Drug Safety

, Volume 34, Issue 5, pp 357–374

Drug-Induced Lupus Erythematosus

Incidence, Management and Prevention
Review Article

Abstract

The generation of autoantibodies and autoimmune diseases such as systemic lupus erythematosus has been associated with the use of certain drugs in humans. Early reports suggested that procainamide and hydralazine were associated with the highest risk of developing lupus, quinidine with a moderate risk and all other drugs were considered low or very low risk. More recently, drug-induced lupus has been associated with the use of the newer biological modulators such as tumour necrosis factor (TNF)-α inhibitors and interferons. The clinical features and laboratory findings of TNFα inhibitor-induced lupus are different from that of traditional drug-induced lupus or idiopathic lupus, and standardized criteria for the diagnosis of drug-induced lupus have not been established. The mechanism(s) responsible for the development of drug-induced lupus may vary depending on the drug or even on the patient. Besides lupus, other autoimmune diseases have been associated with drugs or toxins. Diagnosis of drug-induced lupus requires identification of a temporal relationship between drug administration and symptom development, and in traditional drug-induced lupus there must be no pre-existing lupus. Resolution of symptoms generally occurs after cessation of the drug.

In this review, we will discuss those drugs that are more commonly associated with drug-induced lupus, with an emphasis on the new biologicals and the difficulty of making the diagnosis of drug-induced lupus against a backdrop of the autoimmune diseases that these drugs are used to treat. Stimulation of the immune system by these drugs to cause autoimmunity may in fact be associated with an increased effectiveness in treating the pathology for which they are prescribed, leading to the dilemma of deciding which is worse, the original disease or the adverse effect of the drug. Optimistically, one must hope that ongoing research in drug development and in pharmacogenetics will help to treat patients with the maximum effectiveness while minimizing side effects. Vigilance and early diagnosis are critical. The purpose of this review is to summarize the most recent developments in our understanding of the incidence, pathogenesis, diagnosis and treatment of drug-induced lupus.

References

  1. 1.
    Borchers AT, Keen CL, Gershwin ME. Drug-induced lupus. Ann N Y Acad Sci 2007 Jun; 1108: 166–82PubMedCrossRefGoogle Scholar
  2. 2.
    Chang C, Gershwin ME. Drugs and autoimmunity: a contemporary review and mechanistic approach. J Autoimmun 2010 May; 34(3): J266–75PubMedCrossRefGoogle Scholar
  3. 3.
    Arnson Y, Shoenfeld Y, Amital H. Effects of tobacco smoke on immunity, inflammation and autoimmunity. J Autoimmun 2010 May; 34(3): J258–65PubMedCrossRefGoogle Scholar
  4. 4.
    Borchers AT, Naguwa SM, Shoenfeld Y, et al. The geoepidemiology of systemic lupus erythematosus. Autoimmun Rev 2010 Mar; 9(5): A277–87PubMedCrossRefGoogle Scholar
  5. 5.
    Chang C. The immune effects of naturally occurring and synthetic nanoparticles. J Autoimmun 2010 May; 34(3): J234–46PubMedCrossRefGoogle Scholar
  6. 6.
    Powell JJ, Faria N, Thomas-McKay E, et al. Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J Autoimmun 2010 May; 34(3): J226–33PubMedCrossRefGoogle Scholar
  7. 7.
    Selmi C, Tsuneyama K. Nutrition, geoepidemiology, and autoimmunity. Autoimmun Rev 2010 Mar; 9(5): A267–70PubMedCrossRefGoogle Scholar
  8. 8.
    Tobon GJ, Youinou P, Saraux A. The environment, geoepidemiology, and autoimmune disease: rheumatoid arthritis. J Autoimmun 2010 Aug; 35(1): 10–4PubMedCrossRefGoogle Scholar
  9. 9.
    Tomer Y. Hepatitis C and interferon induced thyroiditis. J Autoimmun 2010 May; 34(3): J322–6PubMedCrossRefGoogle Scholar
  10. 10.
    Youinou P, Pers JO, Gershwin ME, et al. Geo-epidemiology and autoimmunity. J Autoimmun 2010 May; 34(3): J163–7PubMedCrossRefGoogle Scholar
  11. 11.
    Hoffman BJ. Sensitivity to sulfadiazine resembling acute disseminated lupus erythematosus. Arch Dermatol Syphilol 1945; 51: 190–2CrossRefGoogle Scholar
  12. 12.
    Sanford HS, Michaelson AK, Halpern MM. Procainamide induced lupus erythematosus syndrome. Dis Chest 1967 Feb; 51(2): 172–6PubMedCrossRefGoogle Scholar
  13. 13.
    Reinhardt DJ, Waldron JM. Lupus erythematosus-like syndrome complicating hydralazine (apresoline) therapy. J Am Med Assoc 1954; 155: 1491–2PubMedCrossRefGoogle Scholar
  14. 14.
    Yokoyama T, Usui T, Kiyama K, et al. Two cases of late-onset drug-induced lupus erythematosus caused by ticlopidine in elderly men. Mod Rheumatol 2010 Aug; 20(4): 405–9PubMedCrossRefGoogle Scholar
  15. 15.
    Reich A, Bialynicki-Birula R, Szepietowski JC. Drug-induced subacute cutaneous lupus erythematosus resulting from ticlopidine. Int J Dermatol 2006 Sep; 45(9): 1112–4PubMedCrossRefGoogle Scholar
  16. 16.
    Sontheimer RD, Henderson CL, Grau RH. Drug-induced subacute cutaneous lupus erythematosus: a paradigm for bedside-to-bench patient-oriented translational clinical investigation. Arch Dermatol Res 2009 Jan; 301(1): 65–70PubMedCrossRefGoogle Scholar
  17. 17.
    Bonsmann G, Schiller M, Luger TA, et al. Terbinafine-induced subacute cutaneous lupus erythematosus. J Am Acad Dermatol 2001 Jun; 44(6): 925–31PubMedCrossRefGoogle Scholar
  18. 18.
    Srivastava M, Rencic A, Diglio G, et al. Drug-induced, Ro/SSA-positive cutaneous lupus erythematosus. Arch Dermatol 2003 Jan; 139(1): 45–9PubMedCrossRefGoogle Scholar
  19. 19.
    Kluger N, Bessis D, Guillot B. Chronic cutaneous lupus flare induced by systemic 5-fluorouracil. J Dermatol Treatment 2006; 17: 51–3CrossRefGoogle Scholar
  20. 20.
    Rubin RL. Drug-induced lupus. Toxicology 2005 Apr 15; 209(2): 135–47PubMedCrossRefGoogle Scholar
  21. 21.
    Ladd AT. Procainamide-induced lupus erythematosus. N Engl J Med 1962; 267: 1357–8PubMedCrossRefGoogle Scholar
  22. 22.
    Mongey AB, Donovan-Brand R, Thomas TJ, et al. Serologic evaluation of patients receiving procainamide. Arthritis Rheum 1992; 35: 1108–9CrossRefGoogle Scholar
  23. 23.
    Morrow JD, Schroeder HA, Perry Jr HM. Studies on the control of hypertension by hyphex: II. toxic reactions and side effects. Circulation 1953 Dec; 8(6): 829–39PubMedCrossRefGoogle Scholar
  24. 24.
    Yokogawa N, Vivino FB. Hydralazine-induced autoimmune disease: comparison to idiopathic lupus and ANCA-positive vasculitic. Mod Rheumatol 2009; 19: 338–47PubMedCrossRefGoogle Scholar
  25. 25.
    Bernstein RM, Egerton-Vernon J, Webster J. Hydrallazine induced cutaneous vasculitis. BMJ 1980; 280: 156–7PubMedCrossRefGoogle Scholar
  26. 26.
    Yokogawa N, Vivino FB. Hydralazine-induced autoimmune disease: comparison to idiopathic lupus and ANCA-positive vasculitis. Mod Rheumatol 2009; 19(3): 338–47PubMedCrossRefGoogle Scholar
  27. 27.
    Mongey AB, Donovan-Brand R, Thomas TJ, et al. Serologic evaluation of patients receiving procainamide. Arthritis Rheum 1992 Feb; 35(2): 219–23PubMedCrossRefGoogle Scholar
  28. 28.
    Rubin RL, Bell SA, Burlingame RW. Autoantibodies associated with lupus induced by diverse drugs target a similar epitope in the (H2A-H2B)-DNA complex. J Clin Invest 1992 Jul; 90(1): 165–73PubMedCrossRefGoogle Scholar
  29. 29.
    Cohen MG, Kevat S, Prowse MV, et al. Two distinct quinidine-induced rheumatic syndromes. Ann Intern Med 1988 Mar; 108(3): 369–71PubMedGoogle Scholar
  30. 30.
    Eichenfield AH. Minocycline and autoimmunity. Curr Opin Pediatr 1999 Oct; 11(5): 447–56PubMedCrossRefGoogle Scholar
  31. 31.
    Matsuura T, Shimizu Y, Fujimoto H, et al. Minocycline induced lupus. Lancet 1992; 340: 1553PubMedCrossRefGoogle Scholar
  32. 32.
    Schlienger RG, Bircher AJ, Meier CR. Minocycline-induced lupus: a systematic review. Dermatology 2000; 200(3): 223–31PubMedCrossRefGoogle Scholar
  33. 33.
    El-Hallak M, Giani T, Yaniay BS, et al. Chronic minocycline-induced lupus autoimmunity in children. J Pediatr 2008; 153: 303–4CrossRefGoogle Scholar
  34. 34.
    Lawson TM, Amos N, Bulgen D, et al. Minocycline-induced lupus: clinical features and response to rechallenge. Rheumatology (Oxford) 2001 Mar; 40(3): 329–35CrossRefGoogle Scholar
  35. 35.
    Dunphy J, Oliver M, Rands AL, et al. Antineutrophil cytoplasmic antibodies and HLA class II alleles in minocycline-induced lupus-like syndrome. Br J Dermatol 2000 Mar; 142(3): 461–7PubMedCrossRefGoogle Scholar
  36. 36.
    Walshe JM. Penicillamine and the SLE syndrome. J Rheumatol Suppl 1981; 7: 155–60PubMedGoogle Scholar
  37. 37.
    Bray VJ, West SG, Schultz KT, et al. Antihistone antibody profile in sulfasalazine induced lupus. J Rheumatol 1994 Nov; 21(11): 2157–8PubMedGoogle Scholar
  38. 38.
    Gunnarsson I, Nordmark B, Hassan Bakri A, et al. Development of lupus-related side-effects in patients with early RA during sulphasalazine treatment-the role of IL-10 and HLA. Rheumatology (Oxford) 2000 Aug; 39(8): 886–93CrossRefGoogle Scholar
  39. 39.
    Noel B. Lupus erythematosus and other autoimmune diseases related to statin therapy: a systematic review. J Eur Acad Dermatol Venereol 2007 Jan; 21(1): 17–24PubMedCrossRefGoogle Scholar
  40. 40.
    Bonaci-Nikolic B, Nikolic MM, Andrejevic S, et al. Antineutrophil cytoplasmic antibody (ANCA)-associated autoimmune diseases induced by antithyroid drugs: comparison with idiopathic ANCA vasculitides. Arthritis Res Ther 2005; 7(5): R1072–81PubMedCrossRefGoogle Scholar
  41. 41.
    Metcalf RG, Kuna A, Maccarron D. Disseminated lupus erythematosus versus drug reaction: report of a case receiving chlorpromazine. J Maine Med Assoc 1959 Jul; 50(7): 251–4PubMedGoogle Scholar
  42. 42.
    Canoso RT, de Oliveira RM. Chlorpromazine-induced anticardiolipin antibodies and lupus anticoagulant: absence of thrombosis. Am J Hematol 1988 Apr; 27(4): 272–5PubMedCrossRefGoogle Scholar
  43. 43.
    Canoso RT, Sise HS. Chlorpromazine-induced lupus anticoagulant and associated immunologic abnormalities. Am J Hematol 1982 Sep; 13(2): 121–9PubMedCrossRefGoogle Scholar
  44. 44.
    Laroche M, Borg S, Lassoued S, et al. Joint pain with aromatase inhibitors: abnormal frequency of Sjogren’s syndrome. J Rheumatol 2007 Nov; 34(11): 2259–63PubMedGoogle Scholar
  45. 45.
    Barendrecht MM, Tervaert JW, van Breda Vriesman PJ, et al. Susceptibility to cyclosporin A-induced auto-immunity: strain differences in relation to autoregulatory T cells. J Autoimmun 2002 Feb; 18(1): 39–48PubMedCrossRefGoogle Scholar
  46. 46.
    Rao T, Richardson B. Environmentally induced autoimmune diseases: potential mechanisms. Environ Health Perspect 1999 Oct; 107 Suppl. 5: 737–42PubMedCrossRefGoogle Scholar
  47. 47.
    Molina V, Shoenfeld Y. Infection, vaccines and other environmental triggers of autoimmunity. Autoimmunity 2005 May; 38(3): 235–45PubMedCrossRefGoogle Scholar
  48. 48.
    Abedi-Valugerdi M. Mercury and silver induce B cell activation and anti-nucleolar autoantibody production in outbred mouse stocks: are environmental factors more important than the susceptibility genes in connection with autoimmunity? Clin Exp Immunol 2009 Jan; 155(1): 117–24PubMedCrossRefGoogle Scholar
  49. 49.
    Rothschild B. Acrylamine-induced autoimmune phenomena. Clin Rheumatol 2010 Sep; 29(9): 999–1005PubMedCrossRefGoogle Scholar
  50. 50.
    Maini RN, Breedveld FC, Kalden JR, et al. Therapeutic efficacy of multiple intravenous infusions of anti-tumor necrosis factor alpha monoclonal antibody combined with low-dose weekly methotrexate in rheumatoid arthritis. Arthritis Rheum 1998 Sep; 41(9): 1552–63PubMedCrossRefGoogle Scholar
  51. 51.
    Elliott MJ, Maini RN, Feldmann M, et al. Treatment of rheumatoid arthritis with chimeric monoclonal antibodies to tumor necrosis factor alpha. Arthritis Rheum 1993 Dec; 36(12): 1681–90PubMedCrossRefGoogle Scholar
  52. 52.
    Elliott MJ, Maini RN, Feldmann M, et al. Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor alpha (cA2) versus placebo in rheumatoid arthritis. Lancet 1994 Oct 22; 344(8930): 1105–10PubMedCrossRefGoogle Scholar
  53. 53.
    Charles PJ, Smeenk RJ, De Jong J, et al. Assessment of antibodies to double-stranded DNA induced in rheumatoid arthritis patients following treatment with infliximab, a monoclonal antibody to tumor necrosis factor alpha: findings in open-label and randomized placebo-controlled trials. Arthritis Rheum 2000 Nov; 43(11): 2383–90PubMedCrossRefGoogle Scholar
  54. 54.
    Williams EL, Gadola S, Edwards CJ. Anti-TNF-induced lupus. Rheumatology (Oxford) 2009 Jul; 48(7): 716–20CrossRefGoogle Scholar
  55. 55.
    De Rycke L, Kruithof E, Van Damme N, et al. Antinuclear antibodies following infliximab treatment in patients with rheumatoid arthritis or spondylarthropathy. Arthritis Rheum 2003 Apr; 48(4): 1015–23PubMedCrossRefGoogle Scholar
  56. 56.
    Ramos-Casals M, Brito-Zeron P, Munoz S, et al. Autoimmune diseases induced by TNF-targeted therapies: analysis of 233 cases. Medicine (Baltimore) 2007 Jul; 86(4): 242–51CrossRefGoogle Scholar
  57. 57.
    Vermeire S, Noman M, Van Assche G, et al. Autoimmunity associated with anti-tumor necrosis factor alpha treatment in Crohn’s disease: a prospective cohort study. Gastroenterology 2003 Jul; 125(1): 32–9PubMedCrossRefGoogle Scholar
  58. 58.
    Costa MF, Said NR, Zimmermann B. Drug-induced lupus due to anti-tumor necrosis factor alpha agents. Semin Arthritis Rheum 2008 Jun; 37(6): 381–7PubMedCrossRefGoogle Scholar
  59. 59.
    De Bandt M, Sibilia J, Le Loet X, et al. Systemic lupus erythematosus induced by anti-tumour necrosis factor alpha therapy: a French national survey. Arthritis Res Ther 2005; 7(3): R545–51PubMedCrossRefGoogle Scholar
  60. 60.
    Elkayam O, Burke M, Vardinon N, et al. Autoantibodies profile of rheumatoid arthritis patients during treatment with infliximab. Autoimmunity 2005 Mar; 38(2): 155–60PubMedCrossRefGoogle Scholar
  61. 61.
    Jonsdottir T, Forslid J, van Vollenhoven A, et al. Treatment with tumour necrosis factor alpha antagonists in patients with rheumatoid arthritis induces anticardiolipin antibodies. Ann Rheum Dis 2004 Sep; 63(9): 1075–8PubMedCrossRefGoogle Scholar
  62. 62.
    De Rycke L, Baeten D, Kruithof E, et al. Infliximab, but not etanercept, induces IgM anti-double-stranded DNA autoantibodies as main antinuclear reactivity: biologic and clinical implications in autoimmune arthritis. Arthritis Rheum 2005 Jul; 52(7): 2192–201PubMedCrossRefGoogle Scholar
  63. 63.
    Eriksson C, Engstrand S, Sundqvist KG, et al. Autoantibody formation in patients with rheumatoid arthritis treated with anti-TNF alpha. Ann Rheum Dis 2005 Mar; 64(3): 403–7PubMedCrossRefGoogle Scholar
  64. 64.
    Stokes MB, Foster K, Markowitz GS, et al. Development of glomerulonephritis during anti-TNF-alpha therapy for rheumatoid arthritis. Nephrol Dial Transplant 2005 Jul; 20(7): 1400–6PubMedCrossRefGoogle Scholar
  65. 65.
    Mohan N, Edwards ET, Cupps TR, et al. Leukocytoclastic vasculitis associated with tumor necrosis factor-alpha blocking agents. J Rheumatol 2004 Oct; 31(10): 1955–8PubMedGoogle Scholar
  66. 66.
    Mor A, Bingham 3rd C, Barisoni L, et al. Proliferative lupus nephritis and leukocytoclastic vasculitis during treatment with etanercept. J Rheumatol 2005 Apr; 32(4): 740–3PubMedGoogle Scholar
  67. 67.
    De Bandt M. Lessons for lupus from tumour necrosis factor blockade. Lupus 2006; 15(11): 762–7PubMedCrossRefGoogle Scholar
  68. 68.
    Ronnblom LE, Alm GV, Oberg KE. Autoimmunity after alpha-interferon therapy for malignant carcinoid tumors. Ann Intern Med 1991 Aug 1; 115(3): 178–83PubMedGoogle Scholar
  69. 69.
    Gogas H, Ioannovich J, Dafni U, et al. Prognostic significance of autoimmunity during treatment of melanoma with interferon. N Engl J Med 2006 Feb 16; 354(7): 709–18PubMedCrossRefGoogle Scholar
  70. 70.
    Atkins MB, Mier JW, Parkinson DR, et al. Hypothyroidism after treatment with interleukin-2 and lymphokine-activated killer cells. N Engl J Med 1988 Jun 16; 318(24): 1557–63PubMedCrossRefGoogle Scholar
  71. 71.
    Massarotti EM, Liu NY, Mier J, et al. Chronic inflammatory arthritis after treatment with high-dose interleukin-2 for malignancy. Am J Med 1992 Jun; 92(6): 693–7PubMedCrossRefGoogle Scholar
  72. 72.
    Pichler WJ. Pharmacological interaction of drugs with antigen-specific immune receptors: the p-i concept. Curr Opin Allergy Clin Immunol 2002 Aug; 2(4): 301–5PubMedCrossRefGoogle Scholar
  73. 73.
    Uetrecht JP. Current trends in drug-induced autoimmunity. Toxicology 1997 Apr 11; 119(1): 37–43PubMedCrossRefGoogle Scholar
  74. 74.
    Kretz-Rommel A, Duncan SR, Rubin RL. Autoimmunity caused by disruption of central T cell tolerance: a murine model of drug-induced lupus. J Clin Invest 1997 Apr 15; 99(8): 1888–96PubMedCrossRefGoogle Scholar
  75. 75.
    Rubin RL, Kretz-Rommel A. Initiation of autoimmunity by a reactive metabolite of a lupus-inducing drug in the thymus. Environ Health Perspect 1999 Oct; 107 Suppl. 5: 803–6PubMedCrossRefGoogle Scholar
  76. 76.
    Kretz-Rommel A, Rubin RL. Disruption of positive selection of thymocytes causes autoimmunity. Nat Med 2000 Mar; 6(3): 298–305PubMedCrossRefGoogle Scholar
  77. 77.
    Ablin J, Verbovetski I, Trahtemberg U, et al. Quinidine and procainamide inhibit murine macrophage uptake of apoptotic and necrotic cells: a novel contributing mechanism of drug-induced-lupus. Apoptosis 2005 Oct; 10(5): 1009–18PubMedCrossRefGoogle Scholar
  78. 78.
    Hieronymus T, Grotsch P, Blank N, et al. Chlorpromazine induces apoptosis in activated human lymphoblasts: a mechanism supporting the induction of drug-induced lupus erythematosus? Arthritis Rheum 2000 Sep; 43(9): 1994–2004PubMedCrossRefGoogle Scholar
  79. 79.
    Balada E, Ordi-Ros J, Vilardell-Tarres M. DNA methylation and systemic lupus erythematosus. Ann N Y Acad Sci 2007 Jun; 1108: 127–36PubMedCrossRefGoogle Scholar
  80. 80.
    Deng C, Lu Q, Zhang Z, et al. Hydralazine may induce autoimmunity by inhibiting extracellular signal-regulated kinase pathway signaling. Arthritis Rheum 2003 Mar; 48(3): 746–56PubMedCrossRefGoogle Scholar
  81. 81.
    Gorelik G, Fang JY, Wu A, et al. Impaired T cell protein kinase C delta activation decreases ERK pathway signaling in idiopathic and hydralazine-induced lupus. J Immunol 2007 Oct 15; 179(8): 5553–63PubMedGoogle Scholar
  82. 82.
    Lu Q, Kaplan M, Ray D, et al. Demethylation of ITGAL (CD11a) regulatory sequences in systemic lupus erythematosus. Arthritis Rheum 2002 May; 46(5): 1282–91PubMedCrossRefGoogle Scholar
  83. 83.
    Yung R, Powers D, Johnson K, et al. Mechanisms of drug-induced lupus: II. T cells overexpressing lymphocyte function-associated antigen 1 become autoreactive and cause a lupuslike disease in syngeneic mice. J Clin Invest 1996 Jun 15; 97(12): 2866–71PubMedCrossRefGoogle Scholar
  84. 84.
    Oelke K, Richardson B. Decreased T cell ERK pathway signaling may contribute to the development of lupus through effects on DNA methylation and gene expression. Int Rev Immunol 2004 May–Aug; 23(3–4): 315–31PubMedCrossRefGoogle Scholar
  85. 85.
    Zhou Y, Lu Q. DNA methylation in T cells from idiopathic lupus and drug-induced lupus patients. Autoimmun Rev 2008 May; 7(5): 376–83PubMedCrossRefGoogle Scholar
  86. 86.
    Lu Q, Wu A, Richardson BC. Demethylation of the same promoter sequence increases CD70 expression in lupus T cells and T cells treated with lupus-inducing drugs. J Immunol 2005 May 15; 174(10): 6212–9PubMedGoogle Scholar
  87. 87.
    Mevorach D. Systemic lupus erythematosus and apoptosis: a question of balance. Clin Rev Allergy Immunol 2003 Aug; 25(1): 49–60PubMedCrossRefGoogle Scholar
  88. 88.
    Baima B, Sticherling M. Apoptosis in different cutaneous manifestations of lupus erythematosus. Br J Dermatol 2001 May; 144(5): 958–66PubMedCrossRefGoogle Scholar
  89. 89.
    Blanco-Colio LM, Villa A, Ortego M, et al. 3-Hydroxy-3-methyl-glutaryl coenzyme A reductase inhibitors, atorvastatin and simvastatin, induce apoptosis of vascular smooth muscle cells by downregulation of Bcl-2 expression and Rho A prenylation. Atherosclerosis 2002 Mar; 161(1): 17–26PubMedCrossRefGoogle Scholar
  90. 90.
    Hakamada-Taguchi R, Uehara Y, Kuribayashi K, et al. Inhibition of hydroxymethylglutaryl-coenzyme a reductase reduces Th1 development and promotes Th2 development. Circ Res 2003 Nov 14; 93(10): 948–56PubMedCrossRefGoogle Scholar
  91. 91.
    Youssef S, Stuve O, Patarroyo JC, et al. The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature 2002 Nov 7; 420(6911): 78–84PubMedCrossRefGoogle Scholar
  92. 92.
    Li J, Uetrecht JP. D-penicillamine-induced autoimmunity: relationship to macrophage activation. Chem Res Toxicol 2009 Sep; 22(9): 1526–33PubMedCrossRefGoogle Scholar
  93. 93.
    Damoiseaux JG, Beijleveld LJ, van Breda Vriesman PJ. Multiple effects of cyclosporin A on the thymus in relation to T-cell development and autoimmunity. Clin Immunol Immunopathol 1997 Mar; 82(3): 197–202PubMedCrossRefGoogle Scholar
  94. 94.
    Ferraccioli G, Mecchia F, Di Poi E, et al. Anticardiolipin antibodies in rheumatoid patients treated with etanercept or conventional combination therapy: direct and indirect evidence for a possible association with infections. Ann Rheum Dis 2002 Apr; 61(4): 358–61PubMedCrossRefGoogle Scholar
  95. 95.
    Wiik A. Drug-induced vasculitis. Curr Opin Rheumatol 2008 Jan; 20(1): 35–9PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2011

Authors and Affiliations

  1. 1.Division of Allergy, Asthma and ImmunologyNemours/A.I. Dupont Children’s Hospital, Thomas Jefferson UniversityWilmingtonUSA
  2. 2.Division of Rheumatology, Allergy and Clinical ImmunologyUniversity of California at Davis School of MedicineDavisUSA

Personalised recommendations