Clinical Pharmacokinetics

, Volume 50, Issue 3, pp 143–189

Pharmacokinetic Optimization of Antiretroviral Therapy in Children and Adolescents

Review Article

Abstract

There are over 2.1 million HIV-infected children worldwide, who are increasingly exposed to antiretroviral therapy. Given the enormous physiological changes associated with maturation, the role of individualized therapy and optimal dosing in children and adolescents is likely different than in adults. This review summarizes the pharmacodynamics, pharmacokinetics and pharmacogenomics of antiretroviral therapy in children and adolescents, and it discusses the roles of these in the optimization of therapy through the practice of therapeutic drug monitoring/management. Within the pharmacodynamics section are tables and discussion about what is known of the relationships between drug concentrations, inhibitory quotients and effects — both desired and toxic. The pharmacokinetics section summarizes all reported antiretroviral pharmacokinetic data in children, divided into data from population and non-population analytic approaches. Measures of interindividual pharmacokinetic variability are reported. Sampling strategies for the measurement and the interpretation of plasma antiretroviral drug concentrations are suggested, as well as dosing with degrees of renal or hepatic failure. Relevant pharmacogenomic polymorphisms are summarized, and the role for pharmacogenomics testing is discussed. Incorporation of dose adjustment on the basis of measured serum drug concentrations is reviewed, including all such paediatric experience reported in the literature. Discussion of the influences of malnutrition and herbal remedies is also included. Finally, consideration is given to future work in this field.

References

  1. 1.
    WHO and Joint United Nations Programme on HIV/AIDS [UNAIDS]. Global summary of the HIV/AIDS epidemic, December 2008 [online]. Available from URL: http://www.who.int/hiv/data/2009_global_summary.gif [Accessed 2010 Nov 17]
  2. 2.
    Joint United Nations Programme on HIV/AIDS [UNAIDS]. 2008 report on the global AIDS epidemic [online]. Available from URL: http://www.unaids.org/en/KnowledgeCentre/HIVData/GlobalReport/2008/2008_Global_report.asp [Accessed 2010 Nov 17]
  3. 3.
    McConnell MS, Byers RH, Frederick T, et al. Trends in antiretroviral therapy use and survival rates for a large cohort of HIV-infected children and adolescents in the United States, 1989–2001. J Acquir Immune Defic Syndr 2005 Apr 1; 38(4): 488–94PubMedCrossRefGoogle Scholar
  4. 4.
    Foster C, Judd A, Tookey P, et al. Young people in the United Kingdom and Ireland with perinatally acquired HIV: the pediatric legacy for adult services. AIDS Patient Care STDS 2009 Mar; 23(3): 159–66PubMedCrossRefGoogle Scholar
  5. 5.
    WHO. Towards universal access: scaling up priority HIV/AIDS interventions in the health sector. Progress report, September 2009 [online]. Available from URL: http://www.who.int/hiv/data/en/ [Accessed 2010 Nov 17]
  6. 6.
    US Department of Health and Human Services Panel on Antiretroviral Therapy and Medical Management of HIV-Infected Children. Guidelines for the use of antiretroviral agents in pediatric HIV infection. Bethesda (MD): National Institutes of Health Office of Aids Research, 2010 Aug 16 [online]. Available from URL: http://aidsinfo.nih.gov/ContentFiles/PediatricGuidelines.pdf [Accessed 2010 Nov 17]
  7. 7.
    Welch S, Sharland M, Lyall EGH, et al. PENTA 2009 guidelines for the use of antiretroviral therapy in paediatric HIV-1 infection. HIV Med 2009 Nov; 10(10): 591–613PubMedCrossRefGoogle Scholar
  8. 8.
    Neely M, Jelliffe R. Practical therapeutic drug management in HIV-infected patients: use of population pharmacokinetic models supplemented by individualized Bayesian dose optimization. J Clin Pharmacol 2008 Sep; 48(9): 1081–91PubMedCrossRefGoogle Scholar
  9. 9.
    Kearns G, Reed M. Clinical pharmacokinetics in infants and children: a reappraisal. Clin Pharmacokinet 1989; 17 Suppl. 1: 29–67PubMedCrossRefGoogle Scholar
  10. 10.
    Kearns G, Abdel-Rahman S, Alander S, et al. Developmental pharmacology: drug disposition, action, and therapy in infants and children. N Engl J Med 2003; 349(12): 1157–67PubMedCrossRefGoogle Scholar
  11. 11.
    Meibohm B, Laer S, Panetta JC, et al. Population pharmacokinetic studies in pediatrics: issues in design and analysis. AAPS J 2005; 7(2): E475–87PubMedCrossRefGoogle Scholar
  12. 12.
    Dunn D, Woodburn P, Duong T, et al. Current CD4 cell count and the short-term risk of AIDS and death before the availability of effective antiretroviral therapy in HIV-infected children and adults. J Infect Dis 2008 Feb 1; 197(3): 398–404PubMedCrossRefGoogle Scholar
  13. 13.
    Dunn D. Short-term risk of disease progression in HIV-1-infected children receiving no antiretroviral therapy or zidovudine monotherapy: a metaanalysis. Lancet 2003 Nov 15; 362(9396): 1605–11PubMedCrossRefGoogle Scholar
  14. 14.
    HIV Paediatric Prognostic Markers Collaborative Study. Predictive value of absolute CD4 cell count for disease progression in untreated HIV-1-infected children. AIDS 2006 Jun 12; 20(9): 1289–94CrossRefGoogle Scholar
  15. 15.
    US Department of Health and Human Services Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. Bethesda (MD): National Institutes of Health Office of Aids Research, 2009 Dec 1 [online]. Available from URL: http://www.aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf [Accessed 2010 Nov 17]
  16. 16.
    la Porte C. Inhibitory quotient in HIV pharmacology. Current Opinion in HIV & AIDS 2008 May 1; 3(3): 283–7CrossRefGoogle Scholar
  17. 17.
    Fletcher CV, Brundage RC, Remmel RP, et al. Pharmacologic characteristics of indinavir, didanosine, and stavudine in human immunodeficiency virusinfected children receiving combination therapy. Antimicrob Agents Chemother 2000 Apr; 44(4): 1029–34PubMedCrossRefGoogle Scholar
  18. 18.
    Fletcher CV, Anderson PL, Kakuda TN, et al. Concentration-controlled compared with conventional antiretroviral therapy for HIV infection. AIDS 2002 Mar 8; 16(4): 551–60PubMedCrossRefGoogle Scholar
  19. 19.
    Hazra R, Gafni RI, Maldarelli F, et al. Tenofovir disoproxil fumarate and an optimized background regimen of antiretroviral agents as salvage therapy for pediatric HIV infection. Pediatrics 2005; 116(6): e846–54PubMedCrossRefGoogle Scholar
  20. 20.
    Capparelli EV, Englund JA, Connor JD, et al. Population pharmacokinetics and pharmacodynamics of zidovudine in HIV-infected infants and children. J Clin Pharmacol 2003 Feb; 43(2): 133–40PubMedCrossRefGoogle Scholar
  21. 21.
    Hirt D, Urien S, Olivier M, et al. Is the recommended dose of efavirenz optimal in young West African human immunodeficiency virus-infected children? Antimicrob Agents Chemother 2009; 53(10): 4407–13PubMedCrossRefGoogle Scholar
  22. 22.
    Fletcher CV, Brundage RC, Fenton T, et al. Pharmacokinetics and pharmacodynamics of efavirenz and nelfinavir in HIV-infected children participating in an area-under-the-curve controlled trial. Clin Pharmacol Ther 2008 Feb; 83(2): 300–6PubMedCrossRefGoogle Scholar
  23. 23.
    Wintergerst U, Hoffmann F, Jansson A, et al. Antiviral efficacy, tolerability and pharmacokinetics of efavirenz in an unselected cohort of HIV-infected children. J Antimicrob Chemother 2008 Jun; 61(6): 1336–9PubMedCrossRefGoogle Scholar
  24. 24.
    González de Requena D, Bonora S, Garazzino S, et al. Nevirapine plasma exposure affects both durability of viral suppression and selection of nevirapine primary resistance mutations in a clinical setting. Antimicrob Agents Chemother 2005 Sep; 49(9): 3966–9PubMedCrossRefGoogle Scholar
  25. 25.
    Pellegrin I, Breilh D, Coureau G, et al. Interpretation of genotype and pharmacokinetics for resistance to fosamprenavir-ritonavir-based regimens in antiretroviral-experienced patients. Antimicrob Agents Chemother 2007 Apr; 51(4): 1473–80PubMedCrossRefGoogle Scholar
  26. 26.
    Shelton MJ, Wire MB, Lou Y, et al. Pharmacokinetic and safety evaluation of high-dose combinations of fosamprenavir and ritonavir. Antimicrob Agents Chemother 2006 Mar; 50(3): 928–34PubMedCrossRefGoogle Scholar
  27. 27.
    Barrail-Tran A, Morand-Joubert L, Poizat G, et al. Predictive values of the human immunodeficiency virus phenotype and genotype and of amprenavir and lopinavir inhibitory quotients in heavily pretreated patients on a ritonavir-boosted dual-protease-inhibitor regimen. Antimicrob Agents Chemother 2008 May; 52(5): 1642–6PubMedCrossRefGoogle Scholar
  28. 28.
    Rutstein R, Samson P, Fenton T, et al. The NIH PACTG protocol 1020A: atazanavir (ATV), +/− ritonavir in HIV-infected infants, children and adolescents [abstract no. 715]. 14th Conference on Retroviruses and Opportunistic Infections; 2007 Feb 25–28; Los Angeles (CA)Google Scholar
  29. 29.
    Solas C, Colson P, Ravaux I, et al. The genotypic inhibitory quotient: a predictive factor of atazanavir response in HIV-1-infected treatment-experienced patients. J Acquir Immune Defic Syndr 2008 Jun 1; 48(2): 177–80PubMedCrossRefGoogle Scholar
  30. 30.
    Pellegrin I, Breilh D, Ragnaud J, et al. Virological responses to atazanavir-ritonavir-based regimens: resistance-substitutions score and pharmacokinetic parameters (Reyaphar study). Antivir Ther (Lond) 2006; 11(4): 421–9Google Scholar
  31. 31.
    Moltó J, Santos JR, Valle M, et al. Monitoring atazanavir concentrations with boosted or unboosted regimens in HIV-infected patients in routine clinical practice. Ther Drug Monit 2007 Oct; 29(5): 648–51PubMedCrossRefGoogle Scholar
  32. 32.
    Delaugerre C, Buyck JF, Peytavin G, et al. Factors predictive of successful darunavir/ritonavir-based therapy in highly antiretroviral-experienced HIV-1-infected patients (the DARWEST study). J Clin Virol 2010 Mar; 47(3): 248–52PubMedCrossRefGoogle Scholar
  33. 33.
    Moltó J, Santos JR, Perez-Alvarez N, et al. Darunavir inhibitory quotient predicts the 48-week virological response to darunavir-based salvage therapy in human immunodeficiency virus-infected protease inhibitor-experienced patients. Antimicrob Agents Chemother 2008 Nov; 52(11): 3928–32PubMedCrossRefGoogle Scholar
  34. 34.
    Fraaij PLA, Bergshoeff AS, van Rossum AMC, et al. Changes in indinavir exposure over time: a case study in six HIV- 1-infected children. J Antimicrob Chemother 2003 Oct; 52(4): 727–30PubMedCrossRefGoogle Scholar
  35. 35.
    Solas C, Basso S, Poizot-Martin I, et al. High indinavir Cmin is associated with higher toxicity in patients on indinavir-ritonavir 800/100 mg twice-daily regimen. J Acquir Immune Defic Syndr 2002 Apr 1; 29(4): 374–7PubMedGoogle Scholar
  36. 36.
    Kappelhoff B, Crommentuyn K, de Maat M, et al. Practical guidelines to interpret plasma concentrations of antiretroviral drugs. Clin Pharmacokinet 2004; 43(13): 845–53PubMedCrossRefGoogle Scholar
  37. 37.
    Demeter LM, Jiang H, Mukherjee AL, et al. A randomized trial of therapeutic drug monitoring of protease inhibitors in antiretroviral-experienced, HIV-1-infected patients. AIDS 2009 Jan 28; 23(3): 357–68PubMedCrossRefGoogle Scholar
  38. 38.
    Rakhmanina N, van den Anker J, Baghdassarian A, et al. The phenotypic and genotypic susceptibility lopinavir scores and virologic response in treatment-experienced children with HIV [abstract]. 10th International Workshop on Clinical Pharmacology of HIV Therapy; 2009 Apr 15–17; AmsterdamGoogle Scholar
  39. 39.
    Robbins BL, Capparelli EV, Chadwick EG, et al. Pharmacokinetics of highdose lopinavir-ritonavir with and without saquinavir or nonnucleoside reverse transcriptase inhibitors in human immunodeficiency virus-infected pediatric and adolescent patients previously treated with protease inhibitors. Antimicrob Agents Chemother 2008 Sep; 52(9): 3276–83PubMedCrossRefGoogle Scholar
  40. 40.
    Marzolini C, Buclin T, Decosterd LA, et al. Nelfinavir plasma levels under twice-daily and three-times-daily regimens: high interpatient and low in-trapatient variability. Ther Drug Monit 2001 Aug; 23(4): 394–8PubMedCrossRefGoogle Scholar
  41. 41.
    Morello J, De Mendoza C, Soriano V, et al. Use of different inhibitory quotients to predict early virological response to tipranavir in antiretroviral-experienced human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 2009 Oct; 53(10): 4153–8PubMedCrossRefGoogle Scholar
  42. 42.
    Salazar JC, Cahn P, Yogev R, et al. Efficacy, safety and tolerability of tipranavir coadministered with ritonavir in HIV-1-infected children and adolescents. AIDS 2008 Sep 12; 22(14): 1789–98PubMedCrossRefGoogle Scholar
  43. 43.
    Fletcher CV, Kawle SP, Kakuda TN, et al. Zidovudine triphosphate and lamivudine triphosphate concentration-response relationships in HIV-infected persons. AIDS 2000; 14(14): 2137–44PubMedCrossRefGoogle Scholar
  44. 44.
    Balis FM, Pizzo PA, Butler KM, et al. Clinical pharmacology of 2′,3′-dideoxyinosine in human immunodeficiency virus-infected children. J Infect Dis 1992 Jan; 165(1): 99–104PubMedCrossRefGoogle Scholar
  45. 45.
    Mueller BU, Butler KM, Stocker VL, et al. Clinical and pharmacokinetic evaluation of long-term therapy with didanosine in children with HIV infection. Pediatrics 1994 Nov; 94(5): 724–31PubMedGoogle Scholar
  46. 46.
    Saez-Llorens X, Violari A, Ndiweni D, et al. Long-term safety and efficacy results of once-daily emtricitabine-based highly active antiretroviral therapy regimens in human immunodeficiency virus-infected pediatric subjects. Pediatrics 2008; 121(4): e827–35PubMedCrossRefGoogle Scholar
  47. 47.
    Wiznia A, Violari A, Ndiweni D, et al. Once daily (QD) emtricitabine (FTC) with other antiretroviral agents (ART) in HIV-infected pediatric patients at 48 weeks [abstract no. TuPeB4431]. XV International AIDS Conference; 2004 Jul 11–16; BangkokGoogle Scholar
  48. 48.
    Burger DM, Verweel G, Rakhmanina N, et al. Age-dependent pharmacokinetics of lamivudine in HIV-infected children. Clin Pharmacol Ther 2007 Apr; 81(4): 517–20PubMedCrossRefGoogle Scholar
  49. 49.
    Hazra R, Balis FM, Tullio AN, et al. Single-dose and steady-state pharmacokinetics of tenofovir disoproxil fumarate in human immunodeficiency virus-infected children. Antimicrob Agents Chemother 2004 Jan; 48(1): 124–9PubMedCrossRefGoogle Scholar
  50. 50.
    Kiser JJ, Fletcher CV, Flynn PM, et al. Pharmacokinetics of antiretroviral regimens containing tenofovir disoproxil fumarate and atazanavir-ritonavir in adolescents and young adults with human immunodeficiency virus infection. Antimicrob Agents Chemother 2008 Feb; 52(2): 631–7PubMedCrossRefGoogle Scholar
  51. 51.
    Leth FV, Kappelhoff BS, Johnson D, et al. Pharmacokinetic parameters of nevirapine and efavirenz in relation to antiretroviral efficacy. AIDS Res Hum Retroviruses 2006; 22(3): 232–9PubMedCrossRefGoogle Scholar
  52. 52.
    Duong M, Buisson M, Peytavin G, et al. Low trough plasma concentrations of nevirapine associated with virologic rebounds in HIV-infected patients who switched from protease inhibitors. Ann Pharmacother 2005; 39(4): 603–9PubMedCrossRefGoogle Scholar
  53. 53.
    Back D, Gibbons S, Khoo S. An update on therapeutic drug monitoring for antiretroviral drugs. Ther Drug Monit 2006; 28(3): 468–73PubMedCrossRefGoogle Scholar
  54. 54.
    Ren Y, Nuttall JJC, Egbers C, et al. High prevalence of subtherapeutic plasma concentrations of efavirenz in children. J Acquir Immune Defic Syndr 2007 Jun 1; 45(2): 133–6PubMedCrossRefGoogle Scholar
  55. 55.
    King JR, Acosta EP, Yogev R, et al. Steady-state pharmacokinetics of lopinavir/ritonavir in combination with efavirenz in human immunodeficiency virus-infected pediatric patients. Pediatr Infect Dis J 2009 Feb; 28(2): 159–61PubMedCrossRefGoogle Scholar
  56. 56.
    Veldkamp AI, Weverling GJ, Lange JM, et al. High exposure to nevirapine in plasma is associated with an improved virological response in HIV-1-infected individuals. AIDS 2001 Jun 15; 15(9): 1089–95PubMedCrossRefGoogle Scholar
  57. 57.
    de Vries-Sluijs TEMS, Dieleman JP, Arts D, et al. Low nevirapine plasma concentrations predict virological failure in an unselected HIV-1-infected population. Clin Pharmacokinet 2003; 42(6): 599–605PubMedCrossRefGoogle Scholar
  58. 58.
    Konigs C, Feiterna-Sperling C, Esposito S, et al. Pharmacokinetics and dose selection of etravirine in HIV-infected children between 6 and 17 years, inclusive [abstract no. 879]. 16th Conference on Retroviruses and Opportunistic Infections; 2009 Feb 8–11; Montreal (QC)Google Scholar
  59. 59.
    Tibotec Pharmaceuticals, Ireland. TMC125-TiDP35-C213: safety and antiviral activity of etravirine (TMC125) in treatment-experienced, HIV infected children and adolescents [ClinicalTrials.gov identifier NCT00665847]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://www.clinicaltrials.gov/ct2/show/NCT00665847?term=intelence&rank=11 [Accessed 2010 Nov 17]
  60. 60.
    Schöller-Gyüre M, Kakuda TN, Raoof A, et al. Clinical pharmacokinetics and pharmacodynamics of etravirine. Clin Pharmacokinet 2009; 48(9): 561–74PubMedCrossRefGoogle Scholar
  61. 61.
    Bergshoeff AS, Fraaij PLA, van Rossum AMC, et al. Pharmacokinetics of indinavir combined with low-dose ritonavir in human immunodeficiency virus type 1-infected children. Antimicrob Agents Chemother 2004 May; 48(5): 1904–7PubMedCrossRefGoogle Scholar
  62. 62.
    van Rossum AM, de Groot R, Hartwig NG, et al. Pharmacokinetics of indinavir and low-dose ritonavir in children with HIV-1 infection. AIDS 2000 Sep 29; 14(14): 2209–10PubMedCrossRefGoogle Scholar
  63. 63.
    Rakhmanina N, van den Anker J, Baghdassarian A, et al. Population pharmacokinetics of lopinavir predict suboptimal therapeutic concentrations in treatment-experienced human immunodeficiency virus-infected children. Antimicrob Agents Chemother 2009 Jun; 53(6): 2532–8PubMedCrossRefGoogle Scholar
  64. 64.
    Jullien V, Urien S, Chappuy H, et al. Abacavir pharmacokinetics in human immunodeficiency virus-infected children ranging in age from 1 month to 16 years: a population analysis. J Clin Pharmacol 2005 Mar; 45(3): 257–64PubMedCrossRefGoogle Scholar
  65. 65.
    Kline MW, Blanchard S, Fletcher CV, et al. A phase I study of abacavir (1592U89) alone and in combination with other antiretroviral agents in infants and children with human immunodeficiency virus infection. AIDS Clinical Trials Group 330 Team. Pediatrics 1999 Apr; 103(4): e47PubMedCrossRefGoogle Scholar
  66. 66.
    Cross SJ, Rodman JH, Lindsey JC, et al. Abacavir and metabolite pharmacokinetics in HIV-1-infected children and adolescents. J Acquir Immune Defic Syndr 2009 May 1; 51(1): 54–9PubMedCrossRefGoogle Scholar
  67. 67.
    Rongkavilit C, Thaithumyanon P, Chuenyam T, et al. Pharmacokinetics of stavudine and didanosine coadministered with nelfinavir in human immunodeficiency virus-exposed neonates. Antimicrob Agents Chemother 2001 Dec; 45(12): 3585–90PubMedCrossRefGoogle Scholar
  68. 68.
    Stevens RC, Rodman JH, Yong FH, et al. Effect of food and pharmacokinetic variability on didanosine systemic exposure in HIV-infected children. Pediatric AIDS Clinical Trials Group Protocol 144 Study Team. AIDS Res Hum Retroviruses 2000 Mar 20; 16(5): 415–21PubMedCrossRefGoogle Scholar
  69. 69.
    Hirt D, Bardin C, Diagbouga S, et al. Didanosine population pharmacokinetics in West African human immunodeficiency virus-infected children administered once-daily tablets in relation to efficacy after one year of treatment. Antimicrob Agents Chemother 2009 Oct; 53(10): 4399–406PubMedCrossRefGoogle Scholar
  70. 70.
    Gibb D, Barry M, Ormesher S, et al. Pharmacokinetics of zidovudine and dideoxyinosine alone and in combination in children with HIV infection. Br J Clin Pharmacol 1995 May; 39(5): 527–30PubMedCrossRefGoogle Scholar
  71. 71.
    Kline MW, Van Dyke RB, Lindsey JC, et al. Combination therapy with stavudine (d4T) plus didanosine (ddI) in children with human immunodeficiency virus infection. The Pediatric AIDS Clinical Trials Group 327 Team. Pediatrics 1999; 103(5): e62PubMedCrossRefGoogle Scholar
  72. 72.
    King JR, Nachman S, Yogev R, et al. Single-dose pharmacokinetics of enteric-coated didanosine in HIV-infected children. Antivir Ther (Lond) 2002 Dec; 7(4): 267–70Google Scholar
  73. 73.
    Wang LH, Wiznia AA, Rathore MH, et al. Pharmacokinetics and safety of single oral doses of emtricitabine in human immunodeficiency virus-infected children. Antimicrob Agents Chemother 2004 Jan; 48(1): 183–91PubMedCrossRefGoogle Scholar
  74. 74.
    Moodley D, Pillay K, Naidoo K, et al. Pharmacokinetics of zidovudine and lamivudine in neonates following coadministration of oral doses every 12 hours. J Clin Pharmacol 2001 Jul; 41(7): 732–41PubMedCrossRefGoogle Scholar
  75. 75.
    Tremoulet AH, Capparelli EV, Patel P, et al. Population pharmacokinetics of lamivudine in human immunodeficiency virus-exposed and -infected infants. Antimicrob Agents Chemother 2007 Dec; 51(12): 4297–302PubMedCrossRefGoogle Scholar
  76. 76.
    Lewis LL, Venzon D, Church J, et al. Lamivudine in children with human immunodeficiency virus infection: a phase I/II study. The National Cancer Institute Pediatric Branch-Human Immunodeficiency Virus Working Group. J Infect Dis 1996 Jul; 174(1): 16–25PubMedCrossRefGoogle Scholar
  77. 77.
    Mueller BU, Lewis LL, Yuen GJ, et al. Serum and cerebrospinal fluid pharmacokinetics of intravenous and oral lamivudine in human immunodeficiency virus-infected children. Antimicrob Agents Chemother 1998 Dec; 42(12): 3187–92PubMedGoogle Scholar
  78. 78.
    Fletcher CV, Yogev R, Nachman SA, et al. Pharmacokinetic characteristics of ritonavir, zidovudine, lamivudine, and stavudine in children with human immunodeficiency virus infection. Pharmacotherapy 2004 Apr; 24(4): 453–9PubMedCrossRefGoogle Scholar
  79. 79.
    Jullien V, Raïs A, Urien S, et al. Age-related differences in the pharmacokinetics of stavudine in 272 children from birth to 16 years: a population analysis. Br J Clin Pharmacol 2007 Jul; 64(1): 105–9PubMedCrossRefGoogle Scholar
  80. 80.
    Kline MW, Dunkle LM, Church JA, et al. A phase I/II evaluation of stavudine (d4T) in children with human immunodeficiency virus infection. Pediatrics 1995 Aug; 96 (2 Pt 1): 247–52PubMedGoogle Scholar
  81. 81.
    Mirochnick M, Capparelli E, Dankner W, et al. Zidovudine pharmacokinetics in premature infants exposed to human immunodeficiency virus. Antimicrob Agents Chemother 1998 Apr; 42(4): 808–12PubMedGoogle Scholar
  82. 82.
    Boucher FD, Modlin JF, Weller S, et al. Phase I evaluation of zidovudine administered to infants exposed at birth to the human immunodeficiency virus. J Pediatr 1993 Jan; 122(1): 137–44PubMedCrossRefGoogle Scholar
  83. 83.
    Balis FM, Pizzo PA, Eddy J, et al. Pharmacokinetics of zidovudine administered intravenously and orally in children with human immunodeficiency virus infection. J Pediatr 1989 May; 114(5): 880–4PubMedCrossRefGoogle Scholar
  84. 84.
    ter Heine R, Scherpbier HJ, Crommentuyn KML, et al. A pharmacokinetic and pharmacogenetic study of efavirenz in children: dosing guidelines can result in subtherapeutic concentrations. Antivir Ther (Lond) 2008; 13(6): 779–87Google Scholar
  85. 85.
    Brundage RC, Fletcher CV, Fiske W, et al. Pharmacokinetics of an efavirenz suspension in children [abstract no. 424]. 6th Conference on Retroviruses and Opportunistic Infections; 1999 Jan 31–Feb 4; Chicago (IL)Google Scholar
  86. 86.
    Saitoh A, Fletcher CV, Brundage R, et al. Efavirenz pharmacokinetics in HIV-1-infected children are associated with CYP2B6-G516T polymorphism. J Acquir Immune Defic Syndr 2007 Jul 1; 45(3): 280–5PubMedGoogle Scholar
  87. 87.
    Kwara A, Ramachandran G, Swaminathan S. Dose adjustment of the non-nucleoside reverse transcriptase inhibitors during concurrent rifampicin-containing tuberculosis therapy: one size does not fit all. Expert Opin Drug Metab Toxicol 2010 Jan; 6(1): 55–68PubMedCrossRefGoogle Scholar
  88. 88.
    Mirochnick M, Nielsen-Saines K, Pilotto JH, et al. Nevirapine concentrations in newborns receiving an extended prophylactic regimen. J Acquir Immune Defic Syndr 2008 Mar 1; 47(3): 334–7PubMedCrossRefGoogle Scholar
  89. 89.
    Luzuriaga K, Bryson Y, McSherry G, et al. Pharmacokinetics, safety, and activity of nevirapine in human immunodeficiency virus type 1-infected children. J Infect Dis 1996 Oct; 174(4): 713–21PubMedCrossRefGoogle Scholar
  90. 90.
    Chokephaibulkit K, Plipat N, Cressey TR, et al. Pharmacokinetics of nevirapine in HIV-infected children receiving an adult fixed-dose combination of stavudine, lamivudine and nevirapine. AIDS 2005 Sep 23; 19(14): 1495–9PubMedCrossRefGoogle Scholar
  91. 91.
    Saitoh A, Sarles E, Capparelli E, et al. CYP2B6 genetic variants are associated with nevirapine pharmacokinetics and clinical response in HIV-1-infected children. AIDS 2007 Oct 18; 21(16): 2191–9PubMedCrossRefGoogle Scholar
  92. 92.
    Blanche S, Bologna R, Cahn P, et al. Pharmacokinetics, safety and efficacy of darunavir/ritonavir in treatment-experienced children and adolescents. AIDS 2009 Sep 24; 23(15): 2005–13PubMedCrossRefGoogle Scholar
  93. 93.
    US FDA Center for Drug Evaluation and Research [CDER]. Lexiva: clinical pharmacology and biopharmaceutics review (s) [application no. 22–116]. Rockville (MD): CDER, 2007 Jun 14 [online]. Available from URL: http://www.accessdata.fda.gov/drugsatfda_docs/nda/2007/022116s000_ClinPharmR.pdf [Accessed 2010 Nov 17]
  94. 94.
    Pelton SI, Stanley K, Yogev R, et al. Switch from ritonavir to indinavir in combination therapy for HIV-1-infected children. Clin Infect Dis 2005 Apr 15; 40(8): 1181–7PubMedCrossRefGoogle Scholar
  95. 95.
    Bergshoeff AS, Fraaij PL, van Rossum AM, et al. Pharmacokinetics of indinavir combined with low-dose ritonavir in human immunodeficiency virus type 1-infected children. Antimicrob Agents Chemother 2004; 48(5): 1904–7PubMedCrossRefGoogle Scholar
  96. 96.
    Chadwick EG, Capparelli EV, Yogev R, et al. Pharmacokinetics, safety and efficacy of lopinavir/ritonavir in infants less than 6 months of age: 24 week results. AIDS 2008 Jan 11; 22(2): 249–55PubMedCrossRefGoogle Scholar
  97. 97.
    Puthanakit T, van der Lugt J, Bunupuradah T, et al. Pharmacokinetics and 48 week efficacy of low-dose lopinavir/ritonavir in HIV-infected children. J Antimicrob Chemother 2009 Nov; 64(5): 1080–6PubMedCrossRefGoogle Scholar
  98. 98.
    Jullien V, Urien S, Hirt D, et al. Population analysis of weight-, age-, and sex-related differences in the pharmacokinetics of lopinavir in children from birth to 18 years. Antimicrob Agents Chemother 2006 Nov; 50(11): 3548–55PubMedCrossRefGoogle Scholar
  99. 99.
    Mirochnick M, Stek A, Acevedo M, et al. Safety and pharmacokinetics of nelfinavir coadministered with zidovudine and lamivudine in infants during the first 6 weeks of life. J Acquir Immune Defic Syndr 2005 Jun 1; 39(2): 189–94PubMedGoogle Scholar
  100. 100.
    Hirt D, Urien S, Jullien V, et al. Age-related effects on nelfinavir and M8 pharmacokinetics: a population study with 182 children. Antimicrob Agents Chemother 2006 Mar; 50(3): 910–6PubMedCrossRefGoogle Scholar
  101. 101.
    Rongkavilit C, van Heeswijk RPG, Limpongsanurak S, et al. Dose-escalating study of the safety and pharmacokinetics of nelfinavir in HIV-exposed neonates. J Acquir Immune Defic Syndr 2002 Apr 15; 29(5): 455–63PubMedGoogle Scholar
  102. 102.
    Litalien C, Faye A, Compagnucci A, et al. Pharmacokinetics of nelfinavir and its active metabolite, hydroxy-tert-butylamide, in infants perinatally infected with human immunodeficiency virus type 1. Pediatr Infect Dis J 2003 Jan; 22(1): 48–55PubMedCrossRefGoogle Scholar
  103. 103.
    Crommentuyn KML, Scherpbier HJ, Kuijpers TW, et al. Population pharmacokinetics and pharmacodynamics of nelfinavir and its active metabolite M8 in HIV-1-infected children. Pediatr Infect Dis J 2006 Jun; 25(6): 538–43PubMedCrossRefGoogle Scholar
  104. 104.
    Bergshoeff AS, Fraaij PLA, van Rossum AMC, et al. Pharmacokinetics of nelfinavir in children: influencing factors and dose implications. Antivir Ther (Lond) 2003 Jun; 8(3): 215–22Google Scholar
  105. 105.
    King JR, Nachman S, Yogev R, et al. Efficacy, tolerability and pharmacokinetics of two nelfinavir-based regimens in human immunodeficiency virus-infected children and adolescents: Pediatric AIDS Clinical Trials Group protocol 403. Pediatr Infect Dis J 2005; 24(10): 880–5PubMedCrossRefGoogle Scholar
  106. 106.
    Capparelli EV, Sullivan JL, Mofenson L, et al. Pharmacokinetics of nelfinavir in human immunodeficiency virus-infected infants. Pediatr Infect Dis J 2001 Aug; 20(8): 746–51PubMedCrossRefGoogle Scholar
  107. 107.
    Floren LC, Wiznia A, Hayashi S, et al. Nelfinavir pharmacokinetics in stable human immunodeficiency virus-positive children: Pediatric AIDS Clinical Trials Group protocol 377. Pediatrics 2003 Sep; 112 (3 Pt 1): e220–7PubMedCrossRefGoogle Scholar
  108. 108.
    Chadwick EG, Rodman JH, Britto P, et al. Ritonavir-based highly active antiretroviral therapy in human immunodeficiency virus type 1-infected infants younger than 24 months of age. Pediatr Infect Dis J 2005 Sep; 24(9): 793–800PubMedCrossRefGoogle Scholar
  109. 109.
    Mueller BU, Nelson RP, Sleasman J, et al. A phase I/II study of the protease inhibitor ritonavir in children with human immunodeficiency virus infection. Pediatrics 1998 Mar; 101 (3 Pt 1): 335–43PubMedCrossRefGoogle Scholar
  110. 110.
    Grub S, Delora P, Ludin E, et al. Pharmacokinetics and pharmacodynamics of saquinavir in pediatric patients with human immunodeficiency virus infection. Clin Pharmacol Ther 2002; 71(3): 122–30PubMedCrossRefGoogle Scholar
  111. 111.
    Sabo JP, Cahn P, Della Negra M, et al. Population pharmacokinetic assessment of systemic steady-state tipranavir concentrations for HIV+ pediatric patients administered tipranavir/ritonavir: BI 1182.14 and PACTG 1051 Study Team [abstract no. 687]. 13th Conference on Retroviruses and Opportunistic Infections; 2006 Feb 5–8; Denver (CO)Google Scholar
  112. 112.
    Soy D, Aweeka FT, Church JA, et al. Population pharmacokinetics of en-fuvirtide in pediatric patients with human immunodeficiency virus: searching for exposure-response relationships. Clin Pharmacol Ther 2003 Dec; 74(6): 569–80PubMedCrossRefGoogle Scholar
  113. 113.
    Zhang X, Lin T, Bertasso A, et al. Population pharmacokinetics of enfuvirtide in HIV-1-infected pediatric patients over 48 weeks of treatment. J Clin Pharmacol 2007 Apr; 47(4): 510–7PubMedCrossRefGoogle Scholar
  114. 114.
    Bellibas SE, Siddique Z, Dorr A, et al. Pharmacokinetics of enfuvirtide in pediatric human immunodeficiency virus 1-infected patients receiving combination therapy. Pediatr Infect Dis J 2004 Dec; 23(12): 1137–41PubMedGoogle Scholar
  115. 115.
    Nachman S, Acosta E, Wiznia A, et al. Raltegravir pharmacokinetics and safety in adolescents: preliminary results from IMPAACT P1066 [abstract no. H-4059a]. 48th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2008 Oct 25–28; Washington, DCGoogle Scholar
  116. 116.
    Neely MN, Rakhmanina NY. Pharmacokinetics and 48 week efficacy of low-dose lopinavir/ritonavir in HIV-infected children [comment]. J Antimicrob Chemother 2010 Apr; 65(4): 808–9PubMedCrossRefGoogle Scholar
  117. 117.
    Burger DM, Bergshoeff AS, De Groot R, et al. Maintaining the nelfinavir trough concentration above 0.8 mg/L improves virologic response in HIV-1-infected children. J Pediatr 2004; 145(3): 403–5PubMedCrossRefGoogle Scholar
  118. 118.
    Scherpbier HJ, Bekker V, van Leth F, et al. Long-term experience with combination antiretroviral therapy that contains nelfinavir for up to 7 years in a pediatric cohort. Pediatrics 2006; 117(3): e528–36PubMedCrossRefGoogle Scholar
  119. 119.
    Paediatric European Network for Treatment of Aids (PENTA). Comparison of dual nucleoside-analogue reverse-transcriptase inhibitor regimens with and without nelfinavir in children with HIV-1 who have not previously been treated: the PENTA 5 randomised trial. Lancet 2002 Mar 2; 359(9308): 733–40CrossRefGoogle Scholar
  120. 120.
    van Heeswijk R, Scherpbier H, de Koning L, et al. The pharmacokinetics of nelfinavir in HIV-1-infected children. Ther Drug Monit 2002; 24(4): 487–91PubMedCrossRefGoogle Scholar
  121. 121.
    Wu H, Lathey J, Ruan P, et al. Relationship of plasma HIV-1 RNA dynamics to baseline factors and virological responses to highly active antiretroviral therapy in adolescents (aged 12–22 years) infected through high-risk behavior. J Infect Dis 2004; 189(4): 593–601PubMedCrossRefGoogle Scholar
  122. 122.
    Burger DM, Hugen PW, Aarnoutse RE, et al. Treatment failure of nelfinavir-containing triple therapy can largely be explained by low nelfinavir plasma concentrations. Ther Drug Monit 2003; 25(1): 73–80PubMedCrossRefGoogle Scholar
  123. 123.
    Hoffmann F, Notheis G, Wintergerst U, et al. Comparison of ritonavir plus saquinavir- and nelfinavir plus saquinavir-containing regimens as salvage therapy in children with human immunodeficiency type 1 infection. Pediatr Infect Dis J 2000; 19(1): 47–51PubMedCrossRefGoogle Scholar
  124. 124.
    Palacios GC, Palafox VL, Alvarez-Munoz MT, et al. Response to two consecutive protease inhibitor combination therapy regimens in a cohort of HIV-1-infected children. Scand J Infect Dis 2002; 34(1): 41–4PubMedCrossRefGoogle Scholar
  125. 125.
    Ananworanich J, Kosalaraksa P, Hill A, et al. Pharmacokinetics and 24-week efficacy/safety of dual boosted saquinavir/lopinavir/ritonavir in nucleoside-pretreated children. Pediatr Infect Dis J 2005 Oct; 24(10): 874–9PubMedCrossRefGoogle Scholar
  126. 126.
    Kosalaraksa P, Bunupuradah T, Engchanil C, et al. Double boosted protease inhibitors, saquinavir, and lopinavir/ritonavir, in nucleoside pretreated children at 48 weeks. Pediatr Infect Dis J 2008 Jul; 27(7): 623–8PubMedCrossRefGoogle Scholar
  127. 127.
    Church JA, Hughes M, CHEN J, et al. Long term tolerability and safety of enfuvirtide for human immunodeficiency virus 1-infected children. Pediatr Infect Dis J 2004; 23(8): 713–8PubMedCrossRefGoogle Scholar
  128. 128.
    Wiznia A, Church J, Emmanuel P, et al. Safety and efficacy of enfuvirtide for 48 weeks as part of an optimized antiretroviral regimen in pediatric human immunodeficiency virus 1-infected patients. Pediatr Infect Dis J 2007 Sep; 26(9): 799–805PubMedCrossRefGoogle Scholar
  129. 129.
    Church JA, Cunningham C, Hughes M, et al. Safety and antiretroviral activity of chronic subcutaneous administration of T-20 in human immunodeficiency virus 1-infected children. Pediatr Infect Dis J 2002; 21(7): 653–9PubMedCrossRefGoogle Scholar
  130. 130.
    Markowitz M, Nguyen B, Gotuzzo E, et al. Rapid and durable antiretroviral effect of the HIV-1 integrase inhibitor raltegravir as part of combination therapy in treatment-naive patients with HIV-1 infection: results of a 48-week controlled study. J Acquir Immune Defic Syndr 2007 Oct 1; 46(2): 125–33PubMedCrossRefGoogle Scholar
  131. 131.
    Grinsztejn B, Nguyen B, Katlama C, et al. Safety and efficacy of the HIV-1 integrase inhibitor raltegravir (MK-0518) in treatment-experienced patients with multidrug-resistant virus: a phase II randomised controlled trial. Lancet 2007 Apr 14; 369(9569): 1261–9PubMedCrossRefGoogle Scholar
  132. 132.
    Capparelli EV, Mirochnick M, Dankner WM, et al. Pharmacokinetics and tolerance of zidovudine in preterm infants. J Pediatr 2003 Jan; 142(1): 47–52PubMedCrossRefGoogle Scholar
  133. 133.
    Butler KM, Venzon D, Henry N, et al. Pancreatitis in human immunodeficiency virus-infected children receiving dideoxyinosine. Pediatrics 1993 Apr; 91(4): 747–51PubMedGoogle Scholar
  134. 134.
    Hussain S, Khayat A, Tolaymat A, et al. Nephrotoxicity in a child with perinatal HIV on tenofovir, didanosine and lopinavir/ritonavir. Pediatr Nephrol 2006; 21(7): 1034–6PubMedCrossRefGoogle Scholar
  135. 135.
    Papaleo A, Warszawski J, Salomon R, et al. Increased beta-2 microglobulinuria in human immunodeficiency virus-1-infected children and adolescents treated with tenofovir. Pediatr Infect Dis J 2007; 26(10): 949–51PubMedCrossRefGoogle Scholar
  136. 136.
    Andiman WA, Chernoff MC, Mitchell et al. Incidence of persistent renal dysfunction in human immunodeficiency virus-infected children: associations with the use of antiretrovirals, and other nephrotoxic medications and risk factors. Pediatr Infect Dis J 2009 Jul; 28(7): 619–25PubMedCrossRefGoogle Scholar
  137. 137.
    Goicoechea M, Liu S, Best B, et al. Greater tenofovir-associated renal function decline with protease inhibitor-based versus nonnucleoside reverse-transcriptase inhibitor-based therapy. J Infect Dis 2008 Jan 1; 197(1): 102–8PubMedCrossRefGoogle Scholar
  138. 138.
    Gallant JE, Moore RD. Renal function with use of a tenofovir-containing initial antiretroviral regimen. AIDS 2009 Sep 24; 23(15): 1971–5PubMedCrossRefGoogle Scholar
  139. 139.
    Riordan A, Judd A, Boyd K, et al. Tenofovir use in human immunodeficiency virus-1-infected children in the United Kingdom and Ireland. Pediatr Infect Dis J 2009 Mar; 28(3): 204–9PubMedCrossRefGoogle Scholar
  140. 140.
    Kearney BP, Mathias A, Mittan A, et al. Pharmacokinetics and safety of tenofovir disoproxil fumarate on coadministration with lopinavir/ritonavir. J Acquir Immune Defic Syndr 2006 Nov 1; 43(3): 278–83PubMedCrossRefGoogle Scholar
  141. 141.
    Pruvost A, Negredo E, Théodoro F, et al. Pilot pharmacokinetic study of human immunodeficiency virus-infected patients receiving tenofovir disoproxil fumarate (TDF): investigation of systemic and intracellular interactions between TDF and abacavir, lamivudine, or lopinavir-ritonavir. Antimicrob Agents Chemother 2009 May; 53(5): 1937–43PubMedCrossRefGoogle Scholar
  142. 142.
    Kiser JJ, Carten ML, Aquilante CL, et al. The effect of lopinavir/ritonavir on the renal clearance of tenofovir in HIV-infected patients. Clin Pharmacol Ther 2008 Feb; 83(2): 265–72PubMedCrossRefGoogle Scholar
  143. 143.
    Purdy JB, Gafni RI, Reynolds JC, et al. Decreased bone mineral density with off-label use of tenofovir in children and adolescents infected with human immunodeficiency virus. J Pediatr 2008; 152(4): 582–4PubMedCrossRefGoogle Scholar
  144. 144.
    Gafni RI, Hazra R, Reynolds JC, et al. Tenofovir disoproxil fumarate and an optimized background regimen of antiretroviral agents as salvage therapy: impact on bone mineral density in HIV-infected children. Pediatrics 2006; 118(3): e711–8PubMedCrossRefGoogle Scholar
  145. 145.
    Giacomet V, Mora S, Martelli L, et al. A 12-month treatment with tenofovir does not impair bone mineral accrual in HIV-infected children. J Acquir Immune Defic Syndr 2005; 40(4): 448–50PubMedCrossRefGoogle Scholar
  146. 146.
    Kearney BP, Sayre JR, Flaherty JF, et al. Drug-drug and drug-food interactions between tenofovir disoproxil fumarate and didanosine. J Clin Pharmacol 2005; 45(12): 1360–7PubMedCrossRefGoogle Scholar
  147. 147.
    Negredo E, Moltó J, Burger D, et al. Unexpected CD4 cell count decline in patients receiving didanosine and tenofovir-based regimens despite undetectable viral load. AIDS 2004; 18(3): 459–63PubMedCrossRefGoogle Scholar
  148. 148.
    Rollot F, Nazal EM, Chauvelot-Moachon L, et al. Tenofovir-related Fanconi syndrome with nephrogenic diabetes insipidus in a patient with acquired immunodeficiency syndrome: the role of lopinavir-ritonavir-didanosine. Clin Infect Dis 2003; 37(12): e174–6PubMedCrossRefGoogle Scholar
  149. 149.
    McKinney RE, Rodman J, Hu C, et al. Long-term safety and efficacy of a once-daily regimen of emtricitabine, didanosine, and efavirenz in HIV-infected, therapy-naive children and adolescents: Pediatric AIDS Clinical Trials Group protocol P1021. Pediatrics 2007; 120(2): e416–23PubMedCrossRefGoogle Scholar
  150. 150.
    Baylor M, Ayime O, Truffa M, et al. Hepatotoxicity associated with nevirapine use in HIV-infected children [abstract no. 776]. 12th Conference of Retroviruses and Opportunistic Infections; 2005 Feb 22–25; Boston (MA)Google Scholar
  151. 151.
    Marzolini C, Telenti A, Decosterd LA, et al. Efavirenz plasma levels can predict treatment failure and central nervous system side effects in HIV-1-infected patients. AIDS 2001; 15(1): 71–5PubMedCrossRefGoogle Scholar
  152. 152.
    Dieleman JP, Gyssens IC, van der Ende ME, et al. Urological complaints in relation to indinavir plasma concentrations in HIV-infected patients. AIDS 1999; 13(4): 473–8PubMedCrossRefGoogle Scholar
  153. 153.
    van Rossum AM, Dieleman JP, Fraaij PL, et al. Persistent sterile leukocyturia is associated with impaired renal function in human immunodeficiency virus type 1-infected children treated with indinavir. Pediatrics 2002; 110 (2 Pt 1): e19PubMedCrossRefGoogle Scholar
  154. 154.
    Rodríguez-Nóvoa S, Barreiro P, Rendon A, et al. Plasma levels of atazanavir and the risk of hyperbilirubinemia are predicted by the 3435C— >T polymorphism at the multidrug resistance gene 1. Clin Infect Dis 2006; 42(2): 291–5PubMedCrossRefGoogle Scholar
  155. 155.
    Rodríguez-Nóvoa S, Martín-Carbonero L, Barreiro P, et al. Genetic factors influencing atazanavir plasma concentrations and the risk of severe hyperbilirubinemia. AIDS 2007 Jan 2; 21(1): 41–6PubMedCrossRefGoogle Scholar
  156. 156.
    Busti AJ, Hall RG, Margolis DM. Atazanavir for the treatment of human immunodeficiency virus infection. Pharmacotherapy 2004 Dec; 24(12): 1732–47PubMedCrossRefGoogle Scholar
  157. 157.
    Vermeiren H, Van Craenenbroeck E, Alen P, et al. Prediction of HIV-1 drug susceptibility phenotype from the viral genotype using linear regression modeling. J Virol Methods 2007 Oct; 145(1): 47–55PubMedCrossRefGoogle Scholar
  158. 158.
    Hoefnagel JGM, Koopmans PP, Burger DM, et al. Role of the inhibitory quotient in HIV therapy. Antivir Ther 2005; 10(8): 879–92PubMedGoogle Scholar
  159. 159.
    Hsu A, Isaacson J, Brun S, et al. Pharmacokinetic-pharmacodynamic analysis of lopinavir-ritonavir in combination with efavirenz and two nucleoside reverse transcriptase inhibitors in extensively pretreated human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 2003 Jan; 47(1): 350–9PubMedCrossRefGoogle Scholar
  160. 160.
    McMahon MA, Shen L, Siliciano RF. New approaches for quantitating the inhibition of HIV-1 replication by antiviral drugs in vitro and in vivo. Curr Opin Infect Dis 2009 Dec; 22(6): 574–82PubMedCrossRefGoogle Scholar
  161. 161.
    Shen L, Peterson S, Sedaghat AR, et al. Dose-response curve slope sets class-specific limits on inhibitory potential of anti-HIV drugs. Nat Med 2008 Jul; 14(7): 762–6PubMedCrossRefGoogle Scholar
  162. 162.
    Shen L, Rabi SA, Siliciano RF. A novel method for determining the inhibitory potential of anti-HIV drugs. Trends Pharmacol Sci 2009 Dec; 30(12): 610–6PubMedCrossRefGoogle Scholar
  163. 163.
    Henrich T, Ribaudo H, Kuritzkes D. Instantaneous inhibitory potential is similar to inhibitory quotient at predicting HIV-1 response to antiretroviral therapy. Clin Infect Dis 2010; 51: 93–8PubMedCrossRefGoogle Scholar
  164. 164.
    Mirochnick M, Capparelli E, Connor J. Pharmacokinetics of zidovudine in infants: a population analysis across studies. Clin Pharmacol Ther 1999 Jul; 66(1): 16–24PubMedCrossRefGoogle Scholar
  165. 165.
    Flynn PM, Rodman J, Lindsey JC, et al. Intracellular pharmacokinetics of once versus twice daily zidovudine and lamivudine in adolescents. Antimicrob Agents Chemother 2007 Oct; 51(10): 3516–22PubMedCrossRefGoogle Scholar
  166. 166.
    Fisher J, Gastonguay MR, Knebel W, et al. Population pharmacokinetic modeling of fosamprenavir in pediatric HIV-infected patients [abstract no. 48]. First American Conference on Pharmacometrics; 2008 Mar 9–12; Tuscon (AZ) [online]. Available from URL: http://tucson2008.go-acop.org/pdfs/48_fisher.pdf [Accessed 2010 Nov 17]Google Scholar
  167. 167.
    US Department of Health and Human Services. AIDSinfo: clinical guidelines portal [online]. Available from URL: http://www.aidsinfo.nih.gov/Guidelines/ [Accessed 2010 Nov 17]
  168. 168.
    Hines RN. The ontogeny of drug metabolism enzymes and implications for adverse drug events. Pharmacol Ther 2008 May; 118(2): 250–67PubMedCrossRefGoogle Scholar
  169. 169.
    Reed M, Besunder J. Developmental pharmacology: ontogenic basis of drug disposition. Pediatr Clin North Am 1989; 36(5): 1053–74PubMedGoogle Scholar
  170. 170.
    Anderson BJ, Meakin GH. Scaling for size: some implications for paediatric anaesthesia dosing. Paediatr Anaesth 2002 Mar; 12(3): 205–19PubMedCrossRefGoogle Scholar
  171. 171.
    Anderson BJ, Holford NHG. Mechanism-based concepts of size and maturity in pharmacokinetics. Annu Rev Pharmacol Toxicol 2008; 48: 303–32PubMedCrossRefGoogle Scholar
  172. 172.
    Neely M, Rushing T, Kovacs A, et al. Voriconazole pharmacokinetics and pharmacodynamics in children. Clin Infect Dis 2010 Jan 1; 50(1): 27–36PubMedCrossRefGoogle Scholar
  173. 173.
    Saez-Llorens X, Violari A, Deetz C, et al. Forty-eight-week evaluation of lopinavir/ritonavir, a new protease inhibitor, in human immunodeficiency virus-infected children. Pediatr Infect Dis J 2003 Mar; 22(3): 216–24PubMedGoogle Scholar
  174. 174.
    Nettles RE, Kieffer TL, Parsons T, et al. Marked intraindividual variability in antiretroviral concentrations may limit the utility of therapeutic drug monitoring. Clin Infect Dis 2006 Apr 15; 42(8): 1189–96PubMedCrossRefGoogle Scholar
  175. 175.
    Fabbiani M, Di Giambenedetto S, Bracciale L, et al. Pharmacokinetic variability of antiretroviral drugs and correlation with virological outcome: 2 years of experience in routine clinical practice. J Antimicrob Chemother 2009 Jul; 64(1): 109–17PubMedCrossRefGoogle Scholar
  176. 176.
    Mahungu TW, Johnson MA, Owen A, et al. The impact of pharmacogenetics on HIV therapy. Int J STD AIDS 2009 Mar; 20(3): 145–51PubMedCrossRefGoogle Scholar
  177. 177.
    Tozzi V. Pharmacogenetics of antiretrovirals. Antiviral Res 2010 Jan; 85(1): 190–200PubMedCrossRefGoogle Scholar
  178. 178.
    Anderson PL, Lamba J, Aquilante CL, et al. Pharmacogenetic characteristics of indinavir, zidovudine, and lamivudine therapy in HIV-infected adults: a pilot study. J Acquir Immune Defic Syndr 2006 Aug 1; 42(4): 441–9PubMedCrossRefGoogle Scholar
  179. 179.
    Maagaard A, Kvale D. Mitochondrial toxicity in HIV-infected patients both off and on antiretroviral treatment: a continuum or distinct underlying mechanisms? J Antimicrob Chemother 2009 Nov; 64(5): 901–9PubMedCrossRefGoogle Scholar
  180. 180.
    Canter JA, Haas DW, Kallianpur AR, et al. The mitochondrial pharmacoge-nomics of haplogroup T: MTND2*LHON4917G and antiretroviral therapy-associated peripheral neuropathy. Pharmacogenomics J 2008 Feb; 8(1): 71–7PubMedCrossRefGoogle Scholar
  181. 181.
    Phillips EJ, Mallal SA. HLA and drug-induced toxicity. Curr Opin Mol Ther 2009 Jun; 11(3): 231–42PubMedGoogle Scholar
  182. 182.
    Izzedine H, Hulot J, Villard E, et al. Association between ABCC2 gene haplotypes and tenofovir-induced proximal tubulopathy. J Infect Dis 2006 Dec 1; 194(11): 1481–91PubMedCrossRefGoogle Scholar
  183. 183.
    di Iulio J, Fayet A, Arab-Alameddine M, et al. In vivo analysis of efavirenz metabolism in individuals with impaired CYP2A6 function. Pharmacogenet Genomics 2009 Apr; 19(4): 300–9PubMedCrossRefGoogle Scholar
  184. 184.
    Gatanaga H, Hayashida T, Tsuchiya K, et al. Successful efavirenz dose reduction in HIV type 1-infected individuals with cytochrome P450 2B6 *6 and *26. Clin Infect Dis 2007 Nov 1; 45(9): 1230–7PubMedCrossRefGoogle Scholar
  185. 185.
    Vitezica ZG, Milpied B, Lonjou C, et al. HLA-DRB1*01 associated with cutaneous hypersensitivity induced by nevirapine and efavirenz. AIDS 2008 Feb 19; 22(4): 540–1PubMedCrossRefGoogle Scholar
  186. 186.
    Chantarangsu S, Mushiroda T, Mahasirimongkol S, et al. HLA-B*3505 allele is a strong predictor for nevirapine-induced skin adverse drug reactions in HIV-infected Thai patients. Pharmacogenet Genomics 2009 Feb; 19(2): 139–46PubMedCrossRefGoogle Scholar
  187. 187.
    Ciccacci C, Borgiani P, Ceffa S, et al. Nevirapine-induced hepatotoxicity and pharmacogenetics: a retrospective study in a population from Mozambique. Pharmacogenomics 2010 Jan; 11(1): 23–31PubMedCrossRefGoogle Scholar
  188. 188.
    Saitoh A, Capparelli E, Aweeka F, et al. CYP2C19 genetic variants affect nelfinavir pharmacokinetics and virologic response in HIV-1-infected children receiving highly active antiretroviral therapy. J Acquir Immune Defic Syndr 2010 Jul 1; 54(3): 285–9PubMedCrossRefGoogle Scholar
  189. 189.
    Saitoh A, Singh KK, Powell CA, et al. An MDR1-3435 variant is associated with higher plasma nelfinavir levels and more rapid virologic response in HIV-1 infected children. AIDS 2005 Mar 4; 19(4): 371–80PubMedCrossRefGoogle Scholar
  190. 190.
    Bertrand J, Treluyer J, Panhard X, et al. Influence of pharmacogenetics on indinavir disposition and short-term response in HIV patients initiating HAART. Eur J Clin Pharmacol 2009 Jul; 65(7): 667–78PubMedCrossRefGoogle Scholar
  191. 191.
    Shet A, Mehta S, Rajagopalan N, et al. Anemia and growth failure among HIV-infected children in India: a retrospective analysis. BMC Pediatr 2009; 9: 37PubMedCrossRefGoogle Scholar
  192. 192.
    Nachman SA, Lindsey JC, Moye J, et al. Growth of human immunodeficiency virus-infected children receiving highly active antiretroviral therapy. Pediatr Infect Dis J 2005 Apr; 24(4): 352–7PubMedCrossRefGoogle Scholar
  193. 193.
    Guillén S, Ramos JT, Resino R, et al. Impact on weight and height with the use of HAART in HIV-infected children. Pediatr Infect Dis J 2007 Apr; 26(4): 334–8PubMedCrossRefGoogle Scholar
  194. 194.
    Kekitiinwa A, Lee KJ, Walker AS, et al. Differences in factors associated with initial growth, CD4, and viral load responses to ART in HIV-infected children in Kampala, Uganda, and the United Kingdom/Ireland. J Acquir Immune Defic Syndr 2008 Dec 1; 49(4): 384–92PubMedCrossRefGoogle Scholar
  195. 195.
    Naidoo R, Rennert W, Lung A, et al. The influence of nutritional status on the response to HAART in HIV-infected children in South Africa. Pediatr Infect Dis J 2010 Jun; 29(6): 511–3PubMedGoogle Scholar
  196. 196.
    Fukushima K, Shibata M, Mizuhara K, et al. Effect of serum lipids on the pharmacokinetics of atazanavir in hyperlipidemic rats. Biomed Pharmacother 2009 Nov; 63(9): 635–42PubMedCrossRefGoogle Scholar
  197. 197.
    Sugioka N, Haraya K, Fukushima K, et al. Effects of obesity induced by high-fat diet on the pharmacokinetics of nelfinavir, a HIV protease inhibitor, in laboratory rats. Biopharm Drug Dispos 2009 Dec; 30(9): 532–41PubMedCrossRefGoogle Scholar
  198. 198.
    Jones K, Hoggard PG, Khoo S, et al. Effect of alpha1-acid glycoprotein on the intracellular accumulation of the HIV protease inhibitors saquinavir, ritonavir and indinavir in vitro. Br J Clin Pharmacol 2001 Jan; 51(1): 99–102PubMedCrossRefGoogle Scholar
  199. 199.
    Gulati A, Boudinot FD, Gerk PM. Binding of lopinavir to human alpha1-acid glycoprotein and serum albumin. Drug Metab Dispos 2009 Aug; 37(8): 1572–5PubMedCrossRefGoogle Scholar
  200. 200.
    Pollock L, Else L, Poerksen G, et al. Pharmacokinetics of nevirapine in HIV-infected children with and without malnutrition receiving divided adult fixed-dose combination tablets. J Antimicrob Chemother 2009 Dec; 64(6): 1251–9PubMedCrossRefGoogle Scholar
  201. 201.
    Mills E, Foster BC, van Heeswijk R, et al. Impact of African herbal medicines on antiretroviral metabolism. AIDS 2005 Jan 3; 19(1): 95–7PubMedCrossRefGoogle Scholar
  202. 202.
    Langlois-Klassen D, Kipp W, Jhangri GS, et al. Use of traditional herbal medicine by AIDS patients in Kabarole District, Western Uganda. Am J Trop Med Hyg 2007 Oct; 77(4): 757–63PubMedGoogle Scholar
  203. 203.
    Duggan J, Peterson WS, Schutz M, et al. Use of complementary and alternative therapies in HIV-infected patients. AIDS Patient Care STDS 2001 Mar; 15(3): 159–67PubMedCrossRefGoogle Scholar
  204. 204.
    Sparber A, Wootton JC, Bauer L, et al. Use of complementary medicine by adult patients participating in HIV/AIDS clinical trials. J Altern Complement Med 2000 Oct; 6(5): 415–22PubMedCrossRefGoogle Scholar
  205. 205.
    Brown L, Heyneke O, Brown D, et al. Impact of traditional medicinal plant extracts on antiretroviral drug absorption. J Ethnopharmacol 2008 Oct 28; 119(3): 588–92PubMedCrossRefGoogle Scholar
  206. 206.
    Piscitelli SC, Burstein AH, Chaitt D, et al. Indinavir concentrations and St John’s wort. Lancet 2000 Feb 12; 355(9203): 547–8PubMedCrossRefGoogle Scholar
  207. 207.
    de Maat MMR, Hoetelmans RMW, Mathôt RAA, et al. Drug interaction between St John’s wort and nevirapine. AIDS 2001 Feb 16; 15(3): 420–1PubMedCrossRefGoogle Scholar
  208. 208.
    Piscitelli SC, Burstein AH, Welden N, et al. The effect of garlic supplements on the pharmacokinetics of saquinavir. Clin Infect Dis 2002 Jan 15; 34(2): 234–8PubMedCrossRefGoogle Scholar
  209. 209.
    Acosta E, Gerber J. Position paper on therapeutic drug monitoring of antiretroviral agents. AIDS Res Hum Retroviruses 2002; 18(12): 825–34PubMedCrossRefGoogle Scholar
  210. 210.
    European AIDS Clinical Society. Guidelines: clinical management and treatment of HIV-infected adults in Europe. Version 5-2 [online]. Available from URL: http://www.europeanaidsclinicalsociety.org/guidelines.asp [Accessed 2010 Nov 17]
  211. 211.
    Fraaij PLA, Rakhmanina N, Burger DM, et al. Therapeutic drug monitoring in children with HIV/AIDS. Ther Drug Monit 2004 Apr; 26(2): 122–6PubMedCrossRefGoogle Scholar
  212. 212.
    Acosta E, King J. Methods for integration of pharmacokinetic and phenotypic information in the treatment of infection with human immunodeficiency virus. Clin Infect Dis 2003 Feb 1; 36(3): 373–7PubMedCrossRefGoogle Scholar
  213. 213.
    Kredo T, Van der Walt J, Siegfried N, et al. Therapeutic drug monitoring of antiretrovirals for people with HIV. Cochrane Database Syst Rev 2009; (3): CD007268PubMedGoogle Scholar
  214. 214.
    Curras V, Hocht C, Mangano A, et al. Pharmacokinetic study of the variability of indinavir drug levels when boosted with ritonavir in HIV-infected children. Pharmacology 2009; 83(1): 59–66PubMedCrossRefGoogle Scholar
  215. 215.
    Chadwick EG, Rodman JH, Samson P, et al. Antiviral activity, tolerance and pharmacokinetics of indinavir with two doses of ritonavir as salvage therapy in children [poster no. 875]. 10th Conference on Retroviruses and Opportunistic Infections; 2003 Feb 10–14; Boston (MA) [online]. Available from URL: http://www.retroconference.org/2003/cd/Abstract/875.htm [Accessed 2010 Nov 17]Google Scholar
  216. 216.
    Brundage R, Yong F, Fenton T, et al. Intrapatient variability of efavirenz concentrations as a predictor of virologic response to antiretroviral therapy. Antimicrob Agents Chemother 2004 Mar; 48(3): 979–84PubMedCrossRefGoogle Scholar
  217. 217.
    Rakhmanina NY, Capparelli EV, van den Anker JN. Personalized therapeutics: HIV treatment in adolescents. Clin Pharmacol Ther 2008 Dec; 84(6): 734–40PubMedCrossRefGoogle Scholar
  218. 218.
    Reidenberg MM. A new look at the profession of clinical pharmacology. Clin Pharmacol Ther 2008 Feb; 83(2): 213–7PubMedCrossRefGoogle Scholar
  219. 219.
    Neely M, Jelliffe R. Practical, individualized dosing: 21st century therapeutics and the clinical pharmacometrician. J Clin Pharmacol 2010 Jul; 50(7): 842–7PubMedCrossRefGoogle Scholar
  220. 220.
    Dickinson L, Back D, Pozniak A, et al. Limited-sampling strategy for the prediction of boosted hard-gel saquinavir exposure at a dosage of 1000/100 mg twice daily in human immunodeficiency virus-infected individuals. Ther Drug Monit 2007 Jun; 29(3): 361–7PubMedCrossRefGoogle Scholar
  221. 221.
    Regazzi MB, Tinelli C, Villani P, et al. Limited sampling strategy for the estimation of systemic exposure to the protease inhibitor nelfinavir. Ther Drug Monit 2005 Oct; 27(5): 571–5PubMedCrossRefGoogle Scholar
  222. 222.
    Alexander CS, Montaner JSG, Asselin JJ, et al. Simplification of therapeutic drug monitoring for twice-daily regimens of lopinavir/ritonavir for HIV infection. Ther Drug Monit 2004 Oct; 26(5): 516–23PubMedCrossRefGoogle Scholar
  223. 223.
    Veldkamp AI, van Heeswijk RP, Mulder JW, et al. Limited sampling strategies for the estimation of the systemic exposure to the HIV-1 nonnucleoside reverse transcriptase inhibitor nevirapine. Ther Drug Monit 2001 Dec; 23(6): 606–11PubMedCrossRefGoogle Scholar
  224. 224.
    Mueller BU, Pizzo PA, Farley M, et al. Pharmacokinetic evaluation of the combination of zidovudine and didanosine in children with human immunodeficiency virus infection. J Pediatr 1994 Jul; 125(1): 142–6PubMedCrossRefGoogle Scholar
  225. 225.
    Fletcher CV, Acosta EP, Henry K, et al. Concentration-controlled zidovudine therapy. Clin Pharmacol Ther 1998; 64(3): 331–8PubMedCrossRefGoogle Scholar
  226. 226.
    Goicoechea M, Vidal A, Capparelli E, et al. A computer-based system to aid in the interpretation of plasma concentrations of antiretrovirals for therapeutic drug monitoring. Antivir Ther (Lond) 2007; 12(1): 55–62Google Scholar
  227. 227.
    Aarnoutse RE, Verweij-van Wissen CP, van Ewijk-Beneken Kolmer EWJ, et al. International interlaboratory quality control program for measurement of antiretroviral drugs in plasma. Antimicrob Agents Chemother 2002 Mar; 46(3): 884–6PubMedCrossRefGoogle Scholar
  228. 228.
    Droste JAH, Aarnoutse RE, Koopmans PP, et al. Evaluation of antiretroviral drug measurements by an interlaboratory quality control program. J Acquir Immune Defic Syndr 2003 Mar 1; 32(3): 287–91PubMedCrossRefGoogle Scholar
  229. 229.
    Holland DT, DiFrancesco R, Stone J, et al. Quality assurance program for clinical measurement of antiretrovirals: AIDS Clinical Trials Group proficiency testing program for pediatric and adult pharmacology laboratories. Antimicrob Agents Chemother 2004 Mar 1; 48(3): 824–31PubMedCrossRefGoogle Scholar
  230. 230.
    Holland DT, DiFrancesco R, Connor JD, et al. Quality assurance program for pharmacokinetic assay of antiretrovirals: ACTG proficiency testing for pediatric and adult pharmacology support laboratories, 2003 to 2004. Ther Drug Monit 2006; 28(3): 367–74PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2011

Authors and Affiliations

  1. 1.Division of Pediatric Infectious Diseases and Laboratory of Applied PharmacokineticsUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Divisions of Infectious Disease and Clinical Pharmacology, Children’s National Medical CenterGeorge Washington UniversityUSA

Personalised recommendations