefGoogle Scholar
  98. 98.
    Iskander MN, Leung LM, Buley T, et al. Optimization of a pharmacophore model for 5-HT4 agonists using CoMFA and receptor based alignment. Eur J Med Chem 2006 Jan; 41 (1): 16–26PubMedCrossRefGoogle Scholar
  99. 99.
    Russo O, Berthouze M, Giner M, et al. Synthesis of specific bivalent probes that functionally interact with 5-HT(4) receptor dimers. J Med Chem 2007 Sep 6; 50 (18): 4482–92PubMedCrossRefGoogle Scholar
  100. 100.
    Russo O, Cachard-Chastel M, Riviere C, et al. Design, synthesis, and biological evaluation of new 5-HT4 receptor agonists: application as amyloid cascade modulators and potential therapeutic utility in Alzheimer’s disease. J Med Chem 2009 Apr 23; 52 (8): 2214–25PubMedCrossRefGoogle Scholar
  101. 101.
    Glennon RA. Higher-end serotonin receptors: 5-HT(5), 5-HT(6), and 5-HT(7). J Med Chem 2003 Jul 3; 46 (14): 2795–812PubMedCrossRefGoogle Scholar
  102. 102.
    Singer JM, Wilson MW, Johnson PD, et al. Synthesis and SAR of tolylamine 5-HT6 antagonists. Bioorg Med Chem Lett 2009 May 1; 19 (9): 2409–12PubMedCrossRefGoogle Scholar
  103. 103.
    Ivachtchenko AV, Frolov EB, Mitkin OD, et al. Synthesis and biological activity of 5-styryl and 5-phenethyl-substituted 2,3,4,5-tetrahydro- 1H-pyrido[4,3-b]indoles. Bioorg Med Chem Lett 2010 Jan 1; 20 (1): 78–82PubMedCrossRefGoogle Scholar
  104. 104.
    Pieper AA, Xie S, Capota E, et al. Discovery of a proneurogenic, neuroprotective chemical. Cell 2010 Jul 9; 142 (1): 39–51PubMedCrossRefGoogle Scholar
  105. 105.
    Gao M, Wang M, Hutchins GD, et al. [(11)C]Dimebon, radiosynthesis and lipophilicity of a new potential PET agent for imaging of Alzheimer’s disease and Huntington’s disease. Bioorg Med Chem Lett 2010 Apr 15; 20 (8): 2529–32PubMedCrossRefGoogle Scholar
  106. 106.
    Nirogi RVS, Kothmirkar P, Kambhampati R, et al. Novel and potent 5-piperazinyl methyl-N1-aryl sulfonyl indole derivatives as 5-HT6 receptor ligands [letter]. ACS Med Chem Lett 2010; 1 (7): 340–4CrossRefGoogle Scholar
  107. 107.
    Liu KG, Lo JR, Comery TA, et al. 1-Sulfonylindazoles as potent and selective 5-HT6 ligands. Bioorg Med Chem Lett 2009 May 1; 19 (9): 2413–5PubMedCrossRefGoogle Scholar
  108. 108.
    Pullagurla MR, Westkaemper RB, Glennon RA. Possible differences in modes of agonist and antagonist binding at human 5-HT6 receptors. Bioorg Med Chem Lett 2004 Sep 6; 14 (17): 4569–73PubMedCrossRefGoogle Scholar
  109. 109.
    de la Fuente T, Martin-Fontecha M, Sallander J, et al. Benzimidazole derivatives as new serotonin 5-HT6 receptor antagonists: molecular mechanisms of receptor inactivation. J Med Chem 2010 Feb 11; 53 (3): 1357–69PubMedCrossRefGoogle Scholar
  110. 110.
    Lopez-Rodriguez ML, Benhamu B, de la Fuente T, et al. A three-dimensional pharmacophore model for 5-hydroxytryptamine6 (5-HT6) receptor antagonists. J Med Chem 2005 Jun 30; 48 (13): 4216–9PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2011

Authors and Affiliations

  • Werner J. Geldenhuys
    • 1
  • Cornelis J. Van der Schyf
    • 1
  1. 1.Department of Pharmaceutical SciencesNortheast Ohio Medical UniversityRootstownUSA

Personalised recommendations