Drugs

, Volume 70, Issue 7, pp 841–858 | Cite as

Anaerobic Infections

Update on Treatment Considerations
Review Article

Abstract

Anaerobic bacteria are the predominant indigenous flora of humans and, as a result, play an important role in infections, some of which are serious with a high mortality rate. These opportunistic pathogens are frequently missed in cultures of clinical samples because of shortcomings in collection and transport procedures as well as lack of isolation and susceptibility testing of anaerobes in many clinical microbiology laboratories. Correlation of clinical failures with known antibacterial resistance of anaerobic bacteria is seldom possible. Changes in resistance over time, and the discovery and characterization of resistance determinants in anaerobic bacteria, has increased recognition of problems in empirical treatment and has even resulted in changes in treatment guidelines. This review discusses the role of anaerobic bacteria in the normal flora of humans, their involvement in different mixed infections, developments in antibacterial resistance of the most frequent anaerobic pathogens and possible new treatment options.

References

  1. 1.
    Finegold SM, George WL. Anaerobic infections in humans. San Diego (CA): Academic Press, 1989Google Scholar
  2. 2.
    Horz HP, Vianna ME, Gomes BP, et al. Evaluation of universal probes and primer sets for assessing total bacterial load in clinical samples: general implications and practical use in endodontic antimicrobial therapy. J Clin Microbiol 2005; 43: 5332–7PubMedCrossRefGoogle Scholar
  3. 3.
    Jousimies-Somer HR, Summanen P, Citron DM, et al., editors. Wadsworth-KTL anaerobic bacteriology manual. 6th ed. Belmont (CA): Star Publishing Company, 2002Google Scholar
  4. 4.
    Slots J, Taubman MA. Contemporary oral microbiology and immunology. St Louis (MO): Mosby-Year Book, 1992Google Scholar
  5. 5.
    Salyers AA, Gupta A, Wang Y. Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol 2004; 12: 412–6PubMedCrossRefGoogle Scholar
  6. 6.
    Jousimies-Somer HR, Finegold SM. Problems encountered in anaerobic bacteriology. Rev Infect Dis 1984; 6 Suppl. 1: 45–50CrossRefGoogle Scholar
  7. 7.
    Nguyen MH, Yu VL, Morris AJ, et al. Antimicrobial resistance and clinical outcome of Bacteroides bacteraemia: findings of a multicenter prospective observational trial. Clin Infect Dis 2000; 30: 870–6PubMedCrossRefGoogle Scholar
  8. 8.
    Aldridge KE, Ashcraft D, O’Brien M, et al. Bacteremia due to Bacteroides fragilis group: distribution of the species, beta-lactamase production, and antimicrobial susceptibility patterns. Antimicrob Agents Chemother 2003; 47: 148–53PubMedCrossRefGoogle Scholar
  9. 9.
    Riordan T. Human infection with Fusobacterium necrophorum (Necrobacillosis) with a focus on Lemierre’s syndrome. Clin Microbiol Rev 2007; 20: 622–59PubMedCrossRefGoogle Scholar
  10. 10.
    Brook I. The role of anaerobic bacteria in chronic suppurative otitis media in children: implications for medical therapy. Anaerobe 2008; 14: 297–300PubMedCrossRefGoogle Scholar
  11. 11.
    Marik PE. Aspiration pneumonitis and aspiration pneumonia. N Engl J Med 2001; 344: 665–71PubMedCrossRefGoogle Scholar
  12. 12.
    Sweet RL. Role of bacterial vaginosis in pelvic inflammatory disease. Clin Infect Dis 1995; 20 Suppl.: S142–8CrossRefGoogle Scholar
  13. 13.
    Citron DM, Goldstein EJ, Merriam CV, et al. Bacteriology of moderate-to-severe diabetic foot infections and in vitro activity of antimicrobial agents. J Clin Microbiol 2007; 45: 2819–28PubMedCrossRefGoogle Scholar
  14. 14.
    Talan DA, Citron DM, Abrahamian FM, et al. Bacteriologic analysis of infected dog and cat bites: Emergency Medicine Animal Bite Study Group. N Engl J Med 1999; 340: 85–92PubMedCrossRefGoogle Scholar
  15. 15.
    Green RJ, Dafoe DC, Raffin TA. Necrotizing fasciitis. Chest 1996; 110: 219–29PubMedCrossRefGoogle Scholar
  16. 16.
    Levy PY, Fenollar F, Stein A, et al. Finegoldia magna: a forgotten pathogen in prosthetic joint infection rediscovered by molecular biology. Clin Infect Dis 2009; 15: 1244–7CrossRefGoogle Scholar
  17. 17.
    Kuijper EJ, Barbut F, Brazier JS, et al. Update of Clostridium difficile infection due to PCR ribotype 027 in Europe, 2008. Euro Surveill 2008; 13: pii: 18942Google Scholar
  18. 18.
    Gerding DN. Disease associated with Clostridium difficile infection. Ann Intern Med 1989; 110: 255–7PubMedGoogle Scholar
  19. 19.
    Sears CL, Myers LL, Lazenby A, et al. Enterotoxigenic Bacteroides fragilis. Clin Infect Dis 1995; 20 Suppl.: S142–8PubMedCrossRefGoogle Scholar
  20. 20.
    Sears CL, Islam S, Saha A, et al. Association of enterotoxigenic Bacteroides fragilis infection with inflammatory diarrhea. Clin Infect Dis 2008; 47: 797–803PubMedCrossRefGoogle Scholar
  21. 21.
    Wu S, Rhee KJ, Albesiano E, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med 2009; 15: 1016–22PubMedCrossRefGoogle Scholar
  22. 22.
    Hecht DW. Prevalence of antibiotic resistance in anaerobic bacteria: worrisome developments. Clin Infect Dis 2004; 39: 92–7PubMedCrossRefGoogle Scholar
  23. 23.
    Bieluch VM, Cuchural GJ, Syndman DR, et al. Clinical importance of cefoxitin-resistant Bacteroides fragilis isolates. Diagn Microbiol Infect Dis 1987; 7: 119–26PubMedCrossRefGoogle Scholar
  24. 24.
    Snydman DR, Cuchural Jr GJ, McDermott L, et al. Correlation of various in vitro testing methods with clinical outcomes in patients with Bacteroides fragilis group infections treated with cefoxitin: a retrospective analysis. Antimicrob Agents Chemother 1992; 36: 540–4PubMedCrossRefGoogle Scholar
  25. 25.
    Dalmau D, Cayouette M, Lamothe F, et al. Clindamycin resistance in the Bacteroides fragilis group: association with hospital-acquired infections. Clin Infect Dis 1997; 24: 874–7PubMedCrossRefGoogle Scholar
  26. 26.
    Clinical and Laboratory Standards Institute (CLSI). Methods for antimicrobial susceptibility testing of anaerobic bacteria: approved standard [document M11-A7]. 6th ed. Wayne (PA): CLSI, 2008Google Scholar
  27. 27.
    European Committee on Antimicrobial Susceptibility Testing (EUCAST). Clinical breakpoints [online]. Available from URL: http://www.srga.org/eucastwt/MICTAB/ [Accessed 2008 Mar 12]
  28. 28.
    Phillips I, King A, Nord CE, et al. Antibiotic sensitivity of Bacteroides fragilis group in Europe. Eur J Clin Microbiol Infect Dis 1992; 11: 292–304PubMedCrossRefGoogle Scholar
  29. 29.
    King A, Downes J, Nord CE, et al. Antimicrobial susceptibility of non-Bacteroides fragilis group anaerobic Gramnegative bacilli in Europe. Clin Microb Infect 1999; 5: 404–16CrossRefGoogle Scholar
  30. 30.
    Hedberg M, Nord CE. Antimicrobial susceptibilities of Bacteroides fragilis group isolates in Europe. Clin Microbiol Infec 2003; 9: 475–88CrossRefGoogle Scholar
  31. 31.
    Brazier J, Chmelar D, Dubreuil L, et al. European surveillance study on antimicrobial susceptibility of Gram-positive anaerobic cocci. Int J Antimicrob Agents 2008; 31: 316–20PubMedCrossRefGoogle Scholar
  32. 32.
    Snydman DR, Jacobus NV, McDermott LA, et al. National survey on the susceptibility of Bacteroides fragilis group: report and analysis of trends for 1997–2000. Clin Infect Dis 2002; 35 Suppl.: S126–34PubMedCrossRefGoogle Scholar
  33. 33.
    Aldridge KE, Ashkraft D, Cambre K, et al. Multicenter survey of the changing in vitro antimicrobial susceptibilities of clinical isolates of Bacteroides fragilis group, Prevotella, Fusobacterium, Porphyromonas and Peptostreptococcus species. Antimicrob Agents Chemother 2001; 45: 1238–43PubMedCrossRefGoogle Scholar
  34. 34.
    Hecht DW, Lederer L. Effect of choice of medium on the results of the in vitro susceptibility testing of eight antibiotics against the Bacteroides group. Clin Infect Dis 1995; 20 Suppl.: S346–9PubMedCrossRefGoogle Scholar
  35. 35.
    Giraud-Morin C, Madinier I, Fosse T. Sequence analysis of the cfxA2-like beta-lactamases in Prevotella species. J Antimicrob Chemother 2003; 51: 1293–6PubMedCrossRefGoogle Scholar
  36. 36.
    Nagy E, Szõke I, Gacs M, et al. Resistance to beta-lactam antibiotics and beta-lactamase production of Bacteroides, Porphyromonas and Prevotella strain. Acta Microbiol Hun 1995; 42: 287–99Google Scholar
  37. 37.
    Wybo I, Piérard D, Verschraegen I, et al. Third Belgian multi-centre survey of antibiotic susceptibility of anaerobic bacteria. J Antimicrob Chemother 2007; 59: 132–9PubMedCrossRefGoogle Scholar
  38. 38.
    Nagy E. Changes in the antibiotic resistance of Bacteroides fragilis group strains in Europe: twenty years of experience. 19th [S217] European Congress of Clinical Microbiology and Infectious Diseases; 2009 May 16–19; HelsinkiGoogle Scholar
  39. 39.
    Snydman DR, Jacobus NV, McDermott LA, et al. Multi-center study of in vitro susceptibility of the Bacteroides fragilis group: 1995-1996 with comparison of resistance trends from 1990–1996. Antimicrob Agents Chemother 1999; 43: 2417–22PubMedGoogle Scholar
  40. 40.
    Behra-Miellet J, Calvet L, Mory F, et al. Antibiotic resistance among anaerobic Gram-negative bacilli: lesson from a French multicentric survey. Anaerobe 2003; 9: 105–11PubMedCrossRefGoogle Scholar
  41. 41.
    Smith CJ, Trible GD, Bayley DP. Genetic elements of Bacteroides species: a moving story. Plasmid 1998; 40: 12–29PubMedCrossRefGoogle Scholar
  42. 42.
    Snydman DR, Jacobus NV, MyDermott LA, et al. National survey on the susceptibility of Bacteroides fragilis group: report and analysis of trends in the United States from 1997 to 2004. Antimicrob Agents Chemother 2007; 51: 1649–55PubMedCrossRefGoogle Scholar
  43. 43.
    Liu CY, Huang YT, Liao CH, et al. Increasing trends in antimicrobial resistance among clinically important anaerobes and Bacteroides fragilis isolates causing nosocomial infections: emerging resistance to carbapenems. Antimicrob Agents Chemother 2008; 52: 3161–8PubMedCrossRefGoogle Scholar
  44. 44.
    Fang H, Hedberg M, Edlund C, et al. Characterization of beta-lactam resistant Bacteroides fragilis isolates by use of PCR fingerprinting. Anaerobe 1999; 5: 11–8PubMedCrossRefGoogle Scholar
  45. 45.
    Garcia N, Gutiérrez G, Lorenzo M, et al. Gene context and DNA rearrangements in the carbapenemase locus of division II strains of Bacteroides fragilis. Antimicrob Agents Chemother 2009; 53: 2677–8PubMedCrossRefGoogle Scholar
  46. 46.
    Podglajen I, Breuil J, Casin I, et al. Genotypic identification of two groups within the species Bacteroides fragilis by ribotyping and by analysis of PCR-generated fragment patterns and insertion sequence content. J Bacteriol 1995; 177: 5270–5PubMedGoogle Scholar
  47. 47.
    Soki J, Urban E, Szöke I, et al. Prevalence of the carbapenemase gene (cfiA) among clinical and normal flora isolates of Bacteroides species in Hungary. J Med Microbiol 2000; 49: 427–30PubMedGoogle Scholar
  48. 48.
    Edwards R, Hawkyard CV, Garvey MT, et al. Prevalence and degree of expression of the carbapenemases gene (cfiA) among clinical isolates of Bacteroides fragilis in Nottingham, UK. J Antimicrob Chemother 1999; 43: 273–6PubMedCrossRefGoogle Scholar
  49. 49.
    Yamazoe K, Kato N, Kato H, et al. Distribution of the cfiA gene among Bacteroides fragilis strains in Japan and relatedness of cfiA to imipenem resistance. Antimicrob Agents Chemother 1999; 43: 2808–10PubMedGoogle Scholar
  50. 50.
    Fang H, Edlund C, Zhang G, et al. Detection of imipenem-resistant and metronidazole-resistant Bacteroides fragilis strains in fecal samples. Clin Microb Infect 1999; 5: 753–8CrossRefGoogle Scholar
  51. 51.
    Wexler HM, Halebian S. Alterations to the penicillin-binding proteins in the Bacteroides fragilis group: a mechanism for non-beta-lactamase mediated cefoxitin resistance. J Antimicrob Chemother 1990; 26: 7–20PubMedCrossRefGoogle Scholar
  52. 52.
    Fang H, Edlund C, Nord CE, et al. Selection of cefoxitin-resistant Bacteroides thetaiotaomicron mutants and mechanisms involved in beta-lactam resistance. Clin Infect Dis 2002; 35 Suppl.: S47–53PubMedCrossRefGoogle Scholar
  53. 53.
    Hedberg M, Nagy E, Nord CE. Role of penicillin-binding proteins in resistance of Bacteroides fragilis group species to beta-lactam drugs. Clin Infect Dis 1997; 25 Suppl.: S270–1PubMedCrossRefGoogle Scholar
  54. 54.
    Nagy E, Szöke I, Gacs M, et al. Antibiotic susceptibility of Bacteroides fragilis group strains in Hungary. Anaerobe 1995; 1: 269–74PubMedCrossRefGoogle Scholar
  55. 55.
    Glupczynski Y, Berhin C, Nizet H. Antimicrobial susceptibility of anaerobic bacteria in Belgium as determined by E-test methodology. Eur J Clin Microbiol Infect Dis 2009; 28: 261–7PubMedCrossRefGoogle Scholar
  56. 56.
    Rasmusen BA, Bush K, Tally P. Antimicrobial resistance in anaerobes. Clin Infect Dis 1997; 24 Suppl.: S110–20CrossRefGoogle Scholar
  57. 57.
    Privitera G, Dublanchet A, Sebald M. Transfer of multiple antibiotic resistance between subspecies of Bacteroides fragilis. J Infect Dis 1979; 139: 97–101PubMedCrossRefGoogle Scholar
  58. 58.
    Urban E, Sóki J, Brazier JS, et al. Prevalence and characterization of nim genes of Bacteroides spp isolated in Hungary. Anaerobe 2002; 8: 175–9CrossRefGoogle Scholar
  59. 59.
    Rotimi VO, Khoursheed M, Brazier JS, et al. Bacteroides species highly resistant to metronidazole: an emerging clinical problem? Clin Microbiol Infect 1999; 5: 166–9PubMedCrossRefGoogle Scholar
  60. 60.
    Brazier JS, Stubbs SLJ, Duerden BI. Metronidazole resistance among clinical isolates belonging to the Bacteroides fragilis group: time to be concerned? J Antimicrob Chemother 1999; 44: 580–1PubMedCrossRefGoogle Scholar
  61. 61.
    Katsandi A, Avlamis A, Pantazatua A, et al. Dissemination of nim-class genes, encoding nitroimidazole resistance among different species of Gram-negative anaerobic bacteria isolated in Athens, Greece. J Antimicrob Chemother 2006; 58: 705–6CrossRefGoogle Scholar
  62. 62.
    Lubbe MM, Stanley K, Chalkley LJ. Prevalence of nim genes in anaerobic/facultative anaerobic bacteria in South Africa. FEMS Microbiol Lett 1999; 1: 79–83CrossRefGoogle Scholar
  63. 63.
    Lofmark S, Fang H, Hedberg M, et al. Inducible metronidazole resistance and nim genes in clinical Bacteroides fragilis group isolates. Antimicrob Agents Chemother 2005; 49: 1253–6PubMedCrossRefGoogle Scholar
  64. 64.
    Diniz CG, Farias LM, Carvalho MA, et al. Differential gene expression in a Bacteroides fragilis metronidazole-resistant mutant. J Antimicrob Chemother 2004; 54: 100–8PubMedCrossRefGoogle Scholar
  65. 65.
    Goldstein EJC, Citron DM, Warren YA, et al. In vitro activity of moxifloxacin against 923 anaerobes isolated from human intra-abdominal infections. Antimicrob Agents Chemother 2006; 50: 148–55PubMedCrossRefGoogle Scholar
  66. 66.
    Golan Y, McDermott LA, Jacobus NV, et al. Emergence of fluoroquinolone resistance among Bacteroides species. J Antimicrob Chemother 2003; 52: 208–13PubMedCrossRefGoogle Scholar
  67. 67.
    Oh H, Edlund C. Mechanism of quinolone resistance in anaerobic bacteria. Clin Microb Infect 2004; 9: 512–7CrossRefGoogle Scholar
  68. 68.
    Ricci V, Peterson MK, Rotschafer JC, et al. Role of topoisomerase mutation and efflux in fluoroquinolone resistance of Bacteroides fragilis clinical isolates and laboratory mutants. Antimicrob Agents Chemother 2004; 48: 1344–6PubMedCrossRefGoogle Scholar
  69. 69.
    Roberts MC. Acquired tetracycline and/or macrolide-lincosamides-streptogramin resistance in anaerobes. Anaerobe 2003; 9: 63–9PubMedCrossRefGoogle Scholar
  70. 70.
    Betriu C, Culebras E, Gomez M, et al. In vitro activity of tigecycline against Bacteroides species. J Antimicrob Chemother 2005; 56: 349–52PubMedCrossRefGoogle Scholar
  71. 71.
    Nagy E, Dowzicky MJ. In vitro activity of tigecycline and comparators against European compilation of anaerobes collected as part of the Tigecycline Evaluation and Surveillance Trial (TEST). Scand J Infect Dis 2010; 42: 33–8PubMedCrossRefGoogle Scholar
  72. 72.
    Goldstein EJC, Citron DM, Merriam CV, et al. Comparative in vitro susceptibilities of 396 unusual anaerobic strains to tigecycline and eight other antimicrobial agents. Antimicrob Agents Chemother 2006; 50: 3507–13PubMedCrossRefGoogle Scholar
  73. 73.
    Yang W, Moore IF, Koteva KP, et al. TetX is a flavin-dependent monooxygenase conferring resistance to tetracycline antibiotics. J Biol Chem 2004; 279: 52346–52PubMedCrossRefGoogle Scholar
  74. 74.
    Betriu C, Culebras E, Gómez M, et al. Resistance trends of the Bacteroides fragilis group over a 10-year period, 1997 to 2006, in Madrid, Spain. Antimicrob Agents Chemother 2008; 52: 2686–90PubMedCrossRefGoogle Scholar
  75. 75.
    Koeth LM, Good CE, Appelbaum PC, et al. Surveillance of susceptibility patterns in 1297 European and US anaerobic and capnophilic isolates to co-amoxicalv and five other antimicrobial agents. J Antimicrob Chemother 2004; 53: 1039–44PubMedCrossRefGoogle Scholar
  76. 76.
    Handel T, Olsen I, Wolker CB, et al. Detection and characterization of beta-lactamase genes in subgingival bacteria from patients with refractory periodontitis. FEMS Microbiol Lett 2005; 242: 319–24CrossRefGoogle Scholar
  77. 77.
    Arzese AR, Tomasetig L, Botta GA. Detection of tetQ and ermF antibiotic resistance genes in Prevotella and Porphyromonas isolates from clinical specimens and resident microbiota of humans. J Antimicrob Chemother 2000; 45: 577–82PubMedCrossRefGoogle Scholar
  78. 78.
    Scott KP, Melville CM, Barbosa TM, et al. Occurrence of the new tetracycline resistance gene tet(W) in bacteria from the human gut. Antimicrob Agents Chemother 2000; 44: 775–7PubMedCrossRefGoogle Scholar
  79. 79.
    Nyfors S, Kononen E, Syrjanen R, et al. Emergence of penicillin resistance among Fusobacterium nucleatum populations of commensal oral flora during early childhood. J Antimicrobial Chemother 2003; 51: 107–12CrossRefGoogle Scholar
  80. 80.
    Turner K, Lindquist L, Nord CE. Purification and properties of a novel beta-lactamase from Fusobacterium nucleatum. Antimicrob Agents Chemother 1985; 27: 943–7CrossRefGoogle Scholar
  81. 81.
    Johnson CC. Susceptibility of anaerobic bacteria to beta-lactam antibiotics in the United States. Clin Infect Dis 1993; 16 Suppl.: S371–6PubMedCrossRefGoogle Scholar
  82. 82.
    Mosca A, Miragliotta L, Iodice Ma, et al. Antimicrobial profile of Prevotella spp and Fusobacterium nucleatum isolated from periodontal infections in a selected area of southern Italy. Inter J Antimicrob Agents 2007; 30: 521–4CrossRefGoogle Scholar
  83. 83.
    Baron EJ, Ropers G, Summanen P, et al. Bactericidal activity of selected antimicrobial agents against Bilophila wadsworthia and Bacteroides gracilis. Clin Infect Dis 1993; 16 Suppl.: S339–43PubMedCrossRefGoogle Scholar
  84. 84.
    Molitoris E, Wexler HM, Finegold SM. Source and antimicrobial susceptibilities of Campylobacter gracilis and Sutterella wadsworthensis. Clin Infect Dis 1997; 25 Suppl.: S264–5PubMedCrossRefGoogle Scholar
  85. 85.
    Murdoch DA. Gram-positive anaerobic cocci. Clin Microbiol Rev 1998; 11: 81–120PubMedGoogle Scholar
  86. 86.
    Song Y, Liu C, McTeague M, et al. 16S ribosomal DNA sequencing-based analysis of clinically significant Grampositive anaerobic cocci. J Clin Microbiol 2003; 41: 1363–9PubMedCrossRefGoogle Scholar
  87. 87.
    Teng LJ, Hsuesh PR, Tsai JC, et al. High incidence of cefoxitin and clindamycin resistance among anaerobes in Taiwan. Antimicrob Agents Chemother 2002; 46: 2908–13PubMedCrossRefGoogle Scholar
  88. 88.
    Poulet PP, Duffaut D, Lodter JP. Metronidazole susceptibility testing of anaerobic bacteria associated with periodontal disease. J Clin Periodontol 1999; 26: 261–3PubMedCrossRefGoogle Scholar
  89. 89.
    Theron MM, Janse Van Rensburg MN, Chalkley LJ. Nitroimidazole resistance genes (nimB) in anaerobic gram-positive cocci (previously Peptostreptococcus spp.). J Antimicrob Chemother 2004; 54: 240–2PubMedCrossRefGoogle Scholar
  90. 90.
    Reig M, Galan J, Baquero F, et al. Macrolide resistance in Peptostreptococcus spp. mediated by ermTR: possible source of macrolide-lincosamide-streptogramin B resistance in Streptococcus pyogenes. Antimicrob Agents Chemother 2001; 45: 630–2PubMedCrossRefGoogle Scholar
  91. 91.
    Hansen JM, Fjjeldsoe-Nielsen H, Sulim S, et al. Actinomyces species: a Danish survey on human infections and microbiological characteristics. Open Microbial J 2009; 3: 113–20CrossRefGoogle Scholar
  92. 92.
    Oprica C, Nord EC. European surveillance study on the antibiotic susceptibility of Propionibacterium acnes. Clin Microbial Infect 2005; 11: 204–13CrossRefGoogle Scholar
  93. 93.
    Ross JI, Snelling AM, Carnegie E, et al. Antibiotic-resistant acne: lesson from Europe. Br J Dermatol 2003; 148: 467–78PubMedCrossRefGoogle Scholar
  94. 94.
    Brazier JS, Fawley W, Freeman J, et al. Reduced susceptibility of Clostridium difficile to metronidazole. J Antimicrobial Chemother 2001; 48: 741–2CrossRefGoogle Scholar
  95. 95.
    Jamal WY, Mokaddas EM, Verghese TL, et al. In vitro activity of 15 antimicrobial agents against clinical isolates of Clostridium difficile in Kuwait. Int J Antimicrob Agents 2002; 20: 270–4PubMedCrossRefGoogle Scholar
  96. 96.
    Terhes G, Urbán E, Sóki J, et al. Assessment of changes in the epidemiology of Clostridium difficile isolated from diarrhoeal patients in Hungary. Anaerobe 2009; 15: 237–40PubMedCrossRefGoogle Scholar
  97. 97.
    Barbut E, Decre D, Burghoffer B, et al. Antimicrobial susceptibilities and serogroups of clinical strains of Clostridium difficile isolated in France in 1991 and 1997. Antimicrob Agents Chemother 1999; 43: 2607–11PubMedGoogle Scholar
  98. 98.
    Bendle JS, James PA, Bennett PM, et al. Resistance determinants in strains of Clostridium difficile from two geographically distinct populations. Int J Antimicrob Agents 2004; 24: 619–21PubMedCrossRefGoogle Scholar
  99. 99.
    Huang H, Weintraub A, Fang H, et al. Antibiotic resistance in Clostridium difficile. Inter J Antimicrob Agents 2009; 34: 516–22CrossRefGoogle Scholar
  100. 100.
    Johansson A, Greko C, Engstrom BE, et al. Antimicrobial susceptibility of Swedish, Norwegian and Danish isolates of Clostridium perfringens from poultry and distribution of tetracycline resistance genes. Vet Microbiol 2004; 99: 251–7PubMedCrossRefGoogle Scholar
  101. 101.
    Rafii F, Park M, Novak JS. Alteration in DNA gyrase and topoisomerase IV in resistant mutants of Clostridium perfringens found after in vitro treatment with fluoroquinolones. Antimicrob Agents Chemother 2005; 49: 488–92PubMedCrossRefGoogle Scholar
  102. 102.
    Spigaglia P, Barbanti F, Mastrantonio P, et al. Fluoroquinolone resistance in Clostridium difficile isolates from a prospective study of C. difficile infections in Europe. J Med Microbiol 2008; 57: 784–9PubMedCrossRefGoogle Scholar
  103. 103.
    O’Connor JR, Galang MA, Sambol S, et al. Rifampin and rifaximin resistance in clinical isolates of Clostridium difficile. Antimicrob Agents Chemother 2008; 52: 2813–7PubMedCrossRefGoogle Scholar
  104. 104.
    Hecht DW, Galang MA, Sambol SP, et al. In vitro activities of 15 antimicrobial agents against 110 toxigenic Clostridium difficile clinical isolates collected from 1983 to 2004. Antimicrob Agents Chemother 2007; 51: 2716–9PubMedCrossRefGoogle Scholar
  105. 105.
    Citron DM, Babkhani F, Goldstein EJC, et al. Typing and susceptibilities of bacterial isolates from fidaxomicin (OPT-80) phase II study for C. difficile infection. Anaerobe 2009; 15: 234–6PubMedCrossRefGoogle Scholar
  106. 106.
    Citron DM, Warren YA, Tyrrell KL, et al. Comparative in vitro activity of REP3123 against Clostridium difficile and other anaerobic intestinal bacteria. J Antimicrob Chemother 2009; 63: 972–6PubMedCrossRefGoogle Scholar
  107. 107.
    Pumbwe L, Wareham DW, Aduse-Opoku J, et al. Genetic analysis of mechanisms of multidrug resistance in a clinical isolate of Bacteroides fragilis. Clin Microbiol Infect 2007; 13: 183–9PubMedCrossRefGoogle Scholar
  108. 108.
    Solomkin JS, Mazuski JE, Baron EJ, et al. Guidelines for the selection of anti-infective agents for complicated intra-abdominal infections. Clin Infect Dis 2003; 37: 997–1005PubMedCrossRefGoogle Scholar
  109. 109.
    Bascones MA, Aguirre Urizar JM, Bermejo FA, et al. Consensus statement on antimicrobial treatment of odontogenic bacterial infections. Med Oral Patol Oral Cir Bucal 2004; 9: 369–76Google Scholar
  110. 110.
    Babinchak T, Ellis-Grosse E, Dartois N, et al. The efficacy and safety of tigecycline for the treatment of complicated intra-abdominal infections: analysis of pooled clinical trial data. Clin Infect Dis 2005; 41 Suppl.: S354–67PubMedCrossRefGoogle Scholar
  111. 111.
    Fomin P, Koalov S, Cooper A, et al. The efficacy and safety of tigecycline for the treatment of complicated intra-abdominal infections: the European experience. J Chemother 2008; 20 Suppl.: S12–9Google Scholar
  112. 112.
    Ackermann G, Schaumann R, Pless B, et al. In vitro activity of telithromycin (HMR 3647) and seven other antimicrobial agents against anaerobic bacteria. J Antimicrob Chemother 2000; 45: 115–9CrossRefGoogle Scholar
  113. 113.
    Wexler HM, Molitoris E, Molitoris D, et al. In vitro activity of telithromycin (HMR 3647) against 502 strains of anaerobic bacteria. J Antimicrob Chemother 2001; 47: 467–9PubMedCrossRefGoogle Scholar
  114. 114.
    Snydman DR, Jacobus NV, McDermott LA. Evaluation of the in vitro activity of NVP-LMB415 against clinical anaerobic isolates with emphasis on the Bacteroides fragilis group. J Antimicrob Chemother 2005; 55: 1024–8PubMedCrossRefGoogle Scholar
  115. 115.
    Finegold SM, Bolanos M, Sumannen PH, et al. In vitro activities of televancin and six comparator agents against anaerobic bacterial isolates. Antimicrob Agents Chemother 2009; 53: 3996–4001PubMedCrossRefGoogle Scholar
  116. 116.
    Snydman DR, Jacobus NV, McDermott LA. In vitro activities of doripenem, a new broad-spectrum carbapenems, against recently collected clinical anaerobic isolates, with emphasis on the Bacteroides fragilis group. Antimicrob Agents Chemother 2008; 52: 4492–6PubMedCrossRefGoogle Scholar
  117. 117.
    Tanaka K, Mikamo H, Nakao K, et al. In vitro activity of tomopenem (CS-023/RO4908463) against anaerobic bacteria. Antimicrob Agents Chemother 2009; 53: 319–22PubMedCrossRefGoogle Scholar
  118. 118.
    Ednie LM, Appelbaum PC. Antianaerobic activity of sulopenem compared with six other agents. Antimicrob Agents Chemother 2009; 53: 2163–70PubMedCrossRefGoogle Scholar
  119. 119.
    Bolton RP, Culshaw MA. Faecal metronidazole concentrations during oral and intravenous therapy for antibiotic associated colitis due to Clostridium difficile. Gut 1986; 27: 1169–72PubMedCrossRefGoogle Scholar
  120. 120.
    Huang H, Nord CE. Can metronidazole still be used for treatment of Clostridium difficile infections? Curr Infect Dis Rep 2009; 11: 3–6PubMedCrossRefGoogle Scholar
  121. 121.
    Davidson M. Results of a phase III trial comparing tolevamer, vancomycin and metronidazole in patients with Clostridium difficile-associated diarrhoea (CDAD) [abstract no. K-425a]. 47th ICAAC; 2007 Sep 17-20; Chicago (IL)Google Scholar
  122. 122.
    Berrie C. Tolevamer less effective than standard therapies for C. difficile associated diarrhoea [abstract no. O464]. 18th ECCMID; 2008 Apr 19–22; BarcelonaGoogle Scholar
  123. 123.
    Bartlett JG. New antimicrobial agents for patients with Clostridium difficile infections. Curr Infect Dis Rep 2009; 11: 21–8PubMedCrossRefGoogle Scholar
  124. 124.
    Snydman DR, Jacobus NV, McDermott LA, et al. Lesson learned from the anaerobe survey: historical perspective and review of the most recent data (2005–2007). Clin Infect Dis 2010; 50 Suppl.: S26–33PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2010

Authors and Affiliations

  1. 1.Institute of Clinical MicrobiologyUniversity of SzegedSzegedHungary

Personalised recommendations