CNS Drugs

, Volume 25, Issue 7, pp 555–573

Enhancing CNS Repair in Neurological Disease

Challenges Arising from Neurodegeneration and Rewiring of the Network
  • Xiaohua Xu
  • Arthur E. Warrington
  • Allan J. Bieber
  • Moses Rodriguez
Leading Article


Repair of the central nervous system (CNS) constitutes an integral part of treating neurological disease and plays a crucial role in restoring CNS architecture and function. Distinct strategies have been developed to reconstruct the damaged neural tissue, with many tested preclinically in animal models. We review cell replacement-based repair strategies. By taking spinal cord injury, cerebral ischaemia and degenerative CNS disorders as examples for CNS repair, we discuss progress and potential problems in utilizing embryonic stem cells and adult neural/non-neural stem cells to repair cell loss in the CNS. Nevertheless, CNS repair is not simply a matter of cell transplantation. The major challenge is to induce regenerating neural cells to integrate into the neural network and compensate for damaged neural function. The neural cells confront an environment very different from that of the developmental stage in which these cells differentiate to form interwoven networks.

During the repair process, one of the challenges is neurodegeneration, which can develop from interrupted innervations to/from the targets, chronic inflammation, ischaemia, aging or idiopathic neural toxicity. Neurodegeneration, which occurs on the basis of a characteristic vascular and neural web, usually presents as a chronically progressive process with unknown aetiology. Currently, there is no effective treatment to stop or slow down neurodegeneration. Pathological changes from patients with Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis indicate a broken homeostasis in the CNS. We discuss how the blood-brain barrier and neural networks are formed to maintain CNS homeostasis and their contribution to neurodegeneration in diseased conditions.

Another challenge is that some inhibitors produced by CNS injury do not facilitate the regenerating neural cells to incorporate into a pre-existing network. We review glial responses to CNS injury. Of note, the reactive astrocytes not only encompass the lesions/pathogens but may also form glial scars to impede regenerating axons from traversing the lesions. In addition, myelin debris can prevent axon growth. Myelination enables saltatory transduction of electrical impulses along axonal calibers and actually provides trophic support to stabilize the axons. Therefore, repair strategies should be designed to promote axonal growth, myelination and modulate astrocytic responses. Finally, we discuss recent progress in developing human monoclonal IgMs that regulate CNS homeostasis and promote neural regeneration.


  1. 1.
    Hagg T, Oudega M. Degenerative and spontaneous regenerative processes after spinal cord injury. J Neurotrauma 2006 Mar–Apr; 23(3–4): 264–80PubMedGoogle Scholar
  2. 2.
    Silver J, Miller JH. Regeneration beyond the glial scar. Nat Rev Neurosci 2004 Feb; 5(2): 146–56PubMedCrossRefGoogle Scholar
  3. 3.
    Lo EH. A new penumbra: transitioning from injury into repair after stroke. Nat Med 2008 May; 14(5): 497–500PubMedCrossRefGoogle Scholar
  4. 4.
    LaFerla FM, Green KN, Oddo S. Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci 2007 Jul; 8(7): 499–509PubMedCrossRefGoogle Scholar
  5. 5.
    Daniela F, Vescovi AL, Bottai D. The stem cells as a potential treatment for neurodegeneration. Methods Mol Biol 2007; 399: 199–213PubMedCrossRefGoogle Scholar
  6. 6.
    Leker RR, Lasri V, Chernoguz D. Growth factors improve neurogenesis and outcome after focal cerebral ischemia. J Neural Transm 2009 Nov; 116(11): 1397–402PubMedCrossRefGoogle Scholar
  7. 7.
    Sahni V, Kessler JA. Stem cell therapies for spinal cord injury. Nat Rev Neurol 2010 Jul; 6(7): 363–72PubMedCrossRefGoogle Scholar
  8. 8.
    McDonald JW, Liu XZ, Qu Y, et al. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med 1999 Dec; 5(12): 1410–2PubMedCrossRefGoogle Scholar
  9. 9.
    Erdo F, Buhrle C, Blunk J, et al. Host-dependent tumorigenesis of embryonic stem cell transplantation in experimental stroke. J Cereb Blood Flow Metab 2003 Jul; 23(7): 780–5PubMedGoogle Scholar
  10. 10.
    Bjorklund LM, Sanchez-Pernaute R, Chung S, et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci U S A 2002 Feb 19; 99(4): 2344–9PubMedCrossRefGoogle Scholar
  11. 11.
    Lee SH, Lumelsky N, Studer L, et al. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol 2000 Jun; 18(6): 675–9PubMedCrossRefGoogle Scholar
  12. 12.
    Eriksson PS, Perfilieva E, Bjork-Eriksson T, et al. Neurogenesis in the adult human hippocampus. Nat Med 1998 Nov; 4(11): 1313–7PubMedCrossRefGoogle Scholar
  13. 13.
    Toda H, Takahashi J, Iwakami N, et al. Grafting neural stem cells improved the impaired spatial recognition in ischemic rats. Neurosci Lett 2001 Dec 4; 316(1): 9–12PubMedCrossRefGoogle Scholar
  14. 14.
    Shim JW, Park CH, Bae YC, et al. Generation of functional dopamine neurons from neural precursor cells isolated from the subventricular zone and white matter of the adult rat brain using Nurr1 overexpression. Stem Cells 2007 May; 25(5): 1252–62PubMedCrossRefGoogle Scholar
  15. 15.
    Bonner JF, Blesch A, Neuhuber B, et al. Promoting directional axon growth from neural progenitors grafted into the injured spinal cord. J Neurosci Res May 1; 88(6): 1182-92Google Scholar
  16. 16.
    Chen J, Li Y, Wang L, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 2001 Apr; 32(4): 1005–11PubMedCrossRefGoogle Scholar
  17. 17.
    Newman MB, Davis CD, Kuzmin-Nichols N, et al. Human umbilical cord blood (HUCB) cells for central nervous system repair. Neurotox Res 2003; 5(5): 355–68PubMedCrossRefGoogle Scholar
  18. 18.
    Sykova E, Homola A, Mazanec R, et al. Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant 2006; 15(8–9): 675–87PubMedCrossRefGoogle Scholar
  19. 19.
    Munoz-Elias G, Marcus AJ, Coyne TM, et al. Adult bone marrow stromal cells in the embryonic brain: engraftment, migration, differentiation, and long-term survival. J Neurosci 2004 May 12; 24(19): 4585–95PubMedCrossRefGoogle Scholar
  20. 20.
    Pluchino S, Zanotti L, Rossi B, et al. Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 2005 Jul 14; 436(7048): 266–71PubMedCrossRefGoogle Scholar
  21. 21.
    Martino G, Pluchino S. The therapeutic potential of neural stem cells. Nat Rev Neurosci 2006 May; 7(5): 395–406PubMedCrossRefGoogle Scholar
  22. 22.
    Ming GL, Song H. Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 2005; 28: 223–50PubMedCrossRefGoogle Scholar
  23. 23.
    Arvidsson A, Collin T, Kirik D, et al. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 2002 Sep; 8(9): 963–70PubMedCrossRefGoogle Scholar
  24. 24.
    Hamilton LK, Truong MK, Bednarczyk MR, et al. Cellular organization of the central canal ependymal zone, a niche of latent neural stem cells in the adult mammalian spinal cord. Neuroscience 2009 Dec 15; 164(3): 1044–56PubMedCrossRefGoogle Scholar
  25. 25.
    Bath KG, Lee FS. Neurotrophic factor control of adult SVZ neurogenesis. Dev Neurobiol 2010 Apr; 70(5): 339–49PubMedGoogle Scholar
  26. 26.
    Case LC, Tessier-Lavigne M. Regeneration of the adult central nervous system. Curr Biol 2005 Sep 20; 15(18): R749–53PubMedCrossRefGoogle Scholar
  27. 27.
    Bredesen DE, Rao RV, Mehlen P. Cell death in the nervous system. Nature 2006 Oct 19; 443(7113): 796–802PubMedCrossRefGoogle Scholar
  28. 28.
    Lennon VA, Kryzer TJ, Pittock SJ, et al. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med 2005 Aug 15; 202(4): 473–7PubMedCrossRefGoogle Scholar
  29. 29.
    Frank-Cannon TC, Alto LT, McAlpine FE, et al. Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener 2009; 4: 47PubMedCrossRefGoogle Scholar
  30. 30.
    Ballatore C, Lee VM, Trojanowski JQ. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci 2007 Sep; 8(9): 663–72PubMedCrossRefGoogle Scholar
  31. 31.
    Auluck PK, Caraveo G, Lindquist S. α-Synuclein: membrane interactions and toxicity in Parkinson’s disease. Annu Rev Cell Dev Biol 2010 Nov 10; (26): 211-33Google Scholar
  32. 32.
    Ilieva H, Polymenidou M, Cleveland DW. Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J Cell Biol 2009 Dec 14; 187(6): 761–72PubMedCrossRefGoogle Scholar
  33. 33.
    Glass CK, Saijo K, Winner B, et al. Mechanisms underlying inflammation in neurodegeneration. Cell 2010 Mar 19; 140(6): 918–34PubMedCrossRefGoogle Scholar
  34. 34.
    Wyss-Coray T, Loike JD, Brionne TC, et al. Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat Med 2003 Apr; 9(4): 453–7PubMedCrossRefGoogle Scholar
  35. 35.
    Tan L, Gordon KB, Mueller JP, et al. Presentation of proteolipid protein epitopes and B7-1-dependent activation of encephalitogenic T cells by IFN-gamma-activated SJL/J astrocytes. J Immunol 1998 May 1; 160(9): 4271–9PubMedGoogle Scholar
  36. 36.
    Constantinescu CS, Tani M, Ransohoff RM, et al. Astrocytes as antigen-presenting cells: expression of IL-12/ IL-23. J Neurochem 2005 Oct; 95(2): 331–40PubMedCrossRefGoogle Scholar
  37. 37.
    Trapp BD, Peterson J, Ransohoff RM, et al. Axonal transection in the lesions of multiple sclerosis. N Engl J Med 1998 Jan 29; 338(5): 278–85PubMedCrossRefGoogle Scholar
  38. 38.
    Rodriguez M, Scheithauer B. Ultrastructure of multiple sclerosis. Ultrastruct Pathol 1994 Jan–Apr; 18(1–2): 3–13PubMedCrossRefGoogle Scholar
  39. 39.
    Minghetti L. Role of inflammation in neurodegenerative diseases. Curr Opin Neurol 2005 Jun; 18(3): 315–21PubMedCrossRefGoogle Scholar
  40. 40.
    Fugger L, Friese MA, Bell JI. From genes to function: the next challenge to understanding multiple sclerosis. Nat Rev Immunol 2009 Jun; 9(6): 408–17PubMedCrossRefGoogle Scholar
  41. 41.
    Beleza-Meireles A, Al-Chalabi A. Genetic studies of amyotrophic lateral sclerosis: controversies and perspectives. Amyotroph Lateral Scler 2009 Feb; 10(1): 1–14PubMedCrossRefGoogle Scholar
  42. 42.
    Lesage S, Brice A. Parkinson’s disease: from monogenic forms to genetic susceptibility factors. Hum Mol Genet 2009 Apr 15; 18(R1): R48–59PubMedCrossRefGoogle Scholar
  43. 43.
    Ertekin-Taner N. Genetics of Alzheimer disease in the pre-and post-GWAS era. Alzheimers Res Ther 2010; 2(1): 3PubMedCrossRefGoogle Scholar
  44. 44.
    Goate AM, Haynes AR, Owen MJ, et al. Predisposing locus for Alzheimer’s disease on chromosome 21. Lancet 1989 Feb 18; 1(8634): 352–5PubMedCrossRefGoogle Scholar
  45. 45.
    Goate A, Chartier-Harlin MC, Mullan M, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 1991 Feb 21; 349(6311): 704–6PubMedCrossRefGoogle Scholar
  46. 46.
    Sherrington R, Rogaev EI, Liang Y, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 1995 Jun 29; 375(6534): 754–60PubMedCrossRefGoogle Scholar
  47. 47.
    Levy-Lahad E, Wijsman EM, Nemens E, et al. A familial Alzheimer’s disease locus on chromosome 1. Science 1995 Aug 18; 269(5226): 970–3PubMedCrossRefGoogle Scholar
  48. 48.
    Rogaev EI, Sherrington R, Rogaeva EA, et al. Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 1995 Aug 31; 376(6543): 775–8PubMedCrossRefGoogle Scholar
  49. 49.
    Bertram L, Tanzi RE. Genome-wide association studies in Alzheimer’s disease. Hum Mol Genet 2009 Oct 15; 18(R2): R137–45PubMedCrossRefGoogle Scholar
  50. 50.
    Borchelt DR, Thinakaran G, Eckman CB, et al. Familial Alzheimer’s disease-linked presenilin 1 variants elevate Abeta 1-42/1-40 ratio in vitro and in vivo. Neuron 1996 Nov; 17(5): 1005–13PubMedCrossRefGoogle Scholar
  51. 51.
    Xia W, Zhang J, Kholodenko D, et al. Enhanced production and oligomerization of the 42-residue amyloid beta-protein by Chinese hamster ovary cells stably expressing mutant presenilins. J Biol Chem 1997 Mar 21; 272(12): 7977–82PubMedCrossRefGoogle Scholar
  52. 52.
    Holtzman DM, Bales KR, Tenkova T, et al. Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 2000 Mar 14; 97(6): 2892–7PubMedCrossRefGoogle Scholar
  53. 53.
    Baulac S, LaVoie MJ, Kimberly WT, et al. Functional gamma-secretase complex assembly in Golgi/trans-Golgi network: interactions among presenilin, nicastrin, Aph1, Pen-2, and gamma-secretase substrates. Neurobiol Dis 2003 Nov; 14(2): 194–204PubMedCrossRefGoogle Scholar
  54. 54.
    Dion PA, Daoud H, Rouleau GA. Genetics of motor neuron disorders: new insights into pathogenic mechanisms. Nat Rev Genet 2009 Nov; 10(11): 769–82PubMedCrossRefGoogle Scholar
  55. 55.
    Tam SJ, Watts RJ. Connecting vascular and nervous system development: angiogenesis and the blood-brain barrier. Annu Rev Neurosci 2010; 33: 379–408PubMedCrossRefGoogle Scholar
  56. 56.
    Begley DJ, Brightman MW. Structural and functional aspects of the blood-brain barrier. Prog Drug Res 2003; 61: 39–78PubMedGoogle Scholar
  57. 57.
    Zlokovic BV, Apuzzo ML. Strategies to circumvent vascular barriers of the CNS. Neurosurgery 1998; 43(4): 877–8PubMedCrossRefGoogle Scholar
  58. 58.
    Schlageter KE, Molnar P, Lapin GD, et al. Microvessel organization and structure in experimental brain tumors: microvessel populations with distinctive structural and functional properties. Microvasc Res 1999 Nov; 58(3): 312–28PubMedCrossRefGoogle Scholar
  59. 59.
    Banerjee S, Bhat MA. Neuron-glial interactions in blood-brain barrier formation. Annu Rev Neurosci 2007; 30: 235–58PubMedCrossRefGoogle Scholar
  60. 60.
    Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 2006 Jan; 7(1): 41–53PubMedCrossRefGoogle Scholar
  61. 61.
    Rouach N, Glowinski J, Giaume C. Activity-dependent neuronal control of gap-junctional communication in astrocytes. J Cell Biol 2000 Jun 26; 149(7): 1513–26PubMedCrossRefGoogle Scholar
  62. 62.
    Rouach N, Koulakoff A, Abudara V, et al. Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 2008 Dec 5; 322(5907): 1551–5PubMedCrossRefGoogle Scholar
  63. 63.
    Bushong EA, Martone ME, Jones YZ, et al. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 2002 Jan 1;22(1): 183–92PubMedGoogle Scholar
  64. 64.
    Khuth ST, Strazielle N, Giraudon P, et al. Impairment of blood-cerebrospinal fluid barrier properties by retrovirus-activated T lymphocytes: reduction in cerebrospinal fluid-to-blood efflux of prostaglandin E 2. J Neurochem 2005 Sep; 94(6): 1580–93PubMedCrossRefGoogle Scholar
  65. 65.
    Navikas V, Link H. Review: cytokines and the pathogenesis of multiple sclerosis. J Neurosci Res 1996 Aug 15; 45(4): 322–33PubMedCrossRefGoogle Scholar
  66. 66.
    Nave KA, Trapp BD. Axon-glial signaling and the glial support of axon function. Annu Rev Neurosci 2008; 31: 535–61PubMedCrossRefGoogle Scholar
  67. 67.
    Rakic P, Ayoub AE, Breunig JJ, et al. Decision by division: making cortical maps. Trends Neurosci 2009 May; 32(5): 291–301PubMedCrossRefGoogle Scholar
  68. 68.
    Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol 2010 Jan; 119(1): 7–35PubMedCrossRefGoogle Scholar
  69. 69.
    Baumann N, Pham-Dinh D. Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 2001 Apr; 81(2): 871–927PubMedGoogle Scholar
  70. 70.
    Black JA, Waxman SG. The perinodal astrocyte. Glia 1988; 1(3): 169–83PubMedCrossRefGoogle Scholar
  71. 71.
    Ransohoff RM, Perry VH. Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 2009; 27: 119–45PubMedCrossRefGoogle Scholar
  72. 72.
    Lindvall O, Kokaia Z. Prospects of stem cell therapy for replacing dopamine neurons in Parkinson’s disease. Trends Pharmacol Sci 2009 May; 30(5): 260–7PubMedCrossRefGoogle Scholar
  73. 73.
    Sofroniew MV. Molecular dissection of reactive astro-gliosis and glial scar formation. Trends Neurosci 2009 Dec; 32(12): 638–47PubMedCrossRefGoogle Scholar
  74. 74.
    Margolis RK, Margolis RU. Nervous tissue proteoglycans. EXS 1994; 70: 145–77PubMedGoogle Scholar
  75. 75.
    Yamagata T, Saito H, Habuchi O, et al. Purification and properties of bacterial chondroitinases and chon-drosulfatases. J Biol Chem 1968 Apr 10; 243(7): 1523–35PubMedGoogle Scholar
  76. 76.
    Bradbury EJ, Carter LM. Manipulating the glial scar: chondroitinase ABC as a therapy for spinal cord injury. Brain Res Bull 2010 Mar; 84(4–5): 306–16PubMedGoogle Scholar
  77. 77.
    Brambilla R, Persaud T, Hu X, et al. Transgenic inhibition of astroglial NF-kappa B improves functional outcome in experimental autoimmune encephalomyelitis by suppressing chronic central nervous system inflammation. J Immunol 2009 Mar 1; 182(5): 2628–40PubMedCrossRefGoogle Scholar
  78. 78.
    Hamby ME, Hewett JA, Hewett SJ. TGF-beta1 potentiates astrocytic nitric oxide production by expanding the population of astrocytes that express NOS-2. Glia 2006 Nov 1; 54(6): 566–77PubMedCrossRefGoogle Scholar
  79. 79.
    Takano T, Kang J, Jaiswal JK, et al. Receptor-mediated glutamate release from volume sensitive channels in astrocytes. Proc Natl Acad Sci U S A 2005 Nov 8; 102(45): 16466–71PubMedCrossRefGoogle Scholar
  80. 80.
    Rolls A, Shechter R, Schwartz M. The bright side of the glial scar in CNS repair. Nat Rev Neurosci 2009 Mar; 10(3): 235–41PubMedCrossRefGoogle Scholar
  81. 81.
    Trendelenburg G, Dirnagl U. Neuroprotective role of astrocytes in cerebral ischemia: focus on ischemic preconditioning. Glia 2005 Jun; 50(4): 307–20PubMedCrossRefGoogle Scholar
  82. 82.
    Kuhlmann T, Lassmann H, Bruck W. Diagnosis of inflammatory demyelination in biopsy specimens: a practical approach. Acta Neuropathol 2008 Mar; 115(3): 275–87PubMedCrossRefGoogle Scholar
  83. 83.
    Voskuhl RR, Peterson RS, Song B, et al. Reactive astrocytes form scar-like perivascular barriers to leukocytes during adaptive immune inflammation of the CNS. J Neurosci 2009 Sep 16; 29(37): 11511–22PubMedCrossRefGoogle Scholar
  84. 84.
    Thal DR, Schultz C, Dehghani F, et al. Amyloid beta-protein (Abeta)-containing astrocytes are located preferentially near N-terminal-truncated Abeta deposits in the human entorhinal cortex. Acta Neuropathol 2000 Dec; 100(6): 608–17PubMedCrossRefGoogle Scholar
  85. 85.
    Faulkner JR, Herrmann JE, Woo MJ, et al. Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 2004 Mar 3; 24(9): 2143–55PubMedCrossRefGoogle Scholar
  86. 86.
    Li L, Lundkvist A, Andersson D, et al. Protective role of reactive astrocytes in brain ischemia. J Cereb Blood Flow Metab 2008 Mar; 28(3): 468–81PubMedCrossRefGoogle Scholar
  87. 87.
    Di Giorgio FP, Carrasco MA, Siao MC, et al. Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nat Neurosci 2007 May; 10(5): 608–14PubMedCrossRefGoogle Scholar
  88. 88.
    Nagai M, Re DB, Nagata T, et al. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci 2007 May; 10(5): 615–22PubMedCrossRefGoogle Scholar
  89. 89.
    McKerracher L, David S, Jackson DL, et al. Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron 1994 Oct; 13(4): 805–11PubMedCrossRefGoogle Scholar
  90. 90.
    Mukhopadhyay G, Doherty P, Walsh FS, et al. A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron 1994 Sep; 13(3): 757–67PubMedCrossRefGoogle Scholar
  91. 91.
    Chen MS, Huber AB, van der Haar ME, et al. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 2000 Jan 27; 403(6768): 434–9PubMedCrossRefGoogle Scholar
  92. 92.
    GrandPre T, Nakamura F, Vartanian T, et al. Identification of the Nogo inhibitor of axon regeneration as a reticulon protein. Nature 2000 Jan 27; 403(6768): 439–44PubMedCrossRefGoogle Scholar
  93. 93.
    Prinjha R, Moore SE, Vinson M, et al. Inhibitor of neurite outgrowth in humans. Nature 2000 Jan 27; 403(6768): 383–4PubMedCrossRefGoogle Scholar
  94. 94.
    Wang KC, Koprivica V, Kim JA, et al. Oligodendrocytemyelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature 2002 Jun 27; 417(6892): 941–4PubMedCrossRefGoogle Scholar
  95. 95.
    Filbin MT. Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci 2003 Sep; 4(9): 703–13PubMedCrossRefGoogle Scholar
  96. 96.
    Yiu G, He Z. Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 2006 Aug; 7(8): 617–27PubMedCrossRefGoogle Scholar
  97. 97.
    Mi S, Sandrock A, Miller RH. LINGO-1 and its role in CNS repair. Int J Biochem Cell Biol 2008; 40(10): 1971–8PubMedCrossRefGoogle Scholar
  98. 98.
    Cao Z, Gao Y, Deng K, et al. Receptors for myelin inhibitors: structures and therapeutic opportunities. Mol Cell Neurosci 2010 Jan; 43(1): 1–14PubMedCrossRefGoogle Scholar
  99. 99.
    Yang LJ, Zeller CB, Shaper NL, et al. Gangliosides are neuronal ligands for myelin-associated glycoprotein. Proc Natl Acad Sci U S A 1996 Jan 23; 93(2): 814–8PubMedCrossRefGoogle Scholar
  100. 100.
    Vyas AA, Patel HV, Fromholt SE, et al. Gangliosides are functional nerve cell ligands for myelin-associated glycoprotein (MAG), an inhibitor of nerve regeneration. Proc Natl Acad Sci U S A 2002 Jun 11; 99(12): 8412–7PubMedCrossRefGoogle Scholar
  101. 101.
    Atwal JK, Pinkston-Gosse J, Syken J, et al. PirB is a functional receptor for myelin inhibitors of axonal regeneration. Science 2008 Nov 7; 322(5903): 967–70PubMedCrossRefGoogle Scholar
  102. 102.
    Goh EL, Young JK, Kuwako K, et al. Beta1-integrin mediates myelin-associated glycoprotein signaling in neuronal growth cones. Mol Brain 2008; 1(1): 10PubMedCrossRefGoogle Scholar
  103. 103.
    Quarles RH. Myelin-associated glycoprotein (MAG): past, present and beyond. JNeurochem 2007 Mar; 100(6): 1431–48Google Scholar
  104. 104.
    Schnaar RL, Lopez PH. Myelin-associated glycoprotein and its axonal receptors. J Neurosci Res 2009 Nov 15; 87(15): 3267–76PubMedCrossRefGoogle Scholar
  105. 105.
    Bartsch U, Bandtlow CE, Schnell L, et al. Lack of evidence that myelin-associated glycoprotein is a major inhibitor of axonal regeneration in the CNS. Neuron 1995 Dec; 15(6): 1375–81PubMedCrossRefGoogle Scholar
  106. 106.
    Lee JK, Geoffroy CG, Chan AF, et al. Assessing spinal axon regeneration and sprouting in Nogo-, MAG-, and OMgp-deficient mice. Neuron 2010 Jun 10; 66(5): 663–70PubMedCrossRefGoogle Scholar
  107. 107.
    Yin X, Crawford TO, Griffin JW, et al. Myelin-associated glycoprotein is a myelin signal that modulates the caliber of myelinated axons. J Neurosci 1998 Mar 15; 18(6): 1953–62PubMedGoogle Scholar
  108. 108.
    Nguyen T, Mehta NR, Conant K, et al. Axonal protective effects of the myelin-associated glycoprotein. J Neurosci 2009 Jan 21; 29(3): 630–7PubMedCrossRefGoogle Scholar
  109. 109.
    Warrington AE, Bieber AJ, Van Keulen V, et al. Neuron-binding human monoclonal antibodies support central nervous system neurite extension. J Neuropathol Exp Neurol 2004 May; 63(5): 461–73PubMedGoogle Scholar
  110. 110.
    Schnell L, Schwab ME. Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature 1990 Jan 18; 343(6255): 269–72PubMedCrossRefGoogle Scholar
  111. 111.
    Brosamle C, Huber AB, Fiedler M, et al. Regeneration of lesioned corticospinal tract fibers in the adult rat induced by a recombinant, humanized IN-1 antibody fragment. J Neurosci 2000 Nov 1; 20(21): 8061–8PubMedGoogle Scholar
  112. 112.
    Rodriguez M, Lennon VA, Benveniste EN, et al. Remyelination by oligodendrocytes stimulated by antiserum to spinal cord. J Neuropathol Exp Neurol 1987 Jan; 46(1): 84–95PubMedCrossRefGoogle Scholar
  113. 113.
    Howe CL, Bieber AJ, Warrington AE, et al. Antiapoptotic signaling by a remyelination-promoting human anti-myelin antibody. Neurobiol Dis 2004 Feb; 15(1): 120–31PubMedCrossRefGoogle Scholar
  114. 114.
    Miller DJ, Sanborn KS, Katzmann JA, et al. Monoclonal autoantibodies promote central nervous system repair in an animal model of multiple sclerosis. J Neurosci 1994 Oct; 14(10): 6230–8PubMedGoogle Scholar
  115. 115.
    Warrington AE, Asakura K, Bieber AJ, et al. Human monoclonal antibodies reactive to oligodendrocytes promote remyelination in a model of multiple sclerosis. Proc Natl Acad Sci U S A 2000 Jun 6; 97(12): 6820–5PubMedCrossRefGoogle Scholar
  116. 116.
    Rodriguez M, Warrington AE, Pease LR. Invited article: human natural autoantibodies in the treatment of neurologic disease. Neurology 2009 Apr 7; 72(14): 1269–76PubMedCrossRefGoogle Scholar
  117. 117.
    Casali P, Schettino EW. Structure and function of natural antibodies. Curr Top Microbiol Immunol 1996; 210: 167–79PubMedCrossRefGoogle Scholar
  118. 118.
    Boes M. Role of natural and immune IgM antibodies in immune responses. Mol Immunol 2000 Dec; 37(18): 1141–9PubMedCrossRefGoogle Scholar
  119. 119.
    Elkon K, Casali P. Nature and functions of autoantibodies. Nat Clin Pract Rheumatol 2008 Sep; 4(9): 491–8PubMedCrossRefGoogle Scholar
  120. 120.
    Binder CJ. Natural IgM antibodies against oxidation-specific epitopes. J Clin Immunol 2010 May; 30 Suppl. 1: S56–60PubMedCrossRefGoogle Scholar
  121. 121.
    Jeannin P, Jaillon S, Delneste Y. Pattern recognition receptors in the immune response against dying cells. Curr Opin Immunol 2008 Oct; 20(5): 530–7PubMedCrossRefGoogle Scholar
  122. 122.
    Vollmers HP, Brandlein S. Natural antibodies and cancer. J Autoimmun 2007 Dec; 29(4): 295–302PubMedCrossRefGoogle Scholar
  123. 123.
    Watzlawik J, Holicky E, Edberg DD, et al. Human remyelination promoting antibody inhibits apoptotic signaling and differentiation through Lyn kinase in primary rat oligodendrocytes. Glia 2010 Nov 15; 58(15): 1782–93PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2011

Authors and Affiliations

  • Xiaohua Xu
    • 1
  • Arthur E. Warrington
    • 1
  • Allan J. Bieber
    • 1
  • Moses Rodriguez
    • 1
    • 2
  1. 1.Department of NeurologyMayo Clinic and FoundationRochesterUSA
  2. 2.Department of ImmunologyMayo Clinic and FoundationRochesterUSA
  3. 3.Departments of Neurology and ImmunologyMayo Clinic and FoundationRochesterUSA

Personalised recommendations