Advertisement

Sports Medicine

, Volume 41, Issue 3, pp 233–248 | Cite as

L-Arginine as a Potential Ergogenic Aidin Healthy Subjects

  • Thiago S. Álvares
  • Cláudia M. Meirelles
  • Yagesh N. Bhambhani
  • Vânia M. F. Paschoalin
  • Paulo S. C. Gomes
Review Article

Abstract

Dietary supplements containing L-arginine, a semi-essential amino acid, are one of the latest ergogenic aids intended to enhance strength, power and muscle recovery associated with both aerobic and resistance exercise. L-arginine is claimed to promote vasodilation by increasing nitric oxide (NO) production in the active muscle during exercise, improving strength, power and muscular recovery through increased substrate utilization and metabolite removal, such as lactate and ammonia. Research on L-arginine has recently tested this hypothesis, under the assumption that it may be the active compound associated with the vasodilator effects of NO. There were only five acute studies retrieved from the literature that evaluated exercise performance after L-arginine supplementation, three of which reported significant improvements. Regarding studies on chronic effects, eight studies were encountered: four reported enhancements in exercise performance, whilst four reports showed no changes. Whether these improvements in exercise performance — regardless of the aerobic or anaerobic nature of the exercise — can be associated with increases in NO production, has yet to be demonstrated in future studies. Low oral doses (20 g) are well tolerated and clinical side effects are rare in healthy subjects. In summary, it is still premature to recommend dietary supplements containing L-arginine as an ergogenic aid for healthy physically active subjects.

Keywords

Nitric Oxide Resistance Exercise Anaerobic Power Plasma Lactate Concentration Cycle Ergometer Exercise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Professor Paulo S.C. Gomes is a recipient of a Productivity Research Fellowship from Conselho Nacional de Desenvolvimento Tecnológico (CNPq) from Brazil. Thiago S. Álvares is supported by a research scholarship from CNPq. The authors have no conflicts of interest that are directly relevant to the content of this review. The authors would like to thank Ricky Toledano for the preparation of the English version of the manuscript.

References

  1. 1.
    Maxwell AJ, Ho HV, Le CQ, et al. L-arginine enhances aerobic exercise capacity in association with augmentednitric oxide production. J Appl Physiol 2001; 90 (3): 933–8PubMedGoogle Scholar
  2. 2.
    Long JH, Lira VA, Soltow QA, et al. Arginine supplementation induces myoblast fusion via augmentationof nitric oxide production. J Muscle Res Cell Motil 2006; 27 (8): 577–84PubMedCrossRefGoogle Scholar
  3. 3.
    Rector TS, Bank AJ, Mullen KA, et al. Randomized, double-blind, placebo-controlled study of supplementaloral L-arginine in patients with heart failure. Circulation 1996; 93 (12): 2135–41PubMedCrossRefGoogle Scholar
  4. 4.
    Schaefer A, Piquard F, Geny B, et al. L-arginine reduces exercise-induced increase in plasma lactate and ammonia. Int J Sports Med 2002; 23 (6): 403–7PubMedCrossRefGoogle Scholar
  5. 5.
    Malinauskas BM, Overton RF, Carraway VG, et al. Supplements of interest for sport-related injury and sources ofsupplement information among college athletes. Adv Med Sci 2007; 52: 50–4PubMedGoogle Scholar
  6. 6.
    McConell GK. Effects of L-arginine supplementation on exercise metabolism. Curr Opin Clin Nutr Metab Care 2007; 10 (1): 46–51PubMedCrossRefGoogle Scholar
  7. 7.
    Liu TH, Wu CL, Chiang CW, et al. No effect of short-term arginine supplementation on nitric oxide production,metabolism and performance in intermittent exercise inathletes. J Nutr Biochem 2009; 20 (6): 462–8PubMedCrossRefGoogle Scholar
  8. 8.
    Stevens BR, Godfrey MD, Kaminski TW, et al. Highintensity dynamic human muscle performance enhancedby a metabolic intervention. Med Sci Sports Exerc 2000; 32 (12): 2102–8PubMedCrossRefGoogle Scholar
  9. 9.
    Buford BN, Koch AJ. Glycine-arginine-alpha-ketoisocaproic acid improves performance of repeated cycling sprints. Med Sci Sports Exerc 2004; 36 (4): 583–7PubMedCrossRefGoogle Scholar
  10. 10.
    McConell GK, Huynh NN, Lee-Young RS, et al. L-arginine infusion increases glucose clearance during prolongedexercise in humans. AmJ Physiol Endocrinol Metab 2006; 290 (1): E60–6CrossRefGoogle Scholar
  11. 11.
    Bailey SJ, Winyard PG, Vanhatalo A, et al. Acute L-arginine supplementation reduces the O2 cost of moderateintensityexercise and enhances high-intensity exercisetolerance. J Appl Physiol 2010; 109 (5): 1394–403PubMedCrossRefGoogle Scholar
  12. 12.
    Campbell B, Roberts M, Kerksick C, et al. Pharmacokinetics, safety and effects on exercise performance ofL-arginine alpha-ketoglutarate in trained adult men. Nutrition 2006; 22 (9): 872–81PubMedCrossRefGoogle Scholar
  13. 13.
    Abel T, Knechtle B, Perret C, et al. Influence of chronic supplementation of arginine aspartate in endurance athleteson performance and substrate metabolism: a randomized,double-blind, placebo-controlled study. Int JSports Med 2005; 26 (5): 344–9CrossRefGoogle Scholar
  14. 14.
    Colombani PC, Bitzi R, Frey-Rindova P, et al. Chronic arginine aspartate supplementation in runners reducestotal plasma amino acid level at rest and during a marathonrun. Eur J Nutr 1999; 38 (6): 263–70PubMedCrossRefGoogle Scholar
  15. 15.
    Little JP, Forbes SC, Candow DG, et al. Creatine, arginine alpha-ketoglutarate, amino acids, and medium-chaintriglycerides and endurance and performance. Int J Sport Nutr Exerc Metab 2008; 18 (5): 493–508PubMedGoogle Scholar
  16. 16.
    Santos RS, Pacheco MTT, Martins RABL, et al. Study of the effect of oral administration of L-arginine on muscularperformance in healthy volunteers: an isokineticstudy. Isok Exerc Sci 2002; 10: 153–8Google Scholar
  17. 17.
    Fricke O, Baecker N, Heer M, et al. The effect of L-arginine administration on muscle force and power in postmenopausalwomen. Clin Physiol Funct Imaging 2008; 28 (5): 307–11PubMedCrossRefGoogle Scholar
  18. 18.
    Chen S, Kim W, Henning SM, et al. Arginine and antioxidant supplement on performance in elderly male cyclists: a randomizedcontrolled trial. J Int Soc Sports Nutr 2010; 7: 13PubMedCrossRefGoogle Scholar
  19. 19.
    Camic CL, Housh TJ, Zuniga JM, et al. Effects of argininebased supplements on the physical working capacity at thefatigue threshold. J Strength Cond Res 2010; 24 (5): 1306–12PubMedCrossRefGoogle Scholar
  20. 20.
    Morris Jr S. Arginine: beyond protein. Am J Clin Nutr 2006; 83: 508S–12SPubMedGoogle Scholar
  21. 21.
    Böger RH, Bode-Böger S. The clinical pharmacology of L-arginine. Annu Rev Pharmacol Toxicol 2001; 41: 79–99PubMedCrossRefGoogle Scholar
  22. 22.
    Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med 1993; 329 (27): 2002–12PubMedCrossRefGoogle Scholar
  23. 23.
    Nakane M, Schmidt HH, Pollock JS, et al. Cloned human brain nitric oxide synthase is highly expressed in skeletalmuscle. FEBS Lett 1993; 316 (2): 175–80PubMedCrossRefGoogle Scholar
  24. 24.
    Frandsen U, Lopez-Figueroa M, Hellsten Y. Localization of nitric oxide synthase in human skeletal muscle. Biochem Biophys Res Commun 1996; 227 (1): 88–93PubMedCrossRefGoogle Scholar
  25. 25.
    Morrison RJ, Miller III C, Reid MB. Nitric oxide effects on shortening velocity and power production in the rat diaphragm. J Appl Physiol 1996; 80 (3): 1065–9PubMedGoogle Scholar
  26. 26.
    Morrison RJ, Miller III C, Reid MB. Nitric oxide effects on force: velocity characteristics of the rat diaphragm. Comp Biochem Physiol 1998; 119 (1): 203–9CrossRefGoogle Scholar
  27. 27.
    Doshi S, Naka K, Payne N, et al. Flow-mediated dilatation following wrist and upper arm occlusion in humans:the contribution of nitric oxide. Clin Sci 2001; 101 (6): 629–35PubMedCrossRefGoogle Scholar
  28. 28.
    Smith LW, Smith JD, Criswell DS. Involvement of nitric oxide synthase in skeletal muscle adaptation to chronicoverload. J Appl Physiol 2002; 92 (5): 2005–11PubMedGoogle Scholar
  29. 29.
    Sellman J, DeRuisseau K, Betters J, et al. In vivo inhibition of nitric oxide synthase impairs upregulation of contractileprotein mRNA in overloaded plantaris muscle. J Appl Physiol 2006; 100 (1): 258–65PubMedCrossRefGoogle Scholar
  30. 30.
    Anderson JE. A role for nitric oxide in muscle repair: nitric oxidemediated activation of muscle satellite cells. Mol Biol Cell 2000; 11 (5): 1859–74PubMedGoogle Scholar
  31. 31.
    Nisoli E, Clementi E, Paolucci C, et al. Mitochondrial biogenesis in mammals: the role of endogenous nitricoxide. Science 2003; 299 (5608): 896–9PubMedCrossRefGoogle Scholar
  32. 32.
    Nisoli E, Carruba MO. Nitric oxide and mitochondrial biogenesis. J Cell Sci 2006; 119 (Pt14): 2855–62PubMedCrossRefGoogle Scholar
  33. 33.
    Balon TW, Nadler JL. Evidence that nitric oxide increases glucose transport in skeletal muscle. J Appl Physiol 1997; 82 (1): 359–63PubMedGoogle Scholar
  34. 34.
    McConell GK, Kingwell BA. Does nitric oxide regulate skeletal muscle glucose uptake during exercise? Exerc Sport Sci Rev 2006; 34 (1): 36–41PubMedCrossRefGoogle Scholar
  35. 35.
    Reid MB. Role of nitric oxide in skeletal muscle: synthesis, distribution and functional importance. Acta Physiol Scand 1998; 162: 401–9PubMedCrossRefGoogle Scholar
  36. 36.
    Stamler JS, Meissner G. Physiology of nitric oxide in skeletal muscle. Physiol Rev 2001; 81 (1): 209–37PubMedGoogle Scholar
  37. 37.
    Powers SK Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 2008; 88: 1243–76PubMedCrossRefGoogle Scholar
  38. 38.
    Arnal J, Dinh-Xuan A, Pueyo M, et al. Endotheliumderived nitric oxide and vascular physiology and pathology. Cell Mol Life Sci 1999; 55 (8-9): 1078–87PubMedCrossRefGoogle Scholar
  39. 39.
    Maxwell A, Tsao P, Cooke J. Modulation of the nitric oxide synthase pathway in atherosclerosis. Exp Physiol 1998; 83 (5): 573–87PubMedGoogle Scholar
  40. 40.
    Böger RH, Bode-Böger SM, Szuda A, et al. Asymmetric dimethylarginine (ADMA): a novel risk factor for endothelialdysfunction. Circulation 1998a; 98 (18): 1842–7PubMedCrossRefGoogle Scholar
  41. 41.
    Creager M, Gallagher S, Girerd X, et al. L-arginine improves endothelium-dependent vasodilation in hypercholesterolemichumans. J Clin Invest 1992; 90 (4): 1248–53PubMedCrossRefGoogle Scholar
  42. 42.
    Clarkson P, Adams M, Powe A, et al. Oral L-arginnine improves endothelium-dependent dilation in hypercholesterolemicyoung adults. J Clin Invest 1996; 97 (8): 1989–94PubMedCrossRefGoogle Scholar
  43. 43.
    Pieper G, Siebeneich W, Dondlinger L. Short-term oral administration of L-arginine reverses defective endotheliumdependentrelaxation and cGMP generation in diabetes. Eur J Pharmacol 1996; 317 (2-3): 317–20PubMedCrossRefGoogle Scholar
  44. 44.
    Adams M, McCredie R, Jessup W, et al. Oral L-arginine improves endothelium-dependent dilatation and reducesmonocyte adhesion to endothelial cells in young men withcoronary artery disease. Atherosclerosis 1997; 129 (2): 261–9PubMedCrossRefGoogle Scholar
  45. 45.
    Lerman A, Burnett Jr J, Higano S, et al. Long-termL-arginine supplementation improves small-vessel coronary endothelialfunction in humans. Circulation 1998; 97 (21): 2123–8PubMedCrossRefGoogle Scholar
  46. 46.
    West S, Likos-Krick A, Brown P, et al. Oral L-arginine improves hemodynamic responses to stress and reduceplasma homocysteine in hypercholesterolemic men. J Nutr 2005; 135 (2): 212–7PubMedGoogle Scholar
  47. 47.
    Imaizumi T, Hirooka Y, Masaki H, et al. Effects of L-arginine on forearm vessels and responses to acetylcholine. Hyperthension 1992; 20 (4): 511–7CrossRefGoogle Scholar
  48. 48.
    Adams M, Forsyth C, Jessup W, et al. Oral L-arginine inhibits platelet aggregation but does not enhance endotheliumdependentdilation in healthy young men. J Am Coll Cardiol 1995; 26 (4): 1054–61PubMedCrossRefGoogle Scholar
  49. 49.
    Blum A, Hathaway L, Hathaway L, et al. Oral L-arginine in patients with coronary artery disease on medical management. Circulation 2000b; 101 (18): 2160–4PubMedCrossRefGoogle Scholar
  50. 50.
    Archer S. Measurement of nitric oxide in biological models. FASEB J 1993; 7 (2): 349–53PubMedGoogle Scholar
  51. 51.
    Schrage WG, Dietz NM, Eisenach JH, et al. Agonistdependent variability of contributions of nitric oxide andprostaglandins in human skeletal muscle. J Appl Physiol 2005; 98 (4): 1251–7PubMedCrossRefGoogle Scholar
  52. 52.
    Xia Y, Zweier JL. Direct measurement of nitric oxide generation from nitric oxide synthase. Proc Natl Acad SciU S A 1997; 94 (23): 12705–10CrossRefGoogle Scholar
  53. 53.
    Laver JR, Stevanin TM, Read RC. Chemiluminescence quantification of NO and its derivatives in liquid samples. Methods Enzymol 2008; 436: 113–27PubMedCrossRefGoogle Scholar
  54. 54.
    Davies IR, Zhang X. Nitric oxide selective electrodes. Methods Enzymol 2008; 436: 63–95PubMedCrossRefGoogle Scholar
  55. 55.
    Böger RH, Bode-Böger SM, Thiele W, et al. Restoring vascular nitric oxide formation by L-arginine improvesthe symptoms of intermittent claudication in patients withperipheral arterial occlusive disease. J Am Coll Cardiol 1998b; 32 (5): 1336–44PubMedCrossRefGoogle Scholar
  56. 56.
    Bode-Böger SM, Böger RH, Alfke H, et al. L-arginine induces nitric oxide-dependent vasodilation in patients withcritical limb ischemia: a randomized, controlled study. Circulation 1996; 93 (1): 85–90PubMedCrossRefGoogle Scholar
  57. 57.
    Bode-Böger SM, Böger RH, Galland A, et al. L-arginineinduced vasodilation in healthy humans: pharmacokineticpharmacodynamicrelationship. Br J Pharmacol 1998; 46 (5): 489–97Google Scholar
  58. 58.
    Lucotti P, Setola E, Monti LD, et al. Beneficial effects of a long-term oral L-arginine treatment added to a hypocaloricdiet and exercise training program in obese, insulin-resistanttype 2 diabetic patients. Am J Physiol Endocrinol Metab 2006; 291 (5): 906–12CrossRefGoogle Scholar
  59. 59.
    Jobgen WS, Jobgen SC, Li H, et al. Analysis of nitrite and nitrate in biological samples using high-performance liquidchromatography. J Chromatogr B 2007; 851 (1-2): 71–82CrossRefGoogle Scholar
  60. 60.
    Tsikas D. Methods of quantitative analysis of the nitric oxide metabolites nitrite and nitrate in human biologicalfluids. Free Radic Res 2005; 39 (8): 797–815PubMedCrossRefGoogle Scholar
  61. 61.
    Ignarro LJ, Fukuto JM, Griscavage JM, et al. Oxidation of nitric oxide in aqueous solution to nitrite but not nitrate:comparison with enzymatically formed nitric oxide fromL-arginine. Proc Natl Acad Sci USA 1993; 90 (17): 8103–7PubMedCrossRefGoogle Scholar
  62. 62.
    Griesenbeck JS, Steck MD, Huber Jr JC, et al. Development of estimates of dietary nitrates, nitrites, and nitrosaminesfor use with the short Willet food frequencyquestionnaire. Nutr J 2009; 6: 8–16Google Scholar
  63. 63.
    Ellis G, Adatia I, Yazdanpanah M, et al. Nitrite and nitrate analyses: a clinical biochemistry perspective. Clin Biochem 1998; 31 (4): 195–220PubMedCrossRefGoogle Scholar
  64. 64.
    Castillo L, Beaumier L, Ajami AM, et al. Whole body nitric oxide synthesis in healthy men determined from [15N]arginine-to-[15N]citrulline labeling. Proc Natl Acad SciU S A 1996; 93 (21): 11460–5CrossRefGoogle Scholar
  65. 65.
    Rhodes P, Leone AM, Francis PL, et al. The L-arginine: nitric oxide pathway is the major source of plasma nitritein fasted humans. Biochem Biophys Res Commun 1995; 209 (2): 590–6PubMedCrossRefGoogle Scholar
  66. 66.
    Bode-Böger SM, Böger RH, Creutzig A, et al. L-arginine infusion decreases peripheral resistance and inhibits plateletaggregation in healthy subjects. Clin Sci 1994; 87 (3): 303–10PubMedGoogle Scholar
  67. 67.
    Bode-Böger SM, Boger RH, Schroder EP, et al. Exercise increases systemic nitric oxide production in men. J Cardiovasc Risk 1994; 1 (2): 173–8PubMedGoogle Scholar
  68. 68.
    Pollock J, Förstermann U, Mitchell J, et al. Purification and characterization of particulate endothelium-derivedrelaxing factor synthase from cultured and native bovineaortic endothelial cells. Proc Natl Acad Sci U S A 1991; 88 (23): 10480–4PubMedCrossRefGoogle Scholar
  69. 69.
    Cooke PJ. Does ADMA cause endothelial dysfunction? Arterioscler Thromb Vasc Biol 2000; 20 (9): 2032–7PubMedCrossRefGoogle Scholar
  70. 70.
    Bode-Böger SM, Scalera F, Ignarro LJ. The L-arginine paradox: importance of the L-arginine/asymmetrical dimethylarginineratio. Pharmacol Ther 2007; 114 (3): 295–306PubMedCrossRefGoogle Scholar
  71. 71.
    Goumas G, Tentolouris C, Tousoulis D, et al. Therapeutic modification of the L-arginine-eNOS pathway in cardiovasculardiseases. Atherosclerosis 2001; 154 (2): 255–67PubMedCrossRefGoogle Scholar
  72. 72.
    Loscalzo J. What we know and dont know about L-arginine and NO. Circulation 2000; 101 (18): 2126–9PubMedCrossRefGoogle Scholar
  73. 73.
    Belviranli M, Gökbel H. Acute exercise induced oxidative stress and antioxidant changes. Eur J Gen Med 2006; 3 (3): 126–31Google Scholar
  74. 74.
    Hudson MB, Hosick PA, McCaulley GO, et al. The effect of resistance exercise on humoral markers of oxidativestress. Med Sci Sports Exerc 2008; 40 (3): 542–8PubMedCrossRefGoogle Scholar
  75. 75.
    Bloomer RJ, Falvo MJ, Fry AC, et al. Oxidative stress response in trained men following repeated squats orsprints. Med Sci Sports Exerc 2006; 38 (8): 1436–42PubMedCrossRefGoogle Scholar
  76. 76.
    Böger RH, Bode-Böger SM, Mügge A, et al. Supplementation of hypercholesterolaemic rabbits with L-argininereduces the vascular release of superoxide anions andrestores NO production. Atherosclerosis 1995; 117 (2): 273–84PubMedCrossRefGoogle Scholar
  77. 77.
    Maiorana A, O’Driscoll G, Taylor R, et al. Exercise and the nitric oxide vasodilator system. Sports Med 2003; 33 (14): 1013–35PubMedCrossRefGoogle Scholar
  78. 78.
    Hickner RC, Fisher JS, Ehsani AA, et al. Role of nitric oxide in skeletal muscle blood flow at rest and during dynamicexercise in humans. AmJ Physiol 1997; 273 (1Pt2): H405–10Google Scholar
  79. 79.
    Jungersten L, Ambring A, Wall B, et al. Both physical fitness and acute exercise regulate nitric oxide formation inhealthy humans. J Appl Physiol 1997; 82 (3): 760–4PubMedGoogle Scholar
  80. 80.
    Maeda S, Miyauchi T, Kakiyama T, et al. Effects of exercise training of 8 weeks and detraining on plasma levels of endothelium-derived factors, endothelin-1 and nitric oxide, inhealthy young humans. Life Sci 2001; 69 (9): 1005–16PubMedCrossRefGoogle Scholar
  81. 81.
    Maeda S, Tanabe T, Otsuki T, et al. Moderate regular exercise increases basal production of nitric oxide in elderlywomen. Hypertens Res 2004; 27 (12): 947–53PubMedCrossRefGoogle Scholar
  82. 82.
    Poveda JJ, Riestra A, Salas E, et al. Contribution of nitric oxide to exercise-induced changes in healthy volunteers:effects of acute exercise and long-term physical training. Eur J Clin Invest 1997; 27 (11): 967–71PubMedCrossRefGoogle Scholar
  83. 83.
    Yamamoto K, Kondo T, Kimata A, et al. Lack of effect of aerobic physical exercise on endothelium-derived nitricoxide concentrations in healthy young subjects. NagoyaJ Med Sci 2007; 69 (3-4): 167–72Google Scholar
  84. 84.
    Gilligan DM, Panza JA, Kilcoyne CM, et al. Contribution of endothelium-derived nitric oxide to exercise-inducedvasodilation. Circulation 1994; 90 (6): 2853–8PubMedCrossRefGoogle Scholar
  85. 85.
    Dyke CK, Proctor DN, Dietz NM, et al. Role of nitric oxide in exercise hyperaemia during prolonged rhythmichandgripping in humans. J Physiol 1995; 488 (Pt1): 259–65PubMedGoogle Scholar
  86. 86.
    Katz SD, Krum H, Khan T, et al. Exercise-induced vasodilation in forearm circulation of normal subjects and patientswith congestive heart failure: role of endothelium-derivednitric oxide. J Am Coll Cardiol 1996; 28 (3): 585–90PubMedCrossRefGoogle Scholar
  87. 87.
    Radegran G, Saltin B. Nitric oxide in the regulation of vasomotor tone in human skeletal muscle. Am J Physiol 1999; 6 (Pt 2): 1951–60Google Scholar
  88. 88.
    Endo T, Imaizumi T, Tagawa T, et al. Role of nitric oxide in exercise-induced vasodilation of the forearm. Circulation 1994; 90 (6): 2886–90PubMedCrossRefGoogle Scholar
  89. 89.
    Green DJ, Bilsborough W, Naylor LH, et al. Comparison of forearm blood flow responses to incremental handgripand cycle ergometer exercise: relative contribution of nitricoxide. J Physiol 2005; 562 (Pt2): 617–28PubMedGoogle Scholar
  90. 90.
    Wilson JR, Kapoor S. Contribution of endotheliumderived relaxing factor to exercise-induced vasodilation inhumans. J Appl Physiol 1993; 75 (6): 2740–4PubMedGoogle Scholar
  91. 91.
    Boushel R, Langberg H, Gemmer C, et al. Combined inhibition of nitric oxide and prostaglandins reduces humanskeletal muscle blood flow during exercise. J Physiol 2002; 543 (2): 691–8PubMedCrossRefGoogle Scholar
  92. 92.
    Kalliokoski K, Langberg H, Ryberg A, et al. Nitric oxide and prostaglandins influence local skeletal muscle bloodflow during exercise in humans: coupling between localsubstrate uptake and blood flow. Am J Physiol Regul Integr Comp Physiol 2006; 291 (3): 803–9CrossRefGoogle Scholar
  93. 93.
    Sureda A, Cordova A, Ferrer MD, et al. Effects of L-citrulline oral supplementation on polymorphonuclearneutrophils oxidative burst and nitric oxide productionafter exercise. Free Radic Res 2009; 43 (9): 828–35PubMedCrossRefGoogle Scholar
  94. 94.
    Schwedhelm E, Maas R, Freese R, et al. Pharmacokinetic and pharmacodynamic properties of oral L-citrulline andL-arginine: impact on nitric oxide metabolism. Br J Clin Pharmacol 2008; 65 (1): 51–9PubMedCrossRefGoogle Scholar
  95. 95.
    Bergstrom J, Hultman E. Synthesis of muscle glycogen in man after glucose and fructose infusion. Acta Med Scand 1967; 182 (1): 93–107PubMedCrossRefGoogle Scholar
  96. 96.
    Hayashi T, Wojtaszewski JF, Goodyear LJ. Exercise regulation of glucose transport in skeletal muscle. Am JPhysiol 1997; 273 (6Pt1): E1039–51Google Scholar
  97. 97.
    Bradley SJ, Kingwell BA, McConell GK. Nitric oxide synthase inhibition reduces leg glucose uptake but notblood flow during dynamic exercise in humans. Diabetes 1999; 48 (9): 1815–21PubMedCrossRefGoogle Scholar
  98. 98.
    Kingwell BA, Formosa M, Muhlmann M, et al. Nitric oxide synthase inhibition reduces glucose uptake duringexercise in individuals with type 2 diabetes more than incontrol subjects. Diabetes 2002; 51 (8): 2572–80PubMedCrossRefGoogle Scholar
  99. 99.
    Yaspelkis 3rd BB, Ivy JL. The effect of a carbohydratearginine supplement on postexercise carbohydrate metabolism. Int J Sport Nutr 1999; 9 (3): 241–50PubMedGoogle Scholar
  100. 100.
    Tsai PH, Tang TK, Juang CL, et al. Effects of arginine supplementation on post-exercise metabolic responses. Chin J Physiol 2009; 52 (3): 136–42PubMedCrossRefGoogle Scholar
  101. 101.
    Robinson TM, Sewell DA, Greenhaff PL. L-arginine ingestion after rest and exercise: effects on glucose disposal. Med Sci Sports Exerc 2003; 35 (8): 1309–15PubMedCrossRefGoogle Scholar
  102. 102.
    Matsumoto K, Mizuno M, Mizuno T, et al. Branched-chain amino acids and arginine supplementation attenuates skeletalmuscle proteolysis induced by moderate exercise in youngindividuals. Int J Sports Med 2007; 28 (6): 531–8PubMedCrossRefGoogle Scholar
  103. 103.
    Fahs CA, Heffernan KS, Fernhall B. Hemodynamic and vascular response to resistance exercise with L-arginine. Med Sci Sports Exerc 2009; 41 (4): 773–9PubMedCrossRefGoogle Scholar
  104. 104.
    Burtscher M, Brunner F, Faulhaber M, et al. The prolonged intake of L-arginine-l-aspartate reduces bloodlactate accumulation and oxygen consumption duringsubmaximal exercise. J Sports Sci Med 2005; 4: 314–22Google Scholar
  105. 105.
    Sunderland KL, Greer F, Morales J. V̇O2max and ventilatory threshold of trained cyclists are not affected by28-day L-arginine supplementation. J Strength Cond Res. Epub 2010 Jun 23Google Scholar
  106. 106.
    Koppo K, Taes YE, Pottier A, et al. Dietary arginine supplementation speeds pulmonary V̇O2 kinetics during cycleexercise. Med Sci Sports Exerc 2009; 41 (8): 1626–32PubMedCrossRefGoogle Scholar
  107. 107.
    Lambert CP, Flynn MG. Fatigue during high-intensity intermittent exercise: application to bodybuilding. Sports Med 2002; 32 (8): 511–22PubMedCrossRefGoogle Scholar
  108. 108.
    Hishikawa K, Nakaki T, Nakaki T, et al. Effect of systemic L-arginine administration on hemodynamics and nitricoxide release in man. Jpn Heart J 1992; 33 (1): 41–8PubMedCrossRefGoogle Scholar
  109. 109.
    Tiwary CM, Rosenbloom AL, Julius RL. Anaphylactic reaction to arginine infusion [letter]. N Engl J Med 1973; 288 (4): 218PubMedGoogle Scholar
  110. 110.
    Hertz P, Richardson JA. Arginine-induced hyperkalemia in renal failure patients. Arch Intern Med 1972; 130 (5): 778–80PubMedCrossRefGoogle Scholar
  111. 111.
    Bushinsky DA, Gennari FJ. Life-threatening hyperkalemia induced by arginine. Ann Intern Med 1978; 89 (5Pt1): 632–4PubMedGoogle Scholar
  112. 112.
    Massara F, Martelli S, Cagliero E, et al. The hypophosphatemic and hyperkalemic effect of arginine in man. J Endocrinol Invest 1980; 3 (2): 177–80PubMedGoogle Scholar
  113. 113.
    Massara F, Cagliero E, Bisbocci D, et al. The risk of pronounced hyperkalaemia after arginine infusion in thediabetic subject. Diabetes Metab 1981; 7 (3): 149–53Google Scholar
  114. 114.
    Evans RW, Fernstrom JD, Thompson J, et al. Biochemical responses of healthy subjects during dietary supplementationwith L-arginine. J Nutr Biochem 2004; 15 (9): 534–9PubMedCrossRefGoogle Scholar
  115. 115.
    Schulman SP, Becker LC, Kass DA, et al. L-arginine therapy in acute myocardial infarction: the Vascular Interaction With Age in Myocardial Infarction (VINTAGE MI) randomized clinical trial. JAMA 2006; 295 (1): 58–64PubMedCrossRefGoogle Scholar
  116. 116.
    Bednarz B, Jaxa-Chamiec T, Maciejewski P, et al. Efficacy and safety of oral l-arginine in acute myocardial infarction:results of the multicenter, randomized, double-blind,placebo-controlled ARAMI pilot trial. Kardiol Pol 2005; 62 (5): 421–7PubMedGoogle Scholar
  117. 117.
    Sun T, Zhou WB, Luo XP, et al. Oral L-arginine supplementation in acute myocardial infarction therapy: a metaanalysisof randomized controlled trials. Clin Cardiol 2009; 32 (11): 649–52PubMedCrossRefGoogle Scholar
  118. 118.
    Shao A, Hathcock JN. Risk assessment for the amino acids taurine, L-glutamine and L-arginine. Regul Toxicol Pharmacol 2008; 50 (3): 376–99PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2011

Authors and Affiliations

  • Thiago S. Álvares
    • 1
    • 2
  • Cláudia M. Meirelles
    • 1
    • 3
  • Yagesh N. Bhambhani
    • 4
  • Vânia M. F. Paschoalin
    • 2
  • Paulo S. C. Gomes
    • 1
  1. 1.Laboratory Crossbridges, Center for Interdisciplinary Research in Health, Department of Physical EducationUniversidade Gama FilhoPiedadeBrazil
  2. 2.Chemistry InstituteUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Escola de Educaçao Fisica do ExercitoRio de JaneiroBrazil
  4. 4.Department of Occupational TherapyUniversity of AlbertaEdmontonCanada

Personalised recommendations