, Volume 24, Issue 4, pp 225–235 | Cite as

CpG Oligodeoxynucleotides as TLR9 Agonists

Therapeutic Application in Allergy and Asthma
Review Article


Unmethylated cytosine-phosphate-guanine (CpG) dinucleotides in microbial DNA sequences activate Toll-like receptor (TLR) 9, and previous studies have shown that oligodeoxynucleotides (ODNs) containing CpG in specific base sequence motifs (CpG ODNs) can reiterate the majority of the immunomodulatory effects produced by bacterial DNA. Many of the manifestations in allergic diseases are primarily due to T helper (Th)-2 cell-type responses. CpG ODNs can induce Th1 and T-regulatory (Treg) cell-type cytokines that can suppress the Th2 response. The therapeutic application of TLR9 has been explored extensively in recent years, and many studies are being conducted to assess the safety and efficacy of TLR9 agonists in various diseases, including atopic and infectious diseases, and cancer. Studies in murine models have shown that the development of atopic airway disease can be prevented by treatment with CpG ODNs. Various clinical trials are currently ongoing to determine the efficacy of CpG ODNs as a therapeutic tool for atopic diseases. In this review, we discuss the therapeutic application of CpG ODNs in allergy and asthma. CpG ODNs may be used alone or as an adjuvant to immunotherapy to treat these disorders.



This work was supported by NIH grant 1R01AI075315. The authors have no conflicts of interest directly relevant to the content of this review.


  1. 1.
    Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol 2003; 21: 335–76PubMedCrossRefGoogle Scholar
  2. 2.
    Peter M, Bode K, Lipford GB, et al. Characterization of suppressive oligodeoxynucleotides that inhibit Toll-like receptor-9-mediated activation of innate immunity. Immunology 2008 Jan; 123(1): 118–28PubMedCrossRefGoogle Scholar
  3. 3.
    Krieg AM. Mechanisms and applications of immune stimulatory CpG oligodeoxynucleotides. Biochim Biophys Acta 1999 Dec 10; 1489(1): 107–16PubMedCrossRefGoogle Scholar
  4. 4.
    Kuramoto E, Yano O, Kimura Y, et al. Oligonucleotide sequences required for natural killer cell activation. Jpn J Cancer Res 1992 Nov; 83(11): 1128–31PubMedCrossRefGoogle Scholar
  5. 5.
    Agrawal S, Kandimalla ER. Modulation of Toll-like receptor 9 responses through synthetic immunostimulatory motifs of DNA. Ann N Y Acad Sci 2003 Dec; 1002: 30–42PubMedCrossRefGoogle Scholar
  6. 6.
    Agrawal S, Kandimalla ER. Antisense therapeutics: is it as simple as complementary base recognition? Mol Med Today 2000 Feb; 6(2): 72–81PubMedCrossRefGoogle Scholar
  7. 7.
    Lewis EJ, Agrawal S, Bishop J, et al. Non-specific antiviral activity of antisense molecules targeted to the E1 region of human papillomavirus. Antiviral Res 2000 Dec; 48(3): 187–96PubMedCrossRefGoogle Scholar
  8. 8.
    Dalpke A, Zimmermann S, Heeg K. CpG DNA in the prevention and treatment of infections. Biodrugs 2002; 16(6): 419–31PubMedCrossRefGoogle Scholar
  9. 9.
    Bhagat L, Zhu FG, Yu D, et al. CpG penta- and hexadeoxyribonucleotides as potent immunomodulatory agents. Biochem Biophys Res Commun 2003 Jan 24; 300(4): 853–61PubMedCrossRefGoogle Scholar
  10. 10.
    Kandimalla ER, Yu D, Zhao Q, et al. Effect of chemical modifications of cytosine and guanine in a CpG-motif of oligonucleotides: structure-immunostimulatory activity relationships. Bioorg Med Chem 2001 Mar; 9(3): 807–13PubMedCrossRefGoogle Scholar
  11. 11.
    Leonard P, Sur S. Interleukin-12: potential role in asthma therapy. Biodrugs 2003; 17(1): 1–7PubMedCrossRefGoogle Scholar
  12. 12.
    Jain VV, Kitagaki K, Businga T, et al. CpG-oligodeoxynucleotides inhibit airway remodeling in a murine model of chronic asthma. J Allergy Clin Immunol 2002 Dec; 110(6): 867–72PubMedCrossRefGoogle Scholar
  13. 13.
    Uematsu S, Akira S. Toll-like receptors and type I interferons. J Biol Chem 2007 May 25; 282(21): 15319–23PubMedCrossRefGoogle Scholar
  14. 14.
    Medzhitov R, Preston-Hurlburt P, Janeway Jr CA. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997 Jul 24; 388(6640): 394–7PubMedCrossRefGoogle Scholar
  15. 15.
    Takeuchi O, Kawai T, Sanjo H, et al. TLR6: a novel member of an expanding Toll-like receptor family. Gene 1999 Apr 29; 231(1–2): 59–65PubMedCrossRefGoogle Scholar
  16. 16.
    Du X, Poltorak A, Wei Y, et al. Three novel mammalian toll-like receptors: gene structure, expression, and evolution. Eur Cytokine Netw 2000 Sep; 11(3): 362–71PubMedGoogle Scholar
  17. 17.
    Seya T, Funami K, Taniguchi M, et al. Antibodies against human Toll-like receptors (TLRs): TLR distribution and localization in human dendritic cells. J Endotoxin Res 2005; 11(6): 369–74PubMedGoogle Scholar
  18. 18.
    Muzio M, Bosisio D, Polentarutti N, et al. Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J Immunol 2000 Jun 1; 164(11): 5998–6004PubMedGoogle Scholar
  19. 19.
    Kadowaki N, Ho S, Antonenko S, et al. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med 2001 Sep 17; 194(6): 863–9PubMedCrossRefGoogle Scholar
  20. 20.
    Krug A, Towarowski A, Britsch S, et al. Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. Eur J Immunol 2001 Oct; 31(10): 3026–37PubMedCrossRefGoogle Scholar
  21. 21.
    Rissoan MC, Soumelis V, Kadowaki N, et al. Reciprocal control of T helper cell and dendritic cell differentiation. Science 1999 Feb 19; 283(5405): 1183–6PubMedCrossRefGoogle Scholar
  22. 22.
    Liu YJ. Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell 2001 Aug 10; 106(3): 259–62PubMedCrossRefGoogle Scholar
  23. 23.
    Liu YJ, Kanzler H, Soumelis V, et al. Dendritic cell lineage, plasticity and cross-regulation. Nat Immunol 2001 Jul; 2(7): 585–9PubMedCrossRefGoogle Scholar
  24. 24.
    Kline JN, Waldschmidt TJ, Businga TR, et al. Modulation of airway inflammation by CpG oligodeoxynucleotides in a murine model of asthma. J Immunol 1998; 160: 2555–9PubMedGoogle Scholar
  25. 25.
    Jarrossay D, Napolitani G, Colonna M, et al. Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur J Immunol 2001 Nov; 31(11): 3388–93PubMedCrossRefGoogle Scholar
  26. 26.
    Ito T, Amakawa R, Kaisho T, et al. Interferon-alpha and interleukin-12 are induced differentially by Toll-like receptor 7 ligands in human blood dendritic cell subsets. J Exp Med 2002 Jun 3; 195(11): 1507–12PubMedCrossRefGoogle Scholar
  27. 27.
    Latz E, Schoenemeyer A, Visintin A, et al. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat Immunol 2004 Feb; 5(2): 190–8PubMedCrossRefGoogle Scholar
  28. 28.
    Rutz M, Metzger J, Gellert T, et al. Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence- and pH-dependent manner. Eur J Immunol 2004 Sep; 34(9): 2541–50PubMedCrossRefGoogle Scholar
  29. 29.
    Jain VV, Kitagaki K, Kline JN. CpG DNA and immunotherapy of allergic airway diseases. Clin Exp Allergy 2003 Oct; 33(10): 1330–5PubMedCrossRefGoogle Scholar
  30. 30.
    Krishnan J, Lee G, Choi S. Drugs targeting Toll-like receptors. Arch Pharm Res 2009 Nov; 32(11): 1485–502PubMedCrossRefGoogle Scholar
  31. 31.
    Ahmad-Nejad P, Hacker H, Rutz M, et al. Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments. Eur J Immunol 2002 Jul; 32(7): 1958–68PubMedCrossRefGoogle Scholar
  32. 32.
    Broide D, Schwarze J, Tighe H, et al. Immunostimulatory DNA sequences inhibit IL-5, eosinophilic inflammation, and airway hyperresponsiveness in mice. J Immunol 1998 Dec 15; 161(12): 7054–62PubMedGoogle Scholar
  33. 33.
    Yi AK, Tuetken R, Redford T, et al. CpG motifs in bacterial DNA activate leukocytes through the pH-dependent generation of reactive oxygen species. J Immunol 1998 May 15; 160(10): 4755–61PubMedGoogle Scholar
  34. 34.
    Peter ME, Kubarenko AV, Weber AN, et al. Identification of an N-terminal recognition site in TLR9 that contributes to CpG-DNA-mediated receptor activation. J Immunol 2009 Jun 15; 182(12): 7690–7PubMedCrossRefGoogle Scholar
  35. 35.
    Fonseca DE, Kline JN. Use of CpG oligonucleotides in treatment of asthma and allergic disease. Adv Drug Deliv Rev 2009 Mar 28; 61(3): 256–62PubMedCrossRefGoogle Scholar
  36. 36.
    Kline JN, Krieg AM. Toll-like receptor 9 activation with CpG oligodeoxynucleotides for asthma therapy. Drug News Perspect 2008 Oct; 21(8): 434–9PubMedGoogle Scholar
  37. 37.
    Hurtado P, Peh CA. LL-37 promotes rapid sensing of CpG oligodeoxynucleotides by B lymphocytes and plasmacytoid dendritic cells. J Immunol 2010 Feb 1; 184(3): 1425–35PubMedCrossRefGoogle Scholar
  38. 38.
    Hemmi H, Takeuchi O, Kawai T, et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000 Dec 7; 408(6813): 740–5PubMedCrossRefGoogle Scholar
  39. 39.
    Vollmer J, Weeratna R, Payette P, et al. Characterization of three CpG oligodeoxynucleotide classes with distinct immunostimulatory activities. Eur J Immunol 2004 Jan; 34(1): 251–62PubMedCrossRefGoogle Scholar
  40. 40.
    Kitagaki K, Jain VV, Businga TR, et al. Immunomodulatory effects of CpG oligodeoxynucleotides on established th2 responses. Clin Diagn Lab Immunol 2002 Nov; 9(6): 1260–9PubMedGoogle Scholar
  41. 41.
    Mosmann TR, Cherwinski H, Bond MW, et al. Two types of murine helper T cell clone: I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 1986 Apr 1; 136(7): 2348–57PubMedGoogle Scholar
  42. 42.
    Gavett SH, Chen X, Finkelman F, et al. Depletion of murine CD4+ T lymphocytes prevents antigen-induced airway hyperreactivity and pulmonary eosinophilia. Am J Respir Cell Mol Biol 1994 Jun; 10(6): 587–93PubMedGoogle Scholar
  43. 43.
    Hirota K, Martin B, Veldhoen M. Development, regulation and functional capacities of Th17 cells. Semin Immunopathol 2010 Mar; 32(1): 3–16PubMedCrossRefGoogle Scholar
  44. 44.
    Zhao Y, Yang J, Gao YD, et al. Th17 immunity in patients with allergic asthma. Int Arch Allergy Immunol 2009 Oct 21; 151(4): 297–307PubMedCrossRefGoogle Scholar
  45. 45.
    Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005 Nov; 6(11): 1123–32PubMedCrossRefGoogle Scholar
  46. 46.
    Nakae S, Komiyama Y, Nambu A, et al. Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 2002 Sep; 17(3): 375–87PubMedCrossRefGoogle Scholar
  47. 47.
    Zheng Y, Danilenko DM, Valdez P, et al. Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 2007 Feb 8; 445(7128): 648–51PubMedCrossRefGoogle Scholar
  48. 48.
    Barchet W, Wimmenauer V, Schlee M, et al. Accessing the therapeutic potential of immunostimulatory nucleic acids. Curr Opin Immunol 2008 Aug; 20(4): 389–95PubMedCrossRefGoogle Scholar
  49. 49.
    Ishifune C, Maekawa Y, Takayuki Y. Plasmacytoid dendritic cells are crucial for Th17 differentiation [abstract]. J Immunol 2009; 182: 90.14Google Scholar
  50. 50.
    Postma DS, Kerstjens HA, ten Hacken NH. Inhaled corticosteroids and long-acting beta-agonists in adult asthma: a winning combination in all? Naunyn Schmiedebergs Arch Pharmacol 2008 Aug; 378(2): 203–15PubMedCrossRefGoogle Scholar
  51. 51.
    Abramson MJ, Puy RM, Weiner JM. Is allergen immunotherapy effective in asthma? A meta-analysis of randomized controlled trials. Am J Respir Crit Care Med 1995 Apr; 151(4): 969–74PubMedGoogle Scholar
  52. 52.
    Creticos PS, Reed CE, Norman PS, et al. Ragweed immunotherapy in adult asthma. New Engl J Med 1996 Feb 22; 334(8): 501–6PubMedCrossRefGoogle Scholar
  53. 53.
    Heeg K, Zimmermann S. CpG DNA as a Th1 trigger. Int Arch Allergy Immunol 2000 Feb; 121(2): 87–97PubMedCrossRefGoogle Scholar
  54. 54.
    Klinman DM, Yi AK, Beaucage SL, et al. CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon gamma. Proc Natl Acad Sci U S A 1996 Apr 2; 93(7): 2879–83PubMedCrossRefGoogle Scholar
  55. 55.
    Kline JN, Krieg AM, Waldschmidt TJ, et al. CpG oligodeoxynucleotides do not require TH1 cytokines to prevent eosinophilic airway inflammation in a murine model of asthma. J Allergy Clin Immunol 1999 Dec; 104(6): 1258–64PubMedCrossRefGoogle Scholar
  56. 56.
    Brusselle G, Kips J, Joos G, et al. Allergen-induced airway inflammation and bronchial responsiveness in wild-type and interleukin-4-deficient mice. Am J Respir Cell Mol Biol 1995 Mar; 12(3): 254–9PubMedGoogle Scholar
  57. 57.
    Foster PS, Hogan SP, Ramsay AJ, et al. Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J Exp Med 1996 Jan 1; 183(1): 195–201PubMedCrossRefGoogle Scholar
  58. 58.
    Taube C, Duez C, Cui ZH, et al. The role of IL-13 in established allergic airway disease. J Immunol 2002 Dec 1; 169(11): 6482–9PubMedGoogle Scholar
  59. 59.
    Serebrisky D, Teper AA, Huang CK, et al. CpG oligodeoxynucleotides can reverse Th2-associated allergic airway responses and alter the B7.1/B7.2 expression in a murine model of asthma. J Immunol 2000 Nov 15; 165(10): 5906–12PubMedGoogle Scholar
  60. 60.
    Chen W, Liang X, Peterson AJ, et al. The indoleamine 2,3-dioxygenase pathway is essential for human plasmacytoid dendritic cell-induced adaptive T regulatory cell generation. J Immunol 2008 Oct 15; 181(8): 5396–404PubMedGoogle Scholar
  61. 61.
    Odemuyiwa SO, Ghahary A, Li Y, et al. Cutting edge: human eosinophils regulate T cell subset selection through indoleamine 2,3-dioxygenase. J Immunol 2004 Nov 15; 173(10): 5909–13PubMedGoogle Scholar
  62. 62.
    Fallarino F, Grohmann U, Hwang KW, et al. Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol 2003 Dec; 4(12): 1206–12PubMedCrossRefGoogle Scholar
  63. 63.
    Kline JN, Kitagaki K, Businga TR, et al. Treatment of established asthma in a murine model using CpG oligodeoxynucleotides. Am J Physiol Lung Cell Mol Physiol 2002 Jul; 283(1): L170–9PubMedGoogle Scholar
  64. 64.
    Hussain I, Jain VV, Kitagaki K, et al. Modulation of murine allergic rhinosinusitis by CpG oligodeoxynucleotides. Laryngoscope 2002 Oct; 112(10): 1819–26PubMedCrossRefGoogle Scholar
  65. 65.
    Jain VV, Businga TR, Kitagaki K, et al. Mucosal immunotherapy with CpG oligodeoxynucleotides reverses a murine model of chronic asthma induced by repeated antigen exposure. Am J Physiol Lung Cell Mol Physiol 2003 Nov; 285(5): L1137–46PubMedGoogle Scholar
  66. 66.
    Kitagaki K, Businga TR, Kline JN. Oral administration of CpG-ODNs suppresses antigen-induced asthma in mice. Clin Exp Immunol 2006 Feb; 143(2): 249–59PubMedCrossRefGoogle Scholar
  67. 67.
    Mousavi T, Salek Moghadam A, Falak R, et al. Co-administration of CpG oligonucleotides and Chenopodium album extract reverse IgG2a/IgG1 ratios and increase IFN-gamma and IL-10 productions in a murine model of asthma. Iran J Allergy Asthma Immunol 2008 Mar; 7(1): 1–6PubMedGoogle Scholar
  68. 68.
    Mousavi T, Salek Moghadam A, Falak R. Immunotherapy of Chenopodium album induced asthma by intranasal administration of CpG oligodeoxynucleotides in BALB/c mice. Iran J Immunol 2008 Mar; 5(1): 57–63PubMedGoogle Scholar
  69. 69.
    Mousavi T, Tajik N, Moradi M, et al. CpG Immunotherapy in Chenopodium album sensitized mice: the comparison of IFN-gamma, IL-10 and IgE responses in intranasal and subcutaneous administrations [abstract]. Clin Mol Allergy 2008; 6: 10PubMedCrossRefGoogle Scholar
  70. 70.
    Martínez Gómez JM, Fischer S, Csaba N, et al. A protective allergy vaccine based on CpG- and protamine-containing PLGA microparticles. Pharm Res 2007 Oct; 24(10): 1927–35PubMedCrossRefGoogle Scholar
  71. 71.
    Suzuki M, Ohta N, Min WP, et al. Immunotherapy with CpG DNA conjugated with T-cell epitope peptide of an allergenic Cry j 2 protein is useful for control of allergic conditions in mice. Int Immunopharmacol 2007 Jan; 7(1): 46–54PubMedCrossRefGoogle Scholar
  72. 72.
    Marshall JD, Abtahi S, Eiden JJ, et al. Immunostimulatory sequence DNA linked to the Amb a 1 allergen promotes T(H)1 cytokine expression while downregulating T(H)2 cytokine expression in PBMCs from human patients with ragweed allergy. J Allergy Clin Immunol 2001 Aug; 108(2): 191–7PubMedCrossRefGoogle Scholar
  73. 73.
    Creticos PS, Schroeder JT, Hamilton RG, et al. Immunotherapy with a ragweed-toll-like receptor 9 agonist vaccine for allergic rhinitis. New Engl J Med 2006 Oct 5; 355(14): 1445–55PubMedCrossRefGoogle Scholar
  74. 74.
    Gauvreau GM, Hessel EM, Boulet LP, et al. Immunostimulatory sequences regulate interferon-inducible genes but not allergic airway responses. Am J Respir Crit Care Med 2006 Jul 1; 174(1): 15–20PubMedCrossRefGoogle Scholar
  75. 75.
    Senti G, Johansen P, Haug S, et al. Use of A-type CpG oligodeoxynucleotides as an adjuvant in allergen-specific immunotherapy in humans: a phase I/IIa clinical trial. Clin Exp Allergy 2009 Apr; 39(4): 562–70PubMedCrossRefGoogle Scholar
  76. 76.
    Vollmer J, Weeranta R, Payette P, et al. Characterization of three CpG oligodeoxynucleotide classes with distinct immunostimulatory activities. Eur J Immunol 2004; 34: 251–62PubMedCrossRefGoogle Scholar
  77. 77.
    Tan L, Rogers TJ, Hatzirodos N, et al. Immunomodulatory effect of cytosine-phosphate-guanosine (CpG)-oligonucleotides in nonasthmatic chronic rhinosinusitis: an explant model. Am J Rhinol Allergy 2009 Mar–Apr; 23(2): 123–9PubMedCrossRefGoogle Scholar
  78. 78.
    Tulic MK, Fiset PO, Christodoulopoulos P, et al. Amb a 1-immunostimulatory oligodeoxynucleotide conjugate immunotherapy decreases the nasal inflammatory response. J Allergy Clin Immunol 2004 Feb; 113(2): 235–41PubMedCrossRefGoogle Scholar
  79. 79.
    Mutwiri G, van Drunen Littel-van den Hurk S, Babiuk LA. Approaches to enhancing immune responses stimulated by CpG oligodeoxynucleotides. Adv Drug Deliv Rev 2009 Mar 28; 61(3): 226–32PubMedCrossRefGoogle Scholar
  80. 80.
    Boukhvalova MS, Sotomayor TB, Point RC, et al. Activation of interferon response through Toll-like receptor 3 impacts viral pathogenesis and pulmonary toll-like receptor expression during respiratory syncytial virus and influenza infections in the cotton rat sigmodon hispidus model. J Interferon Cytokine Res. Epub 2009 Dec 28Google Scholar
  81. 81.
    Knuefermann P, Baumgarten G, Koch A, et al. CpG oligonucleotide activates Toll-like receptor 9 and causes lung inflammation in vivo [abstract]. Respiratory Res 2007; 8: 72CrossRefGoogle Scholar
  82. 82.
    Knuefermann P, Schwederski M, Velten M, et al. Bacterial DNA induces myocardial inflammation and reduces cardiomyocyte contractility: role of toll-like receptor 9. Cardiovas Res 2008 Apr 1; 78(1): 26–35CrossRefGoogle Scholar
  83. 83.
    Thaxton JE, Romero R, Sharma S. TLR9 activation coupled to IL-10 deficiency induces adverse pregnancy outcomes. J Immunol 2009 Jul 15; 183(2): 1144–54PubMedCrossRefGoogle Scholar
  84. 84.
    Huang B, Zhao J, Unkeless JC, et al. TLR signaling by tumor and immune cells: a double-edged sword. Oncogene 2008 Jan 7; 27(2): 218–24PubMedCrossRefGoogle Scholar
  85. 85.
    Chiron D, Pellat-Deceunynck C, Maillasson M, et al. Phosphorothioate-modified TLR9 ligands protect cancer cells against TRAIL-induced apoptosis. J Immunol 2009 Oct 1; 183(7): 4371–7PubMedCrossRefGoogle Scholar
  86. 86.
    Parkinson T. The future of toll-like receptor therapeutics. Curr Opin Mol Ther 2008 Feb; 10(1): 21–31PubMedGoogle Scholar
  87. 87.
    Vollmer J, Krieg AM. Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Adv Drug Del Rev 2009 Mar 28; 61(3): 195–204CrossRefGoogle Scholar
  88. 88.
    Lahiri A, Das P, Chakravortty D. Engagement of TLR signaling as adjuvant: towards smarter vaccine and beyond. Vaccine 2008 Dec 9; 26(52): 6777–83PubMedCrossRefGoogle Scholar
  89. 89.
    Booth JS, Buza JJ, Potter A, et al. Co-stimulation with TLR7/8 and TLR9 agonists induce down-regulation of innate immune responses in sheep blood mononuclear and B cells. Dev Comp Immunol 2010 May; 34(5): 572–8PubMedCrossRefGoogle Scholar
  90. 90.
    Fanta CH. Asthma. New Engl J Med 2009 Mar 5; 360(10): 1002–14PubMedCrossRefGoogle Scholar
  91. 91.
    Bjorksten B, Clayton T, Ellwood P, et al. Worldwide time trends for symptoms of rhinitis and conjunctivitis: phase III of the International Study of Asthma and Allergies in Childhood. Pediatr Allergy Immunol 2008 Mar; 19(2): 110–24PubMedCrossRefGoogle Scholar
  92. 92.
    Pearce N, Ait-Khaled N, Beasley R, et al. Worldwide trends in the prevalence of asthma symptoms: phase III of the International Study of Asthma and Allergies in Childhood (ISAAC). Thorax 2007 Sep; 62(9): 758–66PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2010

Authors and Affiliations

  1. 1.Center for Clinical and Translational Science, Department of Biomedical SciencesCreighton University School of MedicineOmahaUSA

Personalised recommendations