Drug Safety

, Volume 34, Issue 1, pp 1–19 | Cite as

Clinical Implications of Pharmacogenetic Variation on the Effects of Statins

  • Simran D. S. Maggo
  • Martin A. Kennedy
  • David W. J. Clark
Review Article


The last decade has seen an increase in the trend of HMG-CoA reductase inhibitor (statin) usage in the Western world, which does not come as a surprise noting that the latest American Heart Association heart and stroke statistics indicate an alarming prevalence of 80 million Americans (one in three) with one or more forms of diagnosed cardiovascular disease (CVD). Meta-analysis of several large-scale, randomized clinical trials has demonstrated statins to be efficacious in significantly reducing CVD-associated mortality in both primary and secondary prevention. Despite their proven efficacy, statins have also gained attention with respect to adverse drug reactions (ADRs) of muscle myopathy, derangements in hepatic function and even ADRs classified as psychiatric in nature. The depletion of cholesterol within the myocyte cell wall and/or the depletion of key intermediates within the cholesterol synthesis pathway are hypothesized as possible mechanisms of statin-associated ADRs. However, pharmacogenetic variability may also be a risk factor for ADRs and can include, for example, enzymes, transporters, cell membrane receptors, intracellular receptors or components of ion channels that contribute to the pharmacokinetics or pharmacodynamics of response to a particular drug. The cytochrome P450 (CYP) enzymatic pathways that comprise the polymorphic genes, CYP2D6, CYP3A4 and CYP3A5, and also a hepatic transporter, solute carrier organic anion transporter (SLCO1B1), which is a single nucleotide polymorphism discovered to be associated with statin-induced myopathy through a genome-wide association study, are discussed with respect to their effect on altering the pharmacokinetic profile of statin metabolism. Variants of the Apolipoprotein E (APO-E) gene, polymorphisms in the cholesteryl ester transfer protein (CETP) gene, the HMG-CoA reductase gene and other proteins are discussed with respect to altering the pharmacodynamic profile of statins. Pharmacogenetics and its application in medicine to individualize drug therapy has been previously shown to be clinically and economically beneficial through quality-adjusted life-year assessment. Therefore, polymorphisms affecting the pharmacokinetic and pharmacodynamic profiles of statins, which are widely used in therapy, with their potential application in the personalized prescribing of statin therapy, need further research. In this review, we update the recent literature with respect to genetic polymorphisms that may influence the pharmacokinetics and pharmacodynamics of statin therapy, and consider the relevance of these findings to the efficacy of treatment, prevention of ADRs and what this may mean for patient tolerance and compliance.



No sources of funding were used to prepare this manuscript. The authors have no conflicts of interest to declare that are directly relevant to the content of this review.


  1. 1.
    Siegel D, Lopez J, Meier J. Use of cholesterol-lowering medications in the United States from 1991 to 1997. Am J Med 2000; 108(6): 496–9PubMedCrossRefGoogle Scholar
  2. 2.
    Mann D, Reynolds K, Smith D, et al. Trends in statin use and low-density lipoprotein cholesterol levels among US adults: impact of the 2001 National Cholesterol Education Program Guidelines. Ann Pharmacother 2008; 42(9): 1208–15PubMedCrossRefGoogle Scholar
  3. 3.
    Ruokoniemi P, Helin-Salmivaara A, Timo K, et al. Shift of statin use towards the elderly in 1995–2005: a nation-wide register study in Finland. Br J Clin Pharmacol 2008; 66(3): 405–10PubMedCrossRefGoogle Scholar
  4. 4.
    Cheung BMY, Lauder IJ, Lau C-P, et al. Meta-analysis of large randomized controlled trials to evaluate the impact of statins on cardiovascular outcomes. Br J Clin Pharmacol 2004; 57(5): 640–51PubMedCrossRefGoogle Scholar
  5. 5.
    Ross SD, Allen IE, Connelly JE, et al. Clinical outcomes in statin treatment trials: a meta-analysis. Arch Int Med 1999; 159(15): 1793–802CrossRefGoogle Scholar
  6. 6.
    Vrecer M, Turk S, Drinovec J, et al. Use of statins in primary and secondary prevention of coronary heart disease and ischemic stroke: meta-analysis of randomized trials. Int J Clin Pharmacol Ther 2003; 41(12): 567–77PubMedGoogle Scholar
  7. 7.
    Zhou Z, Rahme E, Abrahamowicz M, et al. Effectiveness of statins for secondary prevention in elderly patients after acute myocardial infarction: an evaluation of class effect. CMAJ 2005; 172(9): 1187–94PubMedCrossRefGoogle Scholar
  8. 8.
    Maggon K. Editorial report. Drug Discov Today 2005; 10(11): 739–42PubMedCrossRefGoogle Scholar
  9. 9.
    Cannon CP, Braunwald E, Mccabe CH, et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med 2004; 350(15): 1495–504PubMedCrossRefGoogle Scholar
  10. 10.
    Josan K, Majumdar SR, Sumit R, et al. The efficacy and safety of intensive statin therapy: a meta-analysis of randomized trials. CMAJ 2008; 178(5): 576–84PubMedCrossRefGoogle Scholar
  11. 11.
    Davidson MH, Clark JA, Glass LM, et al. Statin safety: an appraisal from the adverse event reporting system. Am J Cardiol 2006; 97 (8 Suppl. 1): S32–43CrossRefGoogle Scholar
  12. 12.
    Jacobson TA. Statin safety: lessons from new drug applications for marketed statins. Am J Cardiol 2006; 97 (8 Suppl. 1): S44–51CrossRefGoogle Scholar
  13. 13.
    Law M, Rudnicka AR. Statin safety: a systematic review. Am J Cardiol 2006; 97 (8 Suppl. 1): S52–60CrossRefGoogle Scholar
  14. 14.
    Silva MA, Swanson AC, Gandhi PJ, et al. Statin-related adverse events: a meta-analysis. Clin Ther 2006; 28(1): 26–35PubMedCrossRefGoogle Scholar
  15. 15.
    Kashani A, Phillips CO, Foody JM, et al. Risks associated with statin therapy: a systematic overview of randomized clinical trials. Circulation 2006; 114(25): 2788–97PubMedCrossRefGoogle Scholar
  16. 16.
    Knopp RH, Dujovne CA, Le Beaut A, et al. Evaluation of the efficacy, safety, and tolerability of ezetimibe in primary hypercholesterolaemia: a pooled analysis from two controlled phase III clinical studies. Int J Clin Prac 2003; 57(5): 363–8Google Scholar
  17. 17.
    Meyer UA. Pharmacogenetics and adverse drug reactions. Lancet 2000; 356(9242): 1667–71PubMedCrossRefGoogle Scholar
  18. 18.
    Maitland-Van der Zee A-HK, Olaf H, Stricker BH, et al. Genetic polymorphisms: importance for response to HMG-CoA reductase inhibitors. Atherosclerosis 2002; 163(2): 213–22CrossRefGoogle Scholar
  19. 19.
    Chasman DI, Ridker PM. Pharmacogenetics: the outlook for genetic testing in statin therapy. Nature Clin Prac Cardiovasc Med 2005; 2(1): 2–3CrossRefGoogle Scholar
  20. 20.
    Kajinami K, Takekoshi N, Brousseau ME, et al. Pharmacogenetics of HMG-CoA reductase inhibitors: exploring the potential for genotype-based individualization of coronary heart disease management. Atherosclerosis 2004; 177(2): 219–34PubMedCrossRefGoogle Scholar
  21. 21.
    Kajinami K, Akao H, Polisecki E, et al. Pharmacogenomics of statin responsiveness. Am J Cardiol 2005; 96 (9 Suppl. 1): 65–70CrossRefGoogle Scholar
  22. 22.
    Schmitz G, Langmann T. Pharmacogenomics of cholesterol-lowering therapy. Vasc Pharmacol 2006; 44(2): 75–89CrossRefGoogle Scholar
  23. 23.
    Schmitz G, Schmitz-Madry A, Ugocsai P. Pharmacogenetics and pharmacogenomics of cholesterol-lowering therapy. Curr Opin Lipidol 2007; 18(2): 164–73PubMedCrossRefGoogle Scholar
  24. 24.
    Zuccaro P, Mombelli G, Calabresi L, et al. Tolerability of statins is not linked to CYP450 polymorphisms, but reduced CYP2D6 metabolism improves cholesteraemic response to simvastatin and fluvastatin. Pharmacol Res 2007; 55(4): 310–7PubMedCrossRefGoogle Scholar
  25. 25.
    Krauss RM, Mangravite LM, Smith JD, et al. Variation in the 3-hydroxyl-3-methylglutaryl coenzyme A reductase gene is associated with racial differences in low-density lipoprotein cholesterol response to simvastatin treatment. Circulation 2008; 117(12): 1537–44PubMedCrossRefGoogle Scholar
  26. 26.
    Fujino H, Saito T, Tsunenari Y, et al. Metabolic properties of the acid and lactone forms of HMG-CoA reductase inhibitors. Xenobiotica 2004; 34(11): 961–71PubMedCrossRefGoogle Scholar
  27. 27.
    Corsini A, Bellosta S, Baetta R, et al. New insights into the pharmacodynamic and pharmacokinetic properties of statins. Pharmacol Ther 1999; 84(3): 413–28PubMedCrossRefGoogle Scholar
  28. 28.
    Bolego C, Baetta R, Bellosta S, et al. Safety considerations for statins. Curr Opin Lipidol 2002; 13(6): 637–44PubMedCrossRefGoogle Scholar
  29. 29.
    Kajinami K, Brousseau ME, Ordovas JM, et al. CYP3A4 genotypes and plasma lipoprotein levels before and after treatment with atorvastatin in primary hypercholesterolemia. Am J Cardiol 2004; 93(1): 104–7PubMedCrossRefGoogle Scholar
  30. 30.
    Gao Y, Zhang L-R, Fu Q. CYP3A4*1G polymorphism is associated with lipid-lowering efficacy of atorvastatin but not of simvastatin. Eur J Clin Pharmacol 2008; 64(9): 877–82PubMedCrossRefGoogle Scholar
  31. 31.
    Mulder A, Van Lijf A, Bon M, et al. Association of polymorphism in the cytochrome CYP2D6 and the efficacy and tolerability of simvastatin. Clin Pharmacol Ther 2001; 70(6): 532–9CrossRefGoogle Scholar
  32. 32.
    Kivistö K, Schaeffeler E, Pitkälä K, et al. Lipid-lowering response to statins is affected by CYP3A5 polymorphism. Pharmacogenetics 2004; 14(8): 523–5PubMedCrossRefGoogle Scholar
  33. 33.
    Pasanen MK, Neuvonen M, Neuvonen PJ, et al. SLCO1B1 polymorphism markedly affects the pharmacokinetics of simvastatin acid. Pharmacogenet Genomics 2006; 16(12): 873–9PubMedCrossRefGoogle Scholar
  34. 34.
    Link E, Parish J, Armitage L, et al. SLCO1B1 variants and statin-induced myopathy: a genomewide study. N Engl J Med 2008; 359: 1–11CrossRefGoogle Scholar
  35. 35.
    Morimoto K, Ueda S, Seki N, et al. OATP-C(OATP01B1)*15 is associated with statin-induced myopathy in hypercholesterolemic patients. Clin Pharmacol Ther 2005; 77(2): P21–1CrossRefGoogle Scholar
  36. 36.
    Frudakis TN, Thomas M, Ginjupalli S, et al. CYP2D6*4 polymorphism is associated with statin-induced muscle effects. Pharmacogenet Genomics 2007; 17(9): 695–707PubMedCrossRefGoogle Scholar
  37. 37.
    Hustert E, Haberl M, Burk O, et al. The genetic determinants of the CYP3A5 polymorphism. Pharmacogenet Genomics 2001; 11(9): 773–9Google Scholar
  38. 38.
    Willrich MAV, Hirata MH, Genvigir FDV, et al. CYP-3A5*3A allele is associated with reduced lowering-lipid response to atorvastatin in individuals with hypercholes-terolemia. Clin Chim Acta 2008; 398(1–2): 15–20PubMedCrossRefGoogle Scholar
  39. 39.
    Marzolini C, Tirona RG, Kim RB. Pharmacogenomics of the OATP and OAT families. Pharmacogenomics 2004; 5(3): 273–82PubMedCrossRefGoogle Scholar
  40. 40.
    Tirona RG, Leake BF, Merino G, et al. Polymorphisms in OATP-C. J Biol Chem 2001; 276(38): 35669–75PubMedCrossRefGoogle Scholar
  41. 41.
    Mwinyi J, Johne A, Bauer S, et al. Evidence for inverse effects of OATP-C (SLC21A6) *5 and *1b haplotypes on pravastatin kinetics. Clin Pharmacol Ther 2004; 75(5): 415–21PubMedCrossRefGoogle Scholar
  42. 42.
    Niemi M, Neuvonen PJ, Hofmann U, et al. Acute effects of pravastatin on cholesterol synthesis are associated with SLCO1B1 (encoding OATP1B1) haplotype *17. Pharmacogenet Genomics 2005; 15(5): 303–9PubMedCrossRefGoogle Scholar
  43. 43.
    Deng JW, Song I-S, Shin HJ, et al. The effect of SLCO1B1*15 on the disposition of pravastatin and pitavastatin is substrate dependent: the contribution of transporting activity changes by SLCO1B1*15. Pharmacogenet Genomics 2008; 18(5): 424–33PubMedCrossRefGoogle Scholar
  44. 44.
    Pasanen MK, Fredrikson H, Neuvonen PJ, et al. Different effects of SLCO1B1 polymorphism on the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther 2007; 82(6): 726–33PubMedCrossRefGoogle Scholar
  45. 45.
    Choi JH, Lee MG, Cho JY, et al. Influence of OATP1B1 genotype on the pharmacokinetics of rosuvastatin in Koreans. Clin Pharmacol Ther 2007; 83(2): 251–7PubMedCrossRefGoogle Scholar
  46. 46.
    Ho RH, Choi L, Lee W, et al. Effect of drug transporter genotypes on pravastatin disposition in European and African-American participants. Pharmacogenet Genomics 2007; 17(8): 647–56PubMedCrossRefGoogle Scholar
  47. 47.
    Lang CC, Donnelly L, Kimber C, et al. Common non-synonymous substitutions in SLC01B1 predispose to statin intolerance: a population pharmacogenetics study. Heart 2009; 95(138): A84–4Google Scholar
  48. 48.
    Voora D, Shah SH, Spasojevic I, et al. The SLCO1B1*5 genetic variant is associated with statin-induced side effects. J Am Coll Cardiol 2009; 54(17): 1609–16PubMedCrossRefGoogle Scholar
  49. 49.
    Niemi M, Schaeffeler E, Lang T, et al. High plasma pravastatin concentrations are associated with single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide-C (OATP-C, SLCO1B1). Pharmacogenet Genomics 2004; 14(7): 429–40Google Scholar
  50. 50.
    Nishizato Y, Ieiri I, Suzuki H, et al. Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes: consequences for pravastatin pharmacokinetics. Clin Pharmacol Ther 2003; 73(6): 554–65PubMedCrossRefGoogle Scholar
  51. 51.
    Vaughan CJ, Gotto AM. Update on statins: 2003. Circulation 2004; 110(7): 886–92PubMedCrossRefGoogle Scholar
  52. 52.
    Crane FL. Biochemical functions of coenzyme Q10. J Am Coll Nutr 2001; 20(6): 591–8PubMedGoogle Scholar
  53. 53.
    De Pinieux G, Chariot P, Ammi-Said M, et al. Lipid-lowering drugs and mitochondrial function: effects of HMG-CoA reductase inhibitors on serum ubiquinone and blood lactate/pyruvate ratio. Br J Clin Pharmacol 1996; 42(3): 333–7PubMedCrossRefGoogle Scholar
  54. 54.
    Marcoff L, Thompson PD. The role of coenzyme q10 in statin-associated myopathy: a systematic review. J Am Coll Cardiol 2007; 49(23): 2231–7PubMedCrossRefGoogle Scholar
  55. 55.
    Quinzii CM, Hirano M, Dimauro S. CoQ10 deficiency diseases in adults. Mitochondrion 2007; 7 Suppl. 1: S122–6PubMedCrossRefGoogle Scholar
  56. 56.
    Oh J, Ban M, Miskie B, et al. Genetic determinants of statin intolerance. Lipid Health Dis 2007; 6(7): 6–7Google Scholar
  57. 57.
    Dean M, Hamon Y, Chimini G. The human ATP-binding cassette (ABC) transporter superfamily. J Lipid Res 2001; 42(7): 1007–17PubMedGoogle Scholar
  58. 58.
    Kajinami K, Brousseau ME, Nartsupha C, et al. ATP binding cassette transporter G5 and G8 genotypes and plasma lipoprotein levels before and after treatment with atorvastatin. J Lipid Res 2004; 45(4): 653–6PubMedCrossRefGoogle Scholar
  59. 59.
    Takane H, Miyata M, Burioka N, et al. Pharmacogenetic determinants of variability in lipid-lowering response to pravastatin therapy. J Hum Genet 2006; 51(9): 822–6PubMedCrossRefGoogle Scholar
  60. 60.
    Kajinami K, Brousseau ME, Ordovas JM, et al. Interactions between common genetic polymorphisms in ABCG5/G8 and CYP7A1 on LDL cholesterol-lowering response to atorvastatin. Atherosclerosis 2004; 175(2): 287–93PubMedCrossRefGoogle Scholar
  61. 61.
    Ambudkar SV, Kimchi-Sarfaty C, Sauna ZE, et al. P-glycoprotein: from genomics to mechanism. Oncogene 2003; 22(47): 7468–85PubMedCrossRefGoogle Scholar
  62. 62.
    Fromm MF. The influence of polymorphisms on P-glycoprotein expression and function in humans. Adv Drug Deliv Rev 2002; 54(10): 1295–310PubMedCrossRefGoogle Scholar
  63. 63.
    Wang E-J, Casciano CN, Clement RP, et al. HMG-CoA reductase inhibitors (statins) characterized as direct inhibitors of P-glycoprotein. Pharm Res 2001; 18(6): 800–6PubMedCrossRefGoogle Scholar
  64. 64.
    Schwab M, Eichelbaum M, Fromm MF. Genetic polymorphisms of the human MDR1 drug transporter. Ann Rev Pharmacol Toxicol 2003; 43(1): 285–307CrossRefGoogle Scholar
  65. 65.
    Leslie EM, Deeley RG, Cole SPC. Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol Appl Pharmacol 2005; 204(3): 216–37PubMedCrossRefGoogle Scholar
  66. 66.
    Ambudkar SV, Sauna ZE, Gottesman MM. P-glycoprotein: from genomics to mechanism. Oncogene 2003; 22(47): 7468–85PubMedCrossRefGoogle Scholar
  67. 67.
    Kajinami K, Brousseau ME, Ordovas JM, et al. Polymorphisms in the multidrug resistance-1 (MDR1) gene influence the response to atorvastatin treatment in a gender-specific manner. Am J Cardiol 2004; 93(8): 1046–50PubMedCrossRefGoogle Scholar
  68. 68.
    Fiegenbaum M, Da Silveira FR, Van Der Sand CR, et al. The role of common variants of ABCB1, CYP3A4, and CYP3A5 genes in lipid-lowering efficacy and safety of simvastatin treatment. Clin Pharmacol Ther 2005; 78(5): 551–8PubMedCrossRefGoogle Scholar
  69. 69.
    Keskitalo JE, Kurkinen KJ, Neuvonen PJ, et al. ABCB1 haplotypes differentially affect the pharmacokinetics of the acid and lactone forms of simvastatin and atorvastatin. Clin Pharmacol Ther 2008; 84(4): 457–61PubMedCrossRefGoogle Scholar
  70. 70.
    Elghannam H, Tavackoli S, Ferlic L, et al. A prospective study of genetic markers of susceptibility to infection and inflammation, and the severity, progression, and regression of coronary atherosclerosis and its response to therapy. J Mol Med 2000; 78(10): 562–8PubMedCrossRefGoogle Scholar
  71. 71.
    Yadong Y, Ruiz-Narvaez E, Kraft P, et al. Effect of apolipoprotein E genotype and saturated fat intake on plasma lipids and myocardial infarction in the Central Valley of Costa Rica. Hum Biol 2007; 79(6): 637–47Google Scholar
  72. 72.
    Volcik KA, Barkley RA, Hutchinson RG, et al. Apolipoprotein E polymorphisms predict low density lipoprotein cholesterol levels and carotid artery wall thickness but not incident coronary heart disease in 12,491 ARIC Study participants. Am J Epidemiol 2006; 164(4): 342–8PubMedCrossRefGoogle Scholar
  73. 73.
    Donnelly LA, Palmer CNA, Whitley AL, et al. Apolipo-protein E genotypes are associated with lipid-lowering responses to statin treatment in diabetes: a Go-DARTS study. Pharmacogenet Genomics 2008; 18(4): 279–87PubMedCrossRefGoogle Scholar
  74. 74.
    Ordovas J, Mooser V. The APOE locus and the pharmacogenetics of lipid response. Curr Opin Lipidol 2002; 13(2): 113–7PubMedCrossRefGoogle Scholar
  75. 75.
    Ballantyne CM, Herd JA, Stein EA, et al. Apolipoprotein E genotypes and response of plasma lipids and progression-regression of coronary atherosclerosis to lipid-lowering drug therapy. J Am Coll Cardiol 2000; 36(5): 1572–8PubMedCrossRefGoogle Scholar
  76. 76.
    Pedro-Botet J, Schaefer EJ, Bakker-Arkema RG, et al. Apolipoprotein E genotype affects plasma lipid response to atorvastatin in a gender specific manner. Atherosclerosis 2001; 158(1): 183–93PubMedCrossRefGoogle Scholar
  77. 77.
    Peña R, Lahoz C, Mostaza JM et al., and the Rap Study Group. Effect of apoE genotype on the hypolipidaemic response to pravastatin in an outpatient setting. J Intern Med 2002; 251(6): 518–25PubMedCrossRefGoogle Scholar
  78. 78.
    García-Otín AL, Civeira F, Aristegui R, et al. Allelic polymorphism −491A/T in apo E gene modulates the lipid-lowering response in combined hyperlipidemia treatment. Eur J Clin Invest 2002; 32(6): 421–8PubMedCrossRefGoogle Scholar
  79. 79.
    Kathiresan S, Manning AK, Demissie S, et al. A genomewide association study for blood lipid phenotypes in the Framingham Heart Study. BMC Med Genet 2007; 8 Suppl. 1: S1–17PubMedCrossRefGoogle Scholar
  80. 80.
    van Venrooij FV, Stolk RP, Banga J-D, et al. Common cholesteryl ester transfer protein gene polymorphisms and the effect of atorvastatin therapy in type 2 diabetes. Diabetes Care 2003; 26(4): 1216–23PubMedCrossRefGoogle Scholar
  81. 81.
    Freeman DJ, Samani NJ, Wilson V, et al. A polymorphism of the cholesteryl ester transfer protein gene predicts cardiovascular events in non-smokers in the West of Scotland Coronary Prevention Study. Eur Heart J 2000; 24(20): 1833–42CrossRefGoogle Scholar
  82. 82.
    Boekholdt SM, Sacks FM, Jukema JW, et al. Cholesteryl ester transfer protein TaqIB variant, high-density lipoprotein cholesterol levels, cardiovascular risk, and efficacy of pravastatin treatment: individual patient meta-analysis of 13 677 subjects. Circulation 2005; 111(3): 278–87PubMedCrossRefGoogle Scholar
  83. 83.
    Regieli JJ, Jukema JW, Grobbee DE, et al. CETP genotype predicts increased mortality in statin-treated men with proven cardiovascular disease: an adverse pharmaco-genetic interaction. Eur Heart J 2008; 29(22): 2792–9PubMedCrossRefGoogle Scholar
  84. 84.
    Carlquist JF, Muhlestein JB, Horne BD, et al. The cholesteryl ester transfer protein Taq1B gene polymorphism predicts clinical benefit of statin therapy in patients with significant coronary artery disease. Am Heart J 2003; 146(6): 1007–14PubMedCrossRefGoogle Scholar
  85. 85.
    Chasman DI, Posada D, Subrahmanyan L, et al. Pharmacogenetic study of statin therapy and cholesterol reduction. JAMA 2004; 291(23): 2821–7PubMedCrossRefGoogle Scholar
  86. 86.
    Donnelly LA, Doney ASF, Dannfald J, et al. A paucimorphic variant in the HMG-CoA reductase gene is associated with lipid-lowering response to statin treatment in diabetes: a GoDARTS study. Pharmacogenet Genomics 2008; 18(12): 1021–6PubMedCrossRefGoogle Scholar
  87. 87.
    Park SW, Moon Y-A, Horton JD. Post-transcriptional regulation of low density lipoprotein receptor protein by proprotein convertase subtilisin/kexin type 9a in mouse liver. J Biol Chem 2004; 279(48): 50630–8PubMedCrossRefGoogle Scholar
  88. 88.
    Berge KE, Ose L, Leren TP. Missense mutations in the PCSK9 gene are associated with hypocholesterolemia and possibly increased response to statin therapy. Arterioscler Thrombos Vasc Biol 2006; 26(5): 1094–100CrossRefGoogle Scholar
  89. 89.
    Cameron J, Holla OL, Ranheim T, et al. Effect of mutations in the PCSK9 gene on the cell surface LDL receptors. Hum Mol Genet 2006; 15(9): 1551–8PubMedCrossRefGoogle Scholar
  90. 90.
    Rashid S, Curtis DE, Garuti R, et al. Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9. Proc Nat Acad Sci U S A 2005; 102(15): 5374–9CrossRefGoogle Scholar
  91. 91.
    Gomes MD, Lecker SH, Jagoe RT, et al. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Nat Acad Sci U S A 2001; 98(25): 14440–5CrossRefGoogle Scholar
  92. 92.
    Mckinnell IW, Rudnicki MA. Molecular mechanisms of muscle atrophy. Cell 2004; 119(7): 907–10PubMedCrossRefGoogle Scholar
  93. 93.
    Hanai J, Cao P, Tanksale P, et al. The muscle-specific ubiquitin ligase atrogin-1/MAFbx mediates statin-induced muscle toxicity. J Clin Invest 2007; 117(12): 3940–51PubMedGoogle Scholar
  94. 94.
    Romaine SPR, Bailey KM, Hall AS, et al. The influence of SLCO1B1 (OATP1B1) gene polymorphisms on response to statin therapy. Pharmacogenomics J 2009; 10(1): 1–11PubMedCrossRefGoogle Scholar
  95. 95.
    Kalliokoski A, Niemi M. Impact of OATP transporters on pharmacokinetics. Br J Pharmacol 2009; 158(3): 693–705PubMedCrossRefGoogle Scholar
  96. 96.
    Tall AR. CETP Inhibitors to increase HDL cholesterol levels. N Engl J Med 2007; 356(13): 1364–6PubMedCrossRefGoogle Scholar
  97. 97.
    Tall AR, Yvan-Charvet L, Wang N. The failure of torce-trapib: was it the molecule or the mechanism? Arterioscler Thrombosis Vasc Biol 2007; 27(2): 257–60CrossRefGoogle Scholar
  98. 98.
    Murthy S, Tong H, Hohl RJ. Regulation of fatty acid synthesis by farnesyl pyrophosphate. J Biol Chem 2005; 280(51): 41793–804PubMedCrossRefGoogle Scholar
  99. 99.
    FDA. Information for healthcare professionals: carbamazepine (marketed as Carbatrol, Equetro, Tegretol, and generics) [online]. Available from URL: http://www.fda.gov/cder/drug/InfoSheets/HCP/carbamazepineHCP.htm [Accessed 2008 Dec 15]
  100. 100.
    FDA. Table of valid genomic biomarkers in the context of approved drug labels [online]. Available from URL: http://www.fda.gov/cder/genomics/genomic_biomarkers_table.htm [Accessed 2008 Dec 15]
  101. 101.
    AACC. Implementing pharmacogenetics into a molecular diagnostics reference lab [online]. Available from URL: http://www.aacc.org/events/expert_access/2006/implementpgx/Pages/default.aspx [Accessed 2008 Dec 15]
  102. 102.
    Hudson KL, Murphy JA, Kaufman DJ, et al. Oversight of US genetic testing laboratories. Nat Biotech 2006; 24(9): 1083–90CrossRefGoogle Scholar
  103. 103.
    Veenstra DL, Higashi MK, Phillips KA. Assessing the cost-effectiveness of pharmacogenomics. AAPS 2000; 2(3): 80–90Google Scholar
  104. 104.
    Priest V, Begg EJ, Gardiner SJ, et al. Pharmacoeconomic analyses of azathioprine, methotrexate and prospective pharmacogenetic testing for the management of inflammatory bowel disease. Pharmacoeconomics 2006; 24(8): 767–81PubMedCrossRefGoogle Scholar
  105. 105.
    Clark DWJ, Donnelly E, Coulter DM, et al. Linking pharmacovigilance with pharmacogenetics. Drug Saf 2004; 27(15): 1171–84PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2011

Authors and Affiliations

  • Simran D. S. Maggo
    • 1
  • Martin A. Kennedy
    • 2
  • David W. J. Clark
    • 1
  1. 1.Department of Pharmacology and Toxicology, School of Medical SciencesUniversity of OtagoDunedinNew Zealand
  2. 2.Carney Centre for Pharmacogenomics, Christchurch School of MedicineUniversity of OtagoDunedinNew Zealand

Personalised recommendations