CNS Drugs

, Volume 25, Issue 5, pp 401–414 | Cite as

Glatiramer Acetate in the Treatment of Multiple Sclerosis

Emerging Concepts Regarding its Mechanism of Action
  • Patrice H. Lalive
  • Oliver Neuhaus
  • Mahdia Benkhoucha
  • Danielle Burger
  • Reinhard Hohlfeld
  • Scott S. Zamvil
  • Martin S. WeberEmail author
Review Article


Glatiramer acetate is a synthetic, random copolymer widely used as a first-line agent for the treatment of relapsing-remitting multiple sclerosis (MS). While earlier studies primarily attributed its clinical effect to a shift in the cytokine secretion of CD4+ T helper (Th) cells, growing evidence in MS and its animal model, experimental autoimmune encephalomyelitis (EAE), suggests that glatiramer acetate treatment is associated with a broader immunomodulatory effect on cells of both the innate and adaptive immune system. To date, glatiramer acetate-mediated modulation of antigen-presenting cells (APC) such as monocytes and dendritic cells, CD4+ Th cells, CD8+ T cells, Foxp3+ regulatory T cells and antibody production by plasma cells have been reported; in addition, most recent investigations indicate that glatiramer acetate treatment may also promote regulatory B-cell properties. Experimental evidence suggests that, among these diverse effects, a fostering interplay between anti-inflammatory T-cell populations and regulatory type II APC may be the central axis in glatiramer acetate-mediated immune modulation of CNS autoimmune disease. Besides altering inflammatory processes, glatiramer acetate could exert direct neuroprotective and/or neuroregenerative properties, which could be of relevance for the treatment of MS, but even more so for primarily neurodegenerative disorders, such as Alzheimer’s or Parkinson’s disease. In this review, we provide a comprehensive and critical overview of established and recent findings aiming to elucidate the complex mechanism of action of glatiramer acetate.


Multiple Sclerosis Amyotrophic Lateral Sclerosis Experimental Autoimmune Encephalomyelitis Multiple Sclerosis Patient Antigen Present Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



No sources of funding were used to assist in the preparation of this review. P.H.L. is supported by grants from the Swiss National Foundation (♯310000-132705), the Swiss Multiple Sclerosis Society and the Alliance SEP association. D.B. is supported by the Swiss Multiple Sclerosis Society and the Hans Wilsdorf Foundation. R.H. received personal compensation for activities such as advisory boards, consultancy fees from TEVA/Sanofi-Aventis, Bayer/Schering, Merck-Serono, Biogen-Idec and Novartis. R.H. received grant support from Deutsche Forschungsgemeinschaft (DFG), BMBF-KKNMS, TEVA, Bayer/Schering, Merck-Serono, Biogen-Idec and Novartis. S.S.Z. is supported by grants from the National Institute of Health (RO1 AI073737, RO1 AI059709 and RO1 NS063008), the National Multiple Sclerosis Society (NMSS; RG 3622 and 3913), Dana Foundation, Guthy Jackson Charitable Foundation and the Maisin Foundation. M.S.W. received grant support from the NMSS (RG 445A1/T), TEVA, the Else Kröner Fresenius Stiftung (A69/2010), the Kommission für Klinische Forschung (KKF) of the Technische Universität München and the DFG (WE 3547/4−1). The other authors have no conflicts of interest to declare.


  1. 1.
    Teitelbaum D, Meshorer A, Hirshfeld T, et al. Suppression of experimental allergic encephalomyelitis by a synthetic polypeptide. Eur J Immunol 1971 Aug; 1(4): 242–8PubMedCrossRefGoogle Scholar
  2. 2.
    Teitelbaum D, Webb C, Bree M, et al. Suppression of experimental allergic encephalomyelitis in Rhesus monkeys by a synthetic basic copolymer. Clin Immunol Immunopathol 1974 Nov; 3(2): 256–62PubMedCrossRefGoogle Scholar
  3. 3.
    Lisak RP, Zweiman B, Blanchard N, et al. Effect of treatment with Copolymer 1 (Cop-1) on the in vivo and in vitro manifestations of experimental allergic encephalomyelitis (EAE). J Neurol Sci 1983 Dec; 62 (1–3): 281–93CrossRefGoogle Scholar
  4. 4.
    Teitelbaum D, Fridkis-Hareli M, Arnon R, et al. Copolymer 1 inhibits chronic relapsing experimental allergic encephalomyelitis induced by proteolipid protein (PLP) peptides in mice and interferes with PLP-specific T cell responses. J Neuroimmunol 1996 Feb; 64(2): 209–17PubMedCrossRefGoogle Scholar
  5. 5.
    Johnson KP, Brooks BR, Cohen JA, et al. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind, placebo-controlled trial. Neurology 1995; 45: 1268–76PubMedCrossRefGoogle Scholar
  6. 6.
    Mikol DD, Barkhof F, Chang P, et al. Comparison of subcutaneous interferon beta-1a with glatiramer acetate in patients with relapsing multiple sclerosis (the REbif vs Glatiramer Acetate in Relapsing MS Disease [REGARD] study): a multicentre, randomised, parallel, open-label trial. Lancet Neurol 2008 Oct; 7(10): 903–14PubMedCrossRefGoogle Scholar
  7. 7.
    O’Connor P, Filippi M, Arnason B, et al. 250 mug or 500 mug interferon beta-1b versus 20 mg glatiramer acetate in relapsing-remitting multiple sclerosis: a prospective, randomised, multicentre study. Lancet Neurol 2009 Oct; 8(10): 889–97PubMedCrossRefGoogle Scholar
  8. 8.
    Duda PW, Schmied MC, Cook SL, et al. Glatiramer acetate(Copaxone) induces degenerate, Th2-polarized immune responses in patients with multiple sclerosis. J Clin Invest 2000; 105(7): 967–76PubMedCrossRefGoogle Scholar
  9. 9.
    Neuhaus O, Farina C, Yassouridis A, et al. Multiple sclerosis: comparison of copolymer-1-reactive T cell lines from treated and untreated subjects reveals cytokine shift from T helper 1 to T helper 2 cells. Proc Natl Acad Sci U S A 2000; 97(13): 7452–7PubMedCrossRefGoogle Scholar
  10. 10.
    Vieira PL, Heystek HC, Wormmeester J, et al. Glatiramer acetate (copolymer-1, copaxone) promotes Th2 cell development and increased IL-10 production through modulation of dendritic cells. J Immunol 2003 May 1; 170(9): 4483–8PubMedGoogle Scholar
  11. 11.
    Hong J, Li N, Zhang X, et al. Induction of CD4+CD25+ regulatory T cells by copolymer-I through activation of transcription factor Foxp3. Proc Natl Acad Sci U S A 2005 May 3; 102(18): 6449–54PubMedCrossRefGoogle Scholar
  12. 12.
    Weber MS, Prod’homme T, Youssef S, et al. Type II monocytes modulate T cell-mediated central nervous system autoimmune disease. Nat Med 2007 Aug; 13(8): 935–43PubMedCrossRefGoogle Scholar
  13. 13.
    Karandikar NJ, Crawford MP, Yan X, et al. Glatiramer acetate (Copaxone) therapy induces CD8(+) T cell responses in patients with multiple sclerosis. J Clin Invest 2002 Mar; 109(5): 641–9PubMedGoogle Scholar
  14. 14.
    Weber MS, Starck M, Wagenpfeil S, et al. Multiple sclerosis: glatiramer acetate inhibits monocyte reactivity in vitro and in vivo. Brain 2004 Jun; 127 (Pt 6): 1370–8PubMedCrossRefGoogle Scholar
  15. 15.
    Kim HJ, Ifergan I, Antel JP, et al. Type 2 monocyte and microglia differentiation mediated by glatiramer acetate therapy in patients with multiple sclerosis. J Immunol 2004 Jun 1; 172(11): 7144–53PubMedGoogle Scholar
  16. 16.
    Stasiolek M, Bayas A, Kruse N, et al. Impaired maturation and altered regulatory function of plasmacytoid dendritic cells in multiple sclerosis. Brain 2006 May; 129 (Pt 5): 1293–305PubMedCrossRefGoogle Scholar
  17. 17.
    Stuve O, Youssef S, Weber MS, et al. Immunomodulatory synergy by combination of atorvastatin and glatiramer acetate in treatment of CNS autoimmunity. J Clin Invest 2006 Apr; 116(4): 1037–44PubMedCrossRefGoogle Scholar
  18. 18.
    Burger D, Molnarfi N, Weber MS, et al. Glatiramer acetate increases IL-1 receptor antagonist but decreases T cell-induced IL-1beta in human monocytes and multiple sclerosis. roc Natl Acad Sci U S A 2009 Mar 17; 106(11): 4355–9CrossRefGoogle Scholar
  19. 19.
    Kala M, Rhodes SN, Piao WH, et al. B cells from glatiramer acetate-treated mice suppress experimental autoimmune encephalomyelitis. Exp Neurol 2010 Jan; 221(1): 136–45PubMedCrossRefGoogle Scholar
  20. 20.
    Begum-Haque S, Sharma A, Christy M, et al. Increased expression of B cell-associated regulatory cytokines by glatiramer acetate in mice with experimental autoimmune encephalomyelitis. J Neuroimmunol 2010 Feb 26; 219 (1–2): 47–53Google Scholar
  21. 21.
    Aharoni R, Eilam R, Domev H, et al. The immunomodulator glatiramer acetate augments the expression of neurotrophic factors in brains of experimental autoimmune encephalomyelitis mice. Proc Natl Acad Sci U S A 2005 Dec 27; 102(52): 19045–50PubMedCrossRefGoogle Scholar
  22. 22.
    Chen M, Valenzuela RM, Dhib-Jalbut S. Glatiramer acetate-reactive T cells produce brain-derived neurotrophic factor. J Neurol Sci 2003 Nov 15; 215(1–2): 37–44PubMedCrossRefGoogle Scholar
  23. 23.
    Kipnis J, Yoles E, Porat Z, et al. T cell immunity to copolymer1 confers neuroprotection on the damaged optic nerve: possible therapy for optic neuropathies. Proc Natl Acad Sci U S A 2000 Jun 20; 97(13): 7446–51PubMedCrossRefGoogle Scholar
  24. 24.
    Ziemssen T, Kumpfel T, Klinkert WE, et al. Glatiramer acetate-specific T-helper 1- and 2-type cell lines produce BDNF: implications for multiple sclerosis therapy — brain-derived neurotrophic factor. Brain 2002 Nov; 125 (Pt 11): 2381–91PubMedCrossRefGoogle Scholar
  25. 25.
    Skihar V, Silva C, Chojnacki A, et al. Promoting oligodendrogenesis and myelin repair using the multiple sclerosis medication glatiramer acetate. Proc Natl Acad Sci U S A 2009 Oct 20; 106(42): 17992–7PubMedCrossRefGoogle Scholar
  26. 26.
    Aharoni R, Herschkovitz A, Eilam R, et al. Demyelination arrest and remyelination induced by glatiramer acetate treatment of experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 2008 Aug 12; 105(32): 11358–63PubMedCrossRefGoogle Scholar
  27. 27.
    Neuhaus O, Farina C, Wekerle H, et al. Mechanisms of action of glatiramer acetate in multiple sclerosis. Neurology 2001; 56(6): 702–8PubMedCrossRefGoogle Scholar
  28. 28.
    Farina C, Weber MS, Meinl E, et al. Glatiramer acetate in multiple sclerosis: update on potential mechanisms of action. Lancet Neurol 2005 Sep; 4(9): 567–75PubMedCrossRefGoogle Scholar
  29. 29.
    Fridkis-Hareli M, Strominger JL. Promiscuous binding of synthetic copolymer 1 to purified HLA-DR molecules. J Immunol 1998 May 1; 160(9): 4386–97PubMedGoogle Scholar
  30. 30.
    Fridkis-Hareli M, Teitelbaum D, Gurevich E, et al. Direct binding of myelin basic protein and synthetic copolymer 1 to class II major histocompatibility complex molecules on living antigen-presenting cells: specificity and promiscuity. Proc Natl Acad Sci U S A 1994 May 24; 91(11): 4872–6PubMedCrossRefGoogle Scholar
  31. 31.
    Teitelbaum D, Milo R, Arnon R, et al. Synthetic copolymer 1 inhibits human T-cell lines specific for myelin basic protein. Proc Natl Acad Sci U S A 1992 Jan 1; 89(1): 137–41PubMedCrossRefGoogle Scholar
  32. 32.
    Webb C, Teitelbaum D, Herz A, et al. Molecular requirementsinvolved in suppression of EAE by synthetic basic copolymers of amino acids. Immunochemistry 1976 Apr; 13(4): 333–7PubMedCrossRefGoogle Scholar
  33. 33.
    Aharoni R, Schlegel PG, Teitelbaum D, et al. Studies on the mechanism and specificity of the effect of the synthetic random copolymer GLAT on graft-versus-host disease. Immunol Lett 1997 Jul; 58(2): 79–87PubMedCrossRefGoogle Scholar
  34. 34.
    Wiesemann E, Klatt J, Sonmez D, et al. Glatiramer acetate(GA) induces IL-13/IL-5 secretion in naive T cells. J Neuroimmunol 2001 Sep 3; 119(1): 137–44PubMedCrossRefGoogle Scholar
  35. 35.
    Dhib-Jalbut S. Mechanisms of action of interferons and glatiramer acetate in multiple sclerosis. Neurology 2002 Apr 23; 58(8 Suppl. 4): S3–9PubMedCrossRefGoogle Scholar
  36. 36.
    Aharoni R, Teitelbaum D, Sela M, et al. Copolymer 1 induces T cells of the T helper type 2 that crossreact with myelin basic protein and suppress experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 1997; 94(20): 10821–6PubMedCrossRefGoogle Scholar
  37. 37.
    Aharoni R, Teitelbaum D, Leitner O, et al. Specific Th2 cells accumulate in the central nervous system of mice protected against experimental autoimmune encephalomyelitis by copolymer 1. Proc Natl Acad Sci U S A 2000; 97(21): 11472–7PubMedCrossRefGoogle Scholar
  38. 38.
    Chen M, Gran B, Costello K, et al. Glatiramer acetate induces a Th2-biased response and crossreactivity with myelin basic protein in patients with MS. Mult Scler 2001 Aug; 7(4): 209–19PubMedGoogle Scholar
  39. 39.
    Aharoni R, Teitelbaum D, Sela M, et al. Bystander suppression of experimental autoimmune encephalomyelitis by T cell lines and clones of the Th2 type induced by copolymer 1. J Neuroimmunol 1998; 91(1–2): 135–46PubMedCrossRefGoogle Scholar
  40. 40.
    Kantengwa S, Weber MS, Juillard C, et al. Inhibition of naive Th1 CD4+ T cells by glatiramer acetate in multiple sclerosis. J Neuroimmunol 2007 Apr; 185(1–2): 123–9PubMedCrossRefGoogle Scholar
  41. 41.
    Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003 Feb 14; 299(5609): 1057–61PubMedCrossRefGoogle Scholar
  42. 42.
    Brunkow ME, Jeffery EW, Hjerrild KA, et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 2001 Jan; 27(1): 68–73PubMedCrossRefGoogle Scholar
  43. 43.
    Kukreja A, Cost G, Marker J, et al. Multiple immunoregulatory defects in type-1 diabetes. J Clin Invest 2002 Jan; 109(1): 131–40PubMedGoogle Scholar
  44. 44.
    Viglietta V, Baecher-Allan C, Weiner HL, et al. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 2004 Apr 5; 199(7): 971–9PubMedCrossRefGoogle Scholar
  45. 45.
    Farina C, Then Bergh F, Albrecht H, et al. Treatment of multiple sclerosis with Copaxone (COP): Elispot assay detects COP-induced interleukin-4 and interferon-gamma response in blood cells. Brain 2001 Apr; 124 (Pt 4): 705–19PubMedCrossRefGoogle Scholar
  46. 46.
    Tennakoon DK, Mehta RS, Ortega SB, et al. Therapeutic induction of regulatory, cytotoxic CD8+ T cells in multiple sclerosis. J Immunol 2006 Jun 1; 176(11): 7119–29PubMedGoogle Scholar
  47. 47.
    Biegler BW, Yan SX, Ortega SB, et al. Glatiramer acetate (GA) therapy induces a focused, oligoclonal CD8+ T-cell repertoire in multiple sclerosis. J Neuroimmunol 2006 Nov; 180(1–2): 159–71PubMedCrossRefGoogle Scholar
  48. 48.
    Teitelbaum D, Brenner T, Abramsky O, et al. Antibodies to glatiramer acetate do not interfere with its biological functions and therapeutic efficacy. Mult Scler 2003 Dec; 9(6): 592–9PubMedCrossRefGoogle Scholar
  49. 49.
    Farina C, Vargas V, Heydari N, et al. Treatment with glatiramer acetate induces specific IgG4 antibodies in multiple sclerosis patients. J Neuroimmunol 2002 Feb; 123(1–2): 188–92PubMedCrossRefGoogle Scholar
  50. 50.
    Kappos L, Clanet M, Sandberg-Wollheim M, et al. Neutralizing antibodies and efficacy of interferon beta-1a: a 4-year controlled study. Neurology 2005 Jul 12; 65(1): 40–7PubMedCrossRefGoogle Scholar
  51. 51.
    Karussis D, Teitelbaum D, Sicsic C, et al. Long-term treatment of multiple sclerosis with glatiramer acetate: natural history of the subtypes of anti-glatiramer acetate antibodies and their correlation with clinical efficacy. J Neuroimmunol 2010 Mar 30; 220(1–2): 125–30PubMedCrossRefGoogle Scholar
  52. 52.
    Brenner T, Arnon R, Sela M, et al. Humoral and cellular immune responses to Copolymer 1 in multiple sclerosis patients treated with Copaxone. J Neuroimmunol 2001 Apr 2; 115(1–2): 152–60PubMedCrossRefGoogle Scholar
  53. 53.
    Ure DR, Rodriguez M. Polyreactive antibodies to glatiramer acetate promote myelin repair in murine model of demyelinating disease. FASEB J 2002 Aug; 16(10): 1260–2PubMedGoogle Scholar
  54. 54.
    Weber MS, Prod’homme T, Patarroyo JC, et al. B-cell activation influences T-cell polarization and outcome of anti-CD20 B-cell depletion in central nervous system autoimmunity. Ann Neurol 2010 Sep; 68(3): 369–83PubMedCrossRefGoogle Scholar
  55. 55.
    Hauser SL, Waubant E, Arnold DL, et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 2008 Feb 14; 358(7): 676–88PubMedCrossRefGoogle Scholar
  56. 56.
    Bar-Or A, Fawaz L, Fan B, et al. Abnormal B-cell cytokine responses a trigger of T-cell-mediated disease in MS? Ann Neurol 2010 Apr; 67(4): 452–61PubMedCrossRefGoogle Scholar
  57. 57.
    Fillatreau S, Sweenie CH, McGeachy MJ, et al. B cells regulateautoimmunity by provision of IL-10. Nat Immunol 2002 Oct; 3(10): 944–50PubMedCrossRefGoogle Scholar
  58. 58.
    Mann MK, Maresz K, Shriver LP, et al. B cell regulation of CD4 + CD25+ T regulatory cells and IL-10 via B7 is essential for recovery from experimental autoimmune encephalomyelitis. J Immunol 2007 Mar 15; 178(6): 3447–56PubMedGoogle Scholar
  59. 59.
    Bouaziz JD, Yanaba K, Tedder TF. Regulatory B cells as inhibitors of immune responses and inflammation. Immunol Rev 2008 Aug; 224: 201–14PubMedCrossRefGoogle Scholar
  60. 60.
    De Smedt T, Van Mechelen M, De Becker G, et al. Effect of interleukin-10 on dendritic cell maturation and function. Eur J Immunol 1997 May; 27(5): 1229–35PubMedCrossRefGoogle Scholar
  61. 61.
    Li Q, Milo R, Panitch H, et al. Glatiramer acetate blocksthe activation of THP-1 cells by interferon-gamma. Eur J Pharmacol 1998 Jan 26; 342(2–3): 303–10PubMedCrossRefGoogle Scholar
  62. 62.
    Hussien Y, Sanna A, Soderstrom M, et al. Glatiramer acetate and IFN-beta act on dendritic cells in multiple sclerosis. J Neuroimmunol 2001 Dec 3; 121(1–2): 102–10PubMedCrossRefGoogle Scholar
  63. 63.
    Jung S, Siglienti I, Grauer O, et al. Induction of IL-10 in ratperitoneal macrophages and dendritic cells by glatiramer acetate. J Neuroimmunol 2004 Mar; 148(1–2): 63–73PubMedCrossRefGoogle Scholar
  64. 64.
    Sanna A, Fois ML, Arru G, et al. Glatiramer acetate reduces lymphocyte proliferation and enhances IL-5 and IL-13 production through modulation of monocyte-derived dendritic cells in multiple sclerosis. Clin Exp Immunol 2006 Feb; 143(2): 357–62PubMedCrossRefGoogle Scholar
  65. 65.
    Carpintero R, Brandt KJ, Gruaz L, et al. Glatiramer acetate triggers PI3Kdelta/Akt and MEK/ERK pathways to induce IL-1 receptor antagonist in human monocytes. Proc Natl Acad Sci U S A 2010 Oct 12; 107(41): 17692–7PubMedCrossRefGoogle Scholar
  66. 66.
    Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006 May 11; 441(7090): 235–8PubMedCrossRefGoogle Scholar
  67. 67.
    Korn T, Mitsdoerffer M, Croxford AL, et al. IL-6 controls Th17 immunity in vivo by inhibiting the conversion of conventional T cells into Foxp3+ regulatory T cells. Proc Natl Acad Sci U S A 2008 Nov 25; 105(47): 18460–5PubMedCrossRefGoogle Scholar
  68. 68.
    Korn T, Oukka M, Kuchroo V, et al. Th17 cells: effector T cells with inflammatory properties. Semin Immunol 2007 Dec; 19(6): 362–71PubMedCrossRefGoogle Scholar
  69. 69.
    Mombaerts P, Iacomini J, Johnson RS, et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell 1992 Mar 6; 68(5): 869–77PubMedCrossRefGoogle Scholar
  70. 70.
    Aharoni R, Kayhan B, Eilam R, et al. Glatiramer acetate-specific T cells in the brain express T helper 2/3 cytokines and brain-derived neurotrophic factor in situ. Proc Natl Acad Sci U S A 2003 Nov 25; 100(24): 14157–62PubMedCrossRefGoogle Scholar
  71. 71.
    Allie R, Hu L, Mullen KM, et al. Bystander modulation of chemokine receptor expression on peripheral blood T lymphocytes mediated by glatiramer therapy. Arch Neurol 2005 Jun; 62(6): 889–94PubMedCrossRefGoogle Scholar
  72. 72.
    Zhang M, Chan CC, Vistica B, et al. Copolymer 1 inhibits experimental autoimmune uveoretinitis. J Neuroimmunol 2000 Mar 1; 103(2): 189–94PubMedCrossRefGoogle Scholar
  73. 73.
    Gur C, Karussis D, Golden E, et al. Amelioration of experimental colitis by Copaxone is associated with class-II-restricted CD4 immune blocking. Clin Immunol 2006 Feb–Mar; 118(2–3): 307–16PubMedCrossRefGoogle Scholar
  74. 74.
    Arnon R, Aharoni R. Mechanism of action of glatiramer acetate in multiple sclerosis and its potential for the development of new applications. Proc Natl Acad Sci U S A 2004 Oct 5; 101 Suppl. 2: 14593–8PubMedCrossRefGoogle Scholar
  75. 75.
    Kerschensteiner M, Stadelmann C, Dechant G, et al. Neurotrophic cross-talk between the nervous and immune systems: implications for neurological diseases. Ann Neurol 2003 Mar; 53(3): 292–304PubMedCrossRefGoogle Scholar
  76. 76.
    Riley CP, Cope TC, Buck CR. CNS neurotrophins are biologically active and expressed by multiple cell types. J Mol Histol 2004 Nov; 35(8–9): 771–83PubMedCrossRefGoogle Scholar
  77. 77.
    Kerschensteiner M, Gallmeier E, Behrens L, et al. Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J Exp Med 1999 Mar 1; 189(5): 865–70PubMedCrossRefGoogle Scholar
  78. 78.
    Stadelmann C, Kerschensteiner M, Misgeld T, et al. BDNF and gp145trkB in multiple sclerosis brain lesions: neuroprotective interactions between immune and neuronal cells? Brain 2002 Jan; 125 (Pt 1): 75–85PubMedCrossRefGoogle Scholar
  79. 79.
    Maier K, Kuhnert AV, Taheri N, et al. Effects of glatiramer acetate and interferon-beta on neurodegeneration in a model of multiple sclerosis: a comparative study. Am J Pathol 2006 Oct; 169(4): 1353–64PubMedCrossRefGoogle Scholar
  80. 80.
    Aharoni R, Arnon R, Eilam R. Neurogenesis and neuroprotection induced by peripheral immunomodulatory treatment of experimental autoimmune encephalomyelitis. J Neurosci 2005 Sep 7; 25(36): 8217–28PubMedCrossRefGoogle Scholar
  81. 81.
    Gilgun-Sherki Y, Panet H, Holdengreber V, et al. Axonal damage is reduced following glatiramer acetate treatment in C57/bl mice with chronic-induced experimental autoimmune encephalomyelitis. Neurosci Res 2003 Oct; 47(2): 201–7PubMedCrossRefGoogle Scholar
  82. 82.
    Liu J, Johnson TV, Lin J, et al. T cell independent mechanism for copolymer-1-induced neuroprotection. Eur J Immunol 2007 Nov; 37(11): 3143–54PubMedCrossRefGoogle Scholar
  83. 83.
    Azoulay D, Vachapova V, Shihman B, et al. Lower brain-derived neurotrophic factor in serum of relapsing remitting MS: reversal by glatiramer acetate. J Neuroimmunol 2005 Oct; 167(1–2): 215–8PubMedCrossRefGoogle Scholar
  84. 84.
    Filippi M, Rovaris M, Rocca MA, et al. Glatiramer acetate reduces the proportion of new MS lesions evolving into ‘black holes’. Neurology 2001 Aug 28; 57(4): 731–3PubMedCrossRefGoogle Scholar
  85. 85.
    Khan O, Shen Y, Bao F, et al. Long-term study of brain 1H-MRS study in multiple sclerosis: effect of glatiramer acetate therapy on axonal metabolic function and feasibility of long-Term H-MRS monitoring in multiple sclerosis. J Neuroimaging 2008 Jul; 18(3): 314–9PubMedCrossRefGoogle Scholar
  86. 86.
    Franklin RJ. Why does remyelination fail in multiple sclerosis? Nat Rev Neurosci 2002 Sep; 3(9): 705–14PubMedCrossRefGoogle Scholar
  87. 87.
    Lalive PH, Paglinawan R, Biollaz G, et al. TGF-beta-treated microglia induce oligodendrocyte precursor cell chemotaxis through the HGF-c-Met pathway. Eur J Immunol 2005 Mar; 35(3): 727–37PubMedCrossRefGoogle Scholar
  88. 88.
    Noseworthy JH, Lucchinetti C, Rodriguez M, et al. Multiple sclerosis. N Engl J Med 2000; 343(13): 938–52PubMedCrossRefGoogle Scholar
  89. 89.
    Wolinsky JS. The diagnosis of primary progressive multiple sclerosis. J Neurol Sci 2003 Feb 15; 206(2): 145–52PubMedCrossRefGoogle Scholar
  90. 90.
    Wolinsky JS, Narayana PA, O’Connor P, et al. Glatiramer acetate in primary progressive multiple sclerosis: results of a multinational, multicenter, double-blind, placebo-controlled trial. Ann Neurol 2007 Jan; 61(1): 14–24PubMedCrossRefGoogle Scholar
  91. 91.
    Butovsky O, Koronyo-Hamaoui M, Kunis G, et al. Glatiramer acetate fights against Alzheimer’s disease by inducing dendritic-like microglia expressing insulin-like growth factor 1. Proc Natl Acad Sci U S A 2006 Aug 1; 103(31): 11784–9PubMedCrossRefGoogle Scholar
  92. 92.
    Frenkel D, Maron R, Burt DS, et al. Nasal vaccination with a proteosome-based adjuvant and glatiramer acetate clears beta-amyloid in a mouse model of Alzheimer disease. J Clin Invest 2005 Sep; 115(9): 2423–33PubMedCrossRefGoogle Scholar
  93. 93.
    Benner EJ, Mosley RL, Destache CJ, et al. Therapeutic immunization protects dopaminergic neurons in a mouse model of Parkinson’s disease. Proc Natl Acad Sci U S A 2004 Jun 22; 101(25): 9435–40PubMedCrossRefGoogle Scholar
  94. 94.
    Angelov DN, Waibel S, Guntinas-Lichius O, et al. Therapeutic vaccine for acute and chronic motor neuron diseases: implications for amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 2003 Apr 15; 100(8): 4790–5PubMedCrossRefGoogle Scholar
  95. 95.
    Aharoni R, Kayhan B, Arnon R. Therapeutic effect of the immunomodulator glatiramer acetate on trinitrobenzene sulfonic acid-induced experimental colitis. Inflamm Bowel Dis 2005 Feb; 11(2): 106–15PubMedCrossRefGoogle Scholar
  96. 96.
    Aharoni R, Sonego H, Brenner O, et al. The therapeutic effect of glatiramer acetate in a murine model of inflammatory bowel disease is mediated by anti-inflammatory T-cells. Immunol Lett 2007 Oct 15; 112(2): 110–9PubMedCrossRefGoogle Scholar
  97. 97.
    Neesse A, Michl P, Kunsch S, et al. Glatiramer acetate: a novel therapeutic approach in Crohn’s disease? Inflamm Bowel Dis 2009 Jan; 15(1): 156–7PubMedCrossRefGoogle Scholar
  98. 98.
    Zheng B, Switzer K, Marinova E, et al. Exacerbation of autoimmune arthritis by copolymer-I through promoting type 1 immune response and autoantibody production. Autoimmunity 2008 Aug; 41(5): 363–71PubMedCrossRefGoogle Scholar
  99. 99.
    Borel P, Benkhoucha M, Weber MS, et al. Glatiramer acetate treatment does not modify the clinical course of (NZB × BXSB)F1 lupus murine model. Int Immunol 2008 Oct; 20(10): 1313–9PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2011

Authors and Affiliations

  • Patrice H. Lalive
    • 1
    • 2
    • 3
  • Oliver Neuhaus
    • 4
  • Mahdia Benkhoucha
    • 3
  • Danielle Burger
    • 5
  • Reinhard Hohlfeld
    • 6
  • Scott S. Zamvil
    • 7
  • Martin S. Weber
    • 8
    Email author
  1. 1.Department of Neurosciences, Division of NeurologyGeneva University Hospital and University of GenevaGenevaSwitzerland
  2. 2.Department of Genetics and Laboratory Medicine, Division of Laboratory MedicineGeneva University Hospital and University of GenevaGenevaSwitzerland
  3. 3.Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
  4. 4.Department of NeurologyKliniken Landkreis SigmaringenSigmaringenGermany
  5. 5.Faculty of Medicine, Division of Immunology and Allergy, Hans Wilsdorf LaboratoryGeneva University Hospital and University of GenevaGenevaSwitzerland
  6. 6.Institute for Clinical NeuroimmunologyLudwig-Maximilians University of MunichMunichGermany
  7. 7.Department of NeurologyUniversity of CaliforniaSan FranciscoUSA
  8. 8.Department of NeurologyTechnische Universität MünchenMunichGermany

Personalised recommendations