CNS Drugs

, Volume 24, Issue 3, pp 177–192 | Cite as

Gene Therapy in Parkinson’s Disease

Rationale and Current Status
  • Li Rebekah Feng
  • Kathleen A. Maguire-Zeiss
Leading Article


Parkinson’s disease is the second most common age-related neurodegenerative disorder, typified by the progressive loss of substantia nigra pars compacta dopamine neurons and the consequent decrease in the neurotransmitter dopamine. Patients exhibit a range of clinical symptoms, with the most common affecting motor function and including resting tremor, rigidity, akinesia, bradykinesia and postural instability. Current pharmacological interventions are palliative and largely aimed at increasing dopamine levels through increased production and/or inhibition of metabolism of this key neuro transmitter. The gold standard for treatment of both familial and sporadic Parkinson’s disease is the peripheral administration of the dopamine precursor, levodopa. However, many patients gradually develop levodopa-induced dyskinesias and motor fluctuations. In addition, dopamine enhancement therapies are most useful when a portion of the nigrostriatal pathway is intact. Consequently, as the number of substantia nigra dopamine neurons and striatal projections decrease, these treatments become less efficacious.

Current translational research is focused on the development of novel disease-modifying therapies, including those utilizing gene therapeutic approaches. Herein we present an overview of current gene therapy clinical trials for Parkinson’s disease. Employing either recombinant adeno-associated virus type 2 (rAAV2) or lentivirus vectors, these clinical trials are focused on three overarching approaches: augmentation of dopamine levels via increased neurotransmitter production; modulation of the neuronal phenotype; and neuroprotection. The first two therapies discussed in this article focus on increasing dopamine production via direct delivery of genes involved in neurotransmitter synthesis (amino acid decarboxylase, tyrosine hydroxylase and GTP [guanosine triphosphate] cyclohydrolase 1). In an attempt to bypass the degenerating nigrostriatal pathway, a third clinical trial utilizes rAAV2 to deliver glutamic acid decarboxylase to the subthalamic nucleus, converting a subset of excitatory neurons to GABA-producing cells. In contrast, the final clinical trial is aimed at protecting the degenerating nigrostriatum by striatal delivery of rAAV2 harbouring the neuroprotective gene, neurturin. Based on preclinical studies, this gene therapeutic approach is posited to slow disease progression by enhancing neuronal survival. In addition, we discuss the outcome of each clinical trial and discuss the potential rationale for the marginal yet incremental clinical advancements that have thus far been realized for Parkinson’s disease gene therapy.


Levodopa Deep Brain Stimulation Dopamine Neuron Subthalamic Nucleus Equine Infectious Anaemia Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was funded in part by R01ES014470 (National Institute of Environmental Health Sciences) to Kathleen A. Maguire-Zeiss. The authors have no conflicts of interest that are directly relevant to the content of this review.


  1. 1.
    Kempster PA, Hurwitz B, Lees AJ. A new look at James Parkinson’s essay on the shaking palsy. Neurology 2007 Jul 31; 69(5): 482–5PubMedCrossRefGoogle Scholar
  2. 2.
    Parkinson J. An essay on the shaking palsy. London: Sherwood, Neely, and Jones, Paternoster Row, 1817Google Scholar
  3. 3.
    Dorsey ER, Constantinescu R, Thompson JP, et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 2007; 68: 384–6PubMedCrossRefGoogle Scholar
  4. 4.
    Mayeux R. Epidemiology of neurodegeneration. Annu Rev Neurosci 2003; 26: 81–104PubMedCrossRefGoogle Scholar
  5. 5.
    Alves G, Forsaa EB, Pedersen KF, et al. Epidemiology of Parkinson’s disease. J Neurol 2008 Sep; 255Suppl. 5:18–32PubMedCrossRefGoogle Scholar
  6. 6.
    Dubow JS. Autonomic dysfunction in Parkinson’s disease. Dis Mon 2007 May; 53(5): 265–74PubMedCrossRefGoogle Scholar
  7. 7.
    Krogh K, Ostergaard K, Sabroe S, et al. Clinical aspects of bowel symptoms in Parkinson’s disease. Acta Neurol Scand 2008 Jan; 117(1): 60–4PubMedGoogle Scholar
  8. 8.
    Poewe W. Dysautonomia and cognitive dysfunction in Parkinson’s disease. Mov Disord 2007 Sep; 22Suppl. 17: S374–8PubMedCrossRefGoogle Scholar
  9. 9.
    Tolosa E, Compta Y, Gaig C. The premotor phase of Parkinson’s disease. Parkinsonism Relat Disord 2007 Sep; 13 Suppl.: S2–7PubMedCrossRefGoogle Scholar
  10. 10.
    Grinberg LT, Rueb U, Alho AT, et al. Brainstem pathology and non-motor symptoms in PD [online]. J Neurol Sci 2009 Sep 14; doi:10.1016/j.jns 2009.08.021Google Scholar
  11. 11.
    Kaufmann H, Nahm K, Purohit D, et al. Autonomic failure as the initial presentation of Parkinson disease and dementia with Lewy bodies. Neurology 2004 Sep 28; 63(6): 1093–5PubMedCrossRefGoogle Scholar
  12. 12.
    Khoo TK, Burn DJ. Non-motor symptoms may herald Parkinson’s disease. Practitioner 2009 Sep; 253(1721): 19–24,2PubMedGoogle Scholar
  13. 13.
    Greffard S, Verny M, Bonnet AM, et al. Motor score of the Unified Parkinson Disease Rating Scale as a good predictor of Lewy body-associated neuronal loss in the substantia nigra. Arch Neurol 2006 Apr; 63(4): 584–8PubMedCrossRefGoogle Scholar
  14. 14.
    Toulouse A, Sullivan AM. Progress in Parkinson’s disease: where do we stand? Prog Neurobiol 2008 Aug; 85(4): 376–92PubMedCrossRefGoogle Scholar
  15. 15.
    Spillantini MG, Crowther RA, Jakes R, et al. Alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc Natl Acad Sci U S A 1998 May 26; 95(11): 6469–73PubMedCrossRefGoogle Scholar
  16. 16.
    Spillantini MG, Schmidt ML, Lee VM, et al. Alpha-synuclein in Lewy bodies. Nature 1997 Aug 28; 388(6645): 839–40PubMedCrossRefGoogle Scholar
  17. 17.
    Braak H, Del Tredici K. Invited article: nervous system pathology in sporadic Parkinson disease. Neurology 2008 May 13; 70(20): 1916–25PubMedCrossRefGoogle Scholar
  18. 18.
    Croisier E, Moran LB, Dexter DT, et al. Microglial inflammation in the parkinsonian substantia nigra: relationship to alpha-synuclein deposition. J Neuroinflammation 2005 Jun 3; 2: 14PubMedCrossRefGoogle Scholar
  19. 19.
    McGeer PL, Itagaki S, Boyes BE, et al. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 1988 Aug; 38(8): 1285–91PubMedCrossRefGoogle Scholar
  20. 20.
    Gerhard A, Pavese N, Hotton G, et al. In vivo imaging of microglial activation with [11C] (R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis 2006 Feb; 21(2): 404–12PubMedCrossRefGoogle Scholar
  21. 21.
    McGeer EG, McGeer PL. The role of anti-inflammatory agents in Parkinson’s disease. CNS Drugs 2007; 21(10): 789–97PubMedCrossRefGoogle Scholar
  22. 22.
    Su X, Federoff HJ, Maguire-Zeiss KA. Mutant alpha-synuclein overexpression mediates early proinflammatory activity. Neurotox Res 2009 Oct; 16(3): 238–54PubMedCrossRefGoogle Scholar
  23. 23.
    Su X, Maguire-Zeiss KA, Giuliano R, et al. Synuclein activates microglia in a model of Parkinson’s disease. Neurobiol Aging 2008 Nov; 29(11): 1690–701PubMedCrossRefGoogle Scholar
  24. 24.
    Lee JK, Tran T, Tansey MG. Neuroinflammation in Parkinson’s disease. J Neuroimmune Pharmacol 2009 Oct 10; 4: 419–29PubMedCrossRefGoogle Scholar
  25. 25.
    Long-Smith CM, Sullivan AM, Nolan YM. The influence of microglia on the pathogenesis of Parkinson’s disease. Prog Neurobiol 2009 Nov; 89(3): 277–87PubMedCrossRefGoogle Scholar
  26. 26.
    Gorell JM, Johnson CC, Rybicki BA, et al. The risk of Parkinson’s disease with exposure to pesticides, farming, well water, and rural living. Neurology 1998 May; 50(5): 1346–50PubMedCrossRefGoogle Scholar
  27. 27.
    Seidler A, Hellenbrand W, Robra BP, et al. Possible environmental, occupational, and other etiologic factors for Parkinson’s disease: a case-control study in Germany. Neurology 1996 May; 46(5): 1275–84PubMedCrossRefGoogle Scholar
  28. 28.
    McCormack AL, Thiruchelvam M, Manning-Bog AB, et al. Environmental risk factors and Parkinson’s disease: selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiol Dis 2002 Jul; 10(2): 119–27PubMedCrossRefGoogle Scholar
  29. 29.
    Coon S, Stark A, Peterson E, et al. Whole-body lifetime occupational lead exposure and risk of Parkinson’s disease. Environ Health Perspect 2006 Dec; 114(12): 1872–6PubMedGoogle Scholar
  30. 30.
    Kamel F, Tanner C, Umbach D, et al. Pesticide exposure and self-reported Parkinson’s disease in the agricultural health study. Am J Epidemiol 2007 Feb 15; 165(4): 364–74PubMedCrossRefGoogle Scholar
  31. 31.
    Priyadarshi A, Khuder SA, Schaub EA, et al. Environmental risk factors and Parkinson’s disease: a meta-analysis. Environ Res 2001 Jun; 86(2): 122–7PubMedCrossRefGoogle Scholar
  32. 32.
    Migliore L, Coppede F. Genetics, environmental factors and the emerging role of epigenetics in neurodegenerative diseases. Mutat Res/Fundam Mol Mech Mutagen 2009 Jul 10; 667(1-2): 82–97CrossRefGoogle Scholar
  33. 33.
    Tanner CM, Ross GW, Jewell SA, et al. Occupation and risk of parkinsonism: a multicenter case-control study. Arch Neurol 2009 Sep; 66(9): 1106–13PubMedCrossRefGoogle Scholar
  34. 34.
    Kitada T, Asakawa S, Matsumine H, et al. Progress in the clinical and molecular genetics of familial parkinsonism. Neurogenetics 2000; 2(4): 207–18PubMedCrossRefGoogle Scholar
  35. 35.
    Nussbaum RL, Polymeropoulos MH. Genetics of Parkinson’s disease. Hum Mol Genet 1997; 6(10): 1687–91PubMedCrossRefGoogle Scholar
  36. 36.
    Polymeropoulos MH. Genetics of Parkinson’s disease. Ann N Y Acad Sci 2000; 920: 28–32PubMedCrossRefGoogle Scholar
  37. 37.
    Bras JM, Singleton A. Genetic susceptibility in Parkinson’s disease. Biochim Biophys Acta 2009 Jul; 1792(7): 597–603PubMedCrossRefGoogle Scholar
  38. 38.
    Shibasaki Y, Baillie DA, St. Clair D, et al. High-resolution mapping of SNCA encoding alpha-synuclein, the non-A beta component of Alzheimer’s disease amyloid precursor, to human chromosome 4q21.3->q22 by fluorescence in situ hybridization. Cytogenet Cell Genet 1995; 71(1): 54–5PubMedCrossRefGoogle Scholar
  39. 39.
    Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 1997; 276(5321): 2045–7PubMedCrossRefGoogle Scholar
  40. 40.
    Singleton AB, Farrer M, Johnson J, et al. Alpha-synuclein locus triplication causes Parkinson’s disease. Science 2003 Oct 31; 302(5646): 841PubMedCrossRefGoogle Scholar
  41. 41.
    Nishioka K, Hayashi S, Farrer MJ, et al. Clinical heterogeneity of alpha-synuclein gene duplication in Parkinson’s disease. Ann Neurol 2006 Feb; 59(2): 298–309PubMedCrossRefGoogle Scholar
  42. 42.
    Hardy J, Cai H, Cookson MR, et al. Genetics of Parkinson’s disease and parkinsonism. Ann Neurol 2006 Oct; 60(4): 389–98PubMedCrossRefGoogle Scholar
  43. 43.
    Hardy J, Lewis P, Revesz T, et al. The genetics of Parkinson’s syndromes: a critical review. Curr Opin Genet Dev 2009 Jun; 19(3): 254–65PubMedCrossRefGoogle Scholar
  44. 44.
    Liu Z, Meray RK, Grammatopoulos TN, et al. Membrane-associated farnesylated UCH-L1 promotes alpha-synuclein neurotoxicity and is a therapeutic target for Parkinson’s disease. Proc Natl Acad Sci U S A 2009 Mar 24; 106(12): 4635–40PubMedCrossRefGoogle Scholar
  45. 45.
    Ragland M, Hutter C, Zabetian C, et al. Association between the ubiquitin carboxyl-terminal esterase L1 gene (UCHL1) S18Y variant and Parkinson’s disease: a HuGE review and meta-analysis. Am J Epidemiol 2009 Dec 1; 170 11: 1344–57CrossRefGoogle Scholar
  46. 46.
    Sutherland GT, Halliday GM, Silburn PA, et al. Do polymorphisms in the familial Parkinsonism genes contribute to risk for sporadic Parkinson’s disease? Mov Disord 2009 Apr 30; 24(6): 833–8PubMedCrossRefGoogle Scholar
  47. 47.
    Yasuda T, Nihira T, Ren YR, et al. Effects of UCH-L1 on alpha-synuclein over-expression mouse model of Parkinson’s disease. J Neurochem 2009 Feb; 108(4): 932–44PubMedCrossRefGoogle Scholar
  48. 48.
    Ferreira JJ, Guedes LC, Rosa MM, et al. High prevalence of LRRK2 mutations in familial and sporadic Parkinson’s disease in Portugal. Mov Disord 2007 Jun 15; 22(8): 1194–201PubMedCrossRefGoogle Scholar
  49. 49.
    Moore DJ. The biology and pathobiology of LRRK2: implications for Parkinson’s disease. Parkinsonism Relat Disord 2008; 14Suppl. 2: S92–8PubMedCrossRefGoogle Scholar
  50. 50.
    Cookson MR, Dauer W, Dawson T, et al. The roles of kinases in familial Parkinson’s disease. J Neurosci 2007 Oct 31; 27(44): 11865–8PubMedCrossRefGoogle Scholar
  51. 51.
    Satake W, Nakabayashi Y, Mizuta I, et al. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat Genet 2009 Dec; 41(12): 1303–7PubMedCrossRefGoogle Scholar
  52. 52.
    Simon-Sanchez J, Schulte C, Bras JM, et al. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet 2009 Dec; 41(12): 1308–12PubMedCrossRefGoogle Scholar
  53. 53.
    Maguire-Zeiss KA, Federoff HJ. Convergent pathobiologic model of Parkinson’s disease. Ann N Y Acad Sci 2003 Jun; 991: 152–66PubMedCrossRefGoogle Scholar
  54. 54.
    Anden NE, Carlsson A, Kerstell J, et al. Oral L-dopa treatment of parkinsonism. Acta Med Scand 1970; 187(4): 247–55PubMedGoogle Scholar
  55. 55.
    Asanuma M, Miyazaki I. Nonsteroidal anti-inflammatory drugs in experimental parkinsonian models and Parkinson’s disease. Curr Pharm Des 2008; 14(14): 1428–34PubMedCrossRefGoogle Scholar
  56. 56.
    Benabid AL. Deep brain stimulation for Parkinson’s disease. Curr Opin Neurobiol 2003 Dec; 13(6): 696–706PubMedCrossRefGoogle Scholar
  57. 57.
    Evans JR, Barker RA. Neurotrophic factors as a therapeutic target for Parkinson’s disease. Expert Opin Ther Targets 2008 Apr; 12(4): 437–47PubMedCrossRefGoogle Scholar
  58. 58.
    Factor SA. Current status of symptomatic medical therapy in Parkinson’s disease. Neurotherapeutics 2008 Apr; 5(2): 164–80PubMedCrossRefGoogle Scholar
  59. 59.
    Guridi J, Obeso JA, Rodriguez-Oroz MC, et al. L-dopa-induced dyskinesia and stereotactic surgery for Parkinson’s disease. Neurosurgery 2008 Feb; 62(2): 311–23; discussion 23-5PubMedCrossRefGoogle Scholar
  60. 60.
    LeWitt PA, Guttman M, Tetrud JW, et al. Adenosine A2A receptor antagonist istradefylline (KW-6002) reduces “off” time in Parkinson’s disease: a double-blind, randomized, multicenter clinical trial (6002-US-005). Ann Neurol 2008 Mar; 63(3): 295–302PubMedCrossRefGoogle Scholar
  61. 61.
    LeWitt PA, Taylor DC. Protection against Parkinson’s disease progression: clinical experience. Neurotherapeutics 2008 Apr; 5(2): 210–25PubMedCrossRefGoogle Scholar
  62. 62.
    Limousin P, Martinez-Torres I. Deep brain stimulation for Parkinson’s disease. Neurotherapeutics 2008 Apr; 5(2): 309–19PubMedCrossRefGoogle Scholar
  63. 63.
    Maguire-Zeiss KA. Alpha-synuclein: a therapeutic target for Parkinson’s disease? Pharmacol Res 2008 Nov–Dec; 58(5–6): 271–80PubMedCrossRefGoogle Scholar
  64. 64.
    Montgomery Jr EB, Gale JT. Mechanisms of action of deep brain stimulation (DBS). Neurosci Biobehav Rev 2008; 32(3): 388–407PubMedCrossRefGoogle Scholar
  65. 65.
    Prasad KN, Cole WC, Kumar B. Multiple antioxidants in the prevention and treatment of Parkinson’s disease. J Am Coll Nutr 1999 Oct; 18(5): 413–23PubMedGoogle Scholar
  66. 66.
    Ramaker C, van Hilten JJ. Bromocriptine versus levodopa in early Parkinson’s disease. Cochrane Database Syst Rev 2000; (3): CD002258Google Scholar
  67. 67.
    Remple MS, Sarpong Y, Neimat JS. Frontiers in the surgical treatment of Parkinson’s disease. Expert Rev Neurother 2008 Jun; 8(6): 897–906PubMedCrossRefGoogle Scholar
  68. 68.
    Schapira AH, Olanow CW. Rationale for the use of dopamine agonists as neuroprotective agents in Parkinson’s disease. Ann Neurol 2003; 53Suppl. 3: S149–57; discussion S57-9PubMedCrossRefGoogle Scholar
  69. 69.
    Shoulson I. DATATOP: a decade of neuroprotective inquiry. Parkinson Study Group: deprenyl and tocopherol antioxidative therapy of parkinsonism. Ann Neurol 1998 Sep; 44(3 Suppl. 1): S160–6PubMedGoogle Scholar
  70. 70.
    Simola N, Morelli M, Pinna A. Adenosine A2A receptor antagonists and Parkinson’s disease: state of the art and future directions. Curr Pharm Des 2008; 14(15): 1475–89PubMedCrossRefGoogle Scholar
  71. 71.
    Wider C, Pollo C, Bloch J, et al. Long-term outcome of 50 consecutive Parkinson’s disease patients treated with subthalamic deep brain stimulation. Parkinsonism Relat Disord 2008; 14(2): 114–9PubMedCrossRefGoogle Scholar
  72. 72.
    Yamada K, Goto S, Hamasaki T, et al. Effect of bilateral subthalamic nucleus stimulation on levodopa-unresponsive axial symptoms in Parkinson’s disease. Acta Neurochir (Wien) 2008 Jan; 150(1): 15–22CrossRefGoogle Scholar
  73. 73.
    Yu H, Neimat JS. The treatment of movement disorders by deep brain stimulation. Neurotherapeutics 2008 Jan; 5(1): 26–36PubMedCrossRefGoogle Scholar
  74. 74.
    Blaschko H. The activity of l(−)-dopa decarboxylase. JPhysiol 1942; 101: 337–49Google Scholar
  75. 75.
    Fabbrini G, Mouradian MM, Juncos JL, et al. Motor fluctuations in Parkinson’s disease: central pathophysiological mechanisms. Part I. Ann Neurol 1988 Sep; 24(3): 366–71PubMedCrossRefGoogle Scholar
  76. 76.
    Mouradian MM, Juncos JL, Fabbrini G, et al. Motor fluctuations in Parkinson’s disease: central pathophysiological mechanisms. Part II. Ann Neurol 1988 Sep; 24(3): 372–8PubMedCrossRefGoogle Scholar
  77. 77.
    Del Sorbo F, Albanese A. Levodopa-induced dyskinesias and their management. J Neurol 2008 Aug; 255Suppl. 4: 32–41PubMedCrossRefGoogle Scholar
  78. 78.
    Herzog J, Pogarell O, Pinsker MO, et al. Deep brain stimulation in Parkinson’s disease following fetal nigral transplantation. Mov Disord 2008 Jul 15; 23(9): 1293–6PubMedCrossRefGoogle Scholar
  79. 79.
    Krack P, Batir A, Van Blercom N, et al. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 2003 Nov 13; 349(20): 1925–34PubMedCrossRefGoogle Scholar
  80. 80.
    Schupbach WM, Chastan N, Welter ML, et al. Stimulation of the subthalamic nucleus in Parkinson’s disease: a 5 year follow up. J Neurol Neurosurg Psychiatry 2005 Dec; 76(12): 1640–4PubMedCrossRefGoogle Scholar
  81. 81.
    Deuschl G, Schade-Brittinger C, Krack P, et al. A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med 2006 Aug 31; 355(9): 896–908PubMedCrossRefGoogle Scholar
  82. 82.
    Schupbach WM, Maltete D, Houeto JL, et al. Neurosurgery at an earlier stage of Parkinson disease: a randomized, controlled trial. Neurology 2007 Jan 23; 68(4): 267–71PubMedCrossRefGoogle Scholar
  83. 83.
    Bankiewicz KS, Forsayeth J, Eberling JL, et al. Long-term clinical improvement in MPTP-lesioned primates after gene therapy with AAV-hAADC. Mol Ther 2006 Oct; 14(4): 564–70PubMedCrossRefGoogle Scholar
  84. 84.
    Daadi MM, Pivirotto P, Bringas J, et al. Distribution of AAV2-hAADC-transduced cells after 3 years in parkin-sonian monkeys. Neuroreport 2006 Feb 6; 17(2): 201–4PubMedCrossRefGoogle Scholar
  85. 85.
    Eberling JL, Jagust WJ, Christine CW, et al. Results from a phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology 2008 May 20; 70(21): 1980–3PubMedCrossRefGoogle Scholar
  86. 86.
    Sanftner LM, Sommer JM, Suzuki BM, et al. AAV2-mediated gene delivery to monkey putamen: evaluation of an infusion device and delivery parameters. Exp Neurol 2005 Aug; 194(2): 476–83PubMedCrossRefGoogle Scholar
  87. 87.
    Bankiewicz KS, Daadi M, Pivirotto P, et al. Focal striatal dopamine may potentiate dyskinesias in parkinsonian monkeys. Exp Neurol 2006 Feb; 197(2): 363–72PubMedCrossRefGoogle Scholar
  88. 88.
    Cunningham J, Pivirotto P, Bringas J, et al. Biodistribution of adeno-associated virus type-2 in nonhuman primates after convection-enhanced delivery to brain. Mol Ther 2008 Jul; 16(7): 1267–75PubMedCrossRefGoogle Scholar
  89. 89.
    Eberling JL, Bankiewicz KS, O’Neil JP, et al. PET 6-[F]fluoro-L-m-tyrosine studies of dopaminergic function in human and nonhuman primates. Front Hum Neurosci 2007; 1(9): 1–5Google Scholar
  90. 90.
    Forsayeth JR, Eberling JL, Sanftner LM, et al. A dose-ranging study of AAV-hAADC therapy in parkinsonian monkeys. Mol Ther 2006 Oct; 14(4): 571–7PubMedCrossRefGoogle Scholar
  91. 91.
    Hadaczek P, Kohutnicka M, Krauze MT, et al. Convection-enhanced delivery of adeno-associated virus type 2 (AAV2) into the striatum and transport of AAV2 within monkey brain. Hum Gene Ther 2006 Mar; 17(3): 291–302PubMedCrossRefGoogle Scholar
  92. 92.
    Azzouz M, Martin-Rendon E, Barber RD, et al. Multicistronic lentiviral vector-mediated striatal gene transfer of aromatic L-amino acid decarboxylase, tyrosine hydroxylase, and GTP cyclohydrolase I induces sustained transgene expression, dopamine production, and functional improvement in a rat model of Parkinson’s disease. J Neurosci 2002 Dec 1; 22(23): 10302–12PubMedGoogle Scholar
  93. 93.
    Luo J, Kaplitt MG, Fitzsimons HL, et al. Subthalamic GAD gene therapy in a Parkinson’s disease rat model. Science 2002 Oct 11; 298(5592): 425–9PubMedCrossRefGoogle Scholar
  94. 94.
    During MJ, Kaplitt MG, Stern MB, et al. Subthalamic GAD gene transfer in Parkinson disease patients who are candidates for deep brain stimulation. Hum Gene Ther 2001 Aug 10; 12(12): 1589–91PubMedGoogle Scholar
  95. 95.
    Kaplitt MG, Feigin A, Tang C, et al. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet 2007 Jun 23; 369(9579): 2097–105PubMedCrossRefGoogle Scholar
  96. 96.
    Marks Jr WJ, Ostrem JL, Verhagen L, et al. Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson’s disease: an open-label, phase I trial. Lancet Neurol 2008 May; 7(5): 400–8PubMedCrossRefGoogle Scholar
  97. 97.
    Bjorklund A, Bjorklund T, Kirik D. Gene therapy for dopamine replacement in Parkinson’s disease. Sci Transl Med 2009 Oct 14; 1 (2ps2)CrossRefGoogle Scholar
  98. 98.
    Bjorklund T, Kirik D. Scientific rationale for the development of gene therapy strategies for Parkinson’s disease. Biochim Biophys Acta 2009 Jul; 1792(7): 703–13PubMedCrossRefGoogle Scholar
  99. 99.
    Lindvall O, Backlund EO, Farde L, et al. Transplantation in Parkinson’s disease: two cases of adrenal medullary grafts to the putamen. Ann Neurol 1987 Oct; 22(4): 457–68PubMedCrossRefGoogle Scholar
  100. 100.
    Madrazo I, Drucker-Colin R, Diaz V, et al. Open microsurgical autograft of adrenal medulla to the right caudate nucleus in two patients with intractable Parkinson’s disease. N Engl J Med 1987 Apr 2; 316(14): 831–4PubMedCrossRefGoogle Scholar
  101. 101.
    Moses D, Drago J, Teper Y, et al. Fetal striatum- and ventral mesencephalon-derived expanded neurospheres rescue dopaminergic neurons in vitro and the nigrostriatal system in vivo. Neuroscience 2008 Jun 23; 154(2): 606–20PubMedCrossRefGoogle Scholar
  102. 102.
    Ostenfeld T, Tai YT, Martin P, et al. Neurospheres modified to produce glial cell line-derived neurotrophic factor increase the survival of transplanted dopamine neurons. J Neurosci Res 2002 Sep 15; 69(6): 955–65PubMedCrossRefGoogle Scholar
  103. 103.
    Sun J, Gao Y, Yang L, et al. Neural-tube-derived neuro-epithelial stem cells: a new transplant resource for Parkinson’s disease. Neuroreport 2007 Apr 16; 18(6): 543–7PubMedCrossRefGoogle Scholar
  104. 104.
    Takagi Y, Takahashi J, Saiki H, et al. Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model. J Clin Invest 2005 Jan; 115(1): 102–9PubMedGoogle Scholar
  105. 105.
    Takahashi J. Stem cell therapy for Parkinson’s disease. Ernst Schering Res Found Workshop 2006; 60: 229–44PubMedCrossRefGoogle Scholar
  106. 106.
    Braak H, Del Tredici K. Assessing fetal nerve cell grafts in Parkinson’s disease. Nat Med 2008 May; 14(5): 483–5PubMedCrossRefGoogle Scholar
  107. 107.
    Kordower JH, Chu Y, Hauser RA, et al. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 2008 May; 14(5): 504–6PubMedCrossRefGoogle Scholar
  108. 108.
    Kordower JH, Chu Y, Hauser RA, et al. Transplanted dopaminergic neurons develop PD pathologic changes: a second case report. Mov Disord 2008 Dec 15; 23(16): 2303–6PubMedCrossRefGoogle Scholar
  109. 109.
    Li JY, Englund E, Holton JL, et al. Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 2008 May; 14(5): 501–3PubMedCrossRefGoogle Scholar
  110. 110.
    Mandel RJ, Burger C, Snyder RO. Viral vectors for in vivo gene transfer in Parkinson’s disease: properties and clinical grade production. Exp Neurol 2008 Jan; 209(1): 58–71PubMedCrossRefGoogle Scholar
  111. 111.
    Bueler H. Adeno-associated viral vectors for gene transfer and gene therapy. Biol Chem 1999 Jun; 380(6): 613–22PubMedCrossRefGoogle Scholar
  112. 112.
    Samulski RJ, Chang LS, Shenk T. Helper-free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression. J Virol 1989 Sep; 63(9): 3822–8PubMedGoogle Scholar
  113. 113.
    Peden CS, Burger C, Muzyczka N, et al. Circulating anti-wild-type adeno-associated virus type 2 (AAV2) antibodies inhibit recombinant AAV2 (rAAV2)-mediated, but not rAAV5-mediated, gene transfer in the brain. J Virol 2004 Jun; 78(12): 6344–59PubMedCrossRefGoogle Scholar
  114. 114.
    Zaiss AK, Muruve DA. Immune responses to adeno-associated virus vectors. Curr Gene Ther 2005 Jun; 5(3): 323–31PubMedCrossRefGoogle Scholar
  115. 115.
    Zaiss AK, Muruve DA. Immunity to adeno-associated virus vectors in animals and humans: a continued challenge. Gene Ther 2008 Jun; 15(11): 808–16PubMedCrossRefGoogle Scholar
  116. 116.
    Bartlett JS, Samulski RJ, McCown TJ. Selective and rapid uptake of adeno-associated virus type 2 in brain. Hum Gene Ther 1998 May 20; 9(8): 1181–6PubMedCrossRefGoogle Scholar
  117. 117.
    Burger C, Gorbatyuk OS, Velardo MJ, et al. Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1,2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol Ther 2004 Aug; 10(2): 302–17PubMedCrossRefGoogle Scholar
  118. 118.
    Mandel RJ, Manfredsson FP, Foust KD, et al. Recombinant adeno-associated viral vectors as therapeutic agents to treat neurological disorders. Mol Ther 2006 Mar; 13(3): 463–83PubMedCrossRefGoogle Scholar
  119. 119.
    Sondhi D, Hackett NR, Peterson DA, et al. Enhanced survival of the LINCL mouse following CLN2 gene transfer using the rh 0. 10 rhesus macaque-derived adeno-associated virus vector. Mol Ther 2007 Mar; 15(3): 481–91PubMedCrossRefGoogle Scholar
  120. 120.
    Reimsnider S, Manfredsson FP, Muzyczka N, et al. Time course of transgene expression after intrastriatal pseudotyped rAAV2/1, rAAV2/2, rAAV2/5, and rAAV2/8 transduction in the rat. Mol Ther 2007 Aug; 15(8): 1504–11PubMedCrossRefGoogle Scholar
  121. 121.
    Jakobsson J, Lundberg C. Lentiviral vectors for use in the central nervous system. Mol Ther 2006 Mar; 13(3): 484–93PubMedCrossRefGoogle Scholar
  122. 122.
    Connolly JB. Lentiviruses in gene therapy clinical research. Gene Ther 2002 Dec; 9(24): 1730–4PubMedCrossRefGoogle Scholar
  123. 123.
    Schambach A, Baum C. Clinical application of lentiviral vectors: concepts and practice. Curr Gene Ther 2008 Dec; 8(6): 474–82PubMedCrossRefGoogle Scholar
  124. 124.
    Alexander BL, Ali RR, Alton EW, et al. Progress and prospects: gene therapy clinical trials (part 1). Gene Ther 2007 Oct; 14(20): 1439–47PubMedCrossRefGoogle Scholar
  125. 125.
    Fiandaca M, Forsayeth J, Bankiewicz K. Current status of gene therapy trials for Parkinson’s disease. Exp Neurol 2008 Jan; 209(1): 51–7PubMedCrossRefGoogle Scholar
  126. 126.
    Isacson O, Kordower JH. Future of cell and gene therapies for Parkinson’s disease. Ann Neurol 2008 Dec; 64Suppl. 2: S122–38PubMedGoogle Scholar
  127. 127.
    Lewis TB, Standaert DG. Design of clinical trials of gene therapy in Parkinson disease. Exp Neurol 2008 Jan; 209(1): 41–7PubMedCrossRefGoogle Scholar
  128. 128.
    Maguire-Zeiss KA, Mhyre TR, Federoff HJ. Gazing into the future: Parkinson’s disease gene therapeutics to modify natural history. Exp Neurol 2008 Jan; 209(1): 101–13PubMedCrossRefGoogle Scholar
  129. 129.
    Mochizuki H, Yasuda T, Mouradian MM. Advances in gene therapy for movement disorders. Neurotherapeutics 2008 Apr; 5(2): 260–9PubMedCrossRefGoogle Scholar
  130. 130.
    Evans JR, Barker RA. Neurotrophic factors as a therapeutic target for Parkinson’s disease. Expert Opin Ther Targets 2008; 12: 437–47PubMedCrossRefGoogle Scholar
  131. 131.
    Gash DM, Zhang Z, Ovadia A, et al. Functional recovery in parkinsonian monkeys treated with GDNF. Nature 1996; 380: 252–5PubMedCrossRefGoogle Scholar
  132. 132.
    Grondin R, Zhang Z, Ai Y, et al. Intraputamenal infusion of exogenous neurturin protein restores motor and dopaminergic function in the globus pallidus of MPTP-lesioned rhesus monkeys. Cell Transplant 2008; 17: 373–81PubMedGoogle Scholar
  133. 133.
    Grondin R, Zhang Z, Yi A, et al. Chronic, controlled GDNF infusion promotes structural and functional recovery in advanced parkinsonian monkeys. Brain 2002; 125: 2191–201PubMedCrossRefGoogle Scholar
  134. 134.
    Horger BA, Nishimura MC, Armanini MP, et al. Neurturin exerts potent actions on survival and function of midbrain dopaminergic neurons. J Neurosci 1998; 18: 4929–37PubMedGoogle Scholar
  135. 135.
    Kirik D, Rosenblad C, Bjorklund A. Preservation of a functional nigrostriatal dopamine pathway by GDNF in the intrastriatal 6-OHDA lesion model depends on the site of administration of the trophic factor. Eur J Neurosci 2000; 12: 3871–82PubMedCrossRefGoogle Scholar
  136. 136.
    Kirik D, Rosenblad C, Bjorklund A, et al. Long-term rAAV-mediated gene transfer of GDNF in the rat Parkinson’s model: intrastriatal but not intranigral transduction promotes functional regeneration in the lesioned nigrostriatal system. J Neurosci 2000; 20: 4686–700PubMedGoogle Scholar
  137. 137.
    Kordower JH. In vivo gene delivery of glial cell line-derived neurotrophic factor for Parkinson’s disease. Ann Neurol 2003; 53Suppl. 3: S120–32; discussion S132-34PubMedCrossRefGoogle Scholar
  138. 138.
    Kordower JH, Emborg ME, Bloch J, et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 2000; 290: 767–73PubMedCrossRefGoogle Scholar
  139. 139.
    Peterson AL, Nutt JG. Treatment of Parkinson’s disease with trophic factors. Neurotherapeutics 2008; 5: 270–80PubMedCrossRefGoogle Scholar
  140. 140.
    Tomac A, Lindqvist E, Lin LF, et al. Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 1995; 373: 335–9PubMedCrossRefGoogle Scholar
  141. 141.
    Lloyd K, Hornykiewicz O. Parkinson’s disease: activity of L-dopa decarboxylase in discrete brain regions. Science 1970 Dec 11; 170(963): 1212–3PubMedCrossRefGoogle Scholar
  142. 142.
    Nagatsu T, Yamamoto T, Kato T. A new and highly sensitive voltammetric assay for aromatic L-amino acid decarboxylase activity by high-performance liquid chromatography. Anal Biochem 1979 Nov 15; 100(1): 160–5PubMedCrossRefGoogle Scholar
  143. 143.
    Bankiewicz KS, Eberling JL, Kohutnicka M, et al. Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach. Exp Neurol 2000; 164(1): 2–14PubMedCrossRefGoogle Scholar
  144. 144.
    Christine CW, Starr PA, Larson PS, et al. Safety and tolerability of putaminal AADC gene therapy for Parkinson disease. Neurology 2009 Nov 17; 73 20: 1662–9CrossRefGoogle Scholar
  145. 145.
    Fahn S, Elton RL. UPDRS program members. Unified Parkinsons Disease Rating Scale. In: Fahn S, Marsden CD, Goldstein M, et al., editors. Recent developments in Parkinson’s disease. Vol 2. Florham Park (NJ): Macmillan Healthcare Information, 1987: 153–63Google Scholar
  146. 146.
    Kumer SC, Vrana KE. Intricate regulation of tyrosine hydroxylase activity and gene expression. J Neurochem 1996 Aug; 67(2): 443–62PubMedCrossRefGoogle Scholar
  147. 147.
    Wachtel SR, Bencsics C, Kang UJ. Role of aromatic L-amino acid decarboxylase for dopamine replacement by genetically modified fibroblasts in a rat model of Parkinson’s disease. J Neurochem 1997 Nov; 69(5): 2055–63PubMedCrossRefGoogle Scholar
  148. 148.
    Jarrya B, Boulet S, Ralph GS, et al. Dopamine gene therapy for Parkinson’s disease in a nonhuman primate without associated dyskinesia. Sci Transl Med 2009; 1 (2ra4)Google Scholar
  149. 149.
    Oxford BioMedica. Oxford BioMedica announces update on ProSavin phase I/II trial in Parkinson’s disease and publication of preclinical results-15/10/2009 [online]. Available from URL: [Accessed 2010 Jan 13]
  150. 150.
    Jarray B, Lepetit H, Ralph S, et al. Provasin a gene therapy for Parkinson’s disease [abstract]. Human Gene Therapy 2009; 20: 1391–2Google Scholar
  151. 151.
    Cheng N, Maeda T, Kume T, et al. Differential neurotoxicity induced by L-DOPA and dopamine in cultured striatal neurons. Brain Res 1996 Dec 16; 743(1–2) 278–83PubMedCrossRefGoogle Scholar
  152. 152.
    Graham DG, Tiffany SM, Bell Jr WR, et al. Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C1300 neuroblastoma cells in vitro. Mol Pharmacol 1978 Jul; 14(4): 644–53PubMedGoogle Scholar
  153. 153.
    Limousin P, Martinez-Torres I. Deep brain stimulation for Parkinson’s disease. Neurotherapeutics 2008; 5(2): 309–19PubMedCrossRefGoogle Scholar
  154. 154.
    Montgomery Jr EB, Gale JT. Mechanisms of action of deep brain stimulation (DBS). Neurosci Biobehav Rev 2008; 32: 388–407PubMedCrossRefGoogle Scholar
  155. 155.
    Wider C, Pollo C, Bloch J, et al. Long-term outcome of 50 consecutive Parkinson’s disease patients treated with subthalamic deep brain stimulation. Parkinsonism Relat Disord 2008; 14: 114–9PubMedCrossRefGoogle Scholar
  156. 156.
    Yu H, Neimat JS. The treatment of movement disorders by deep brain stimulation. Neurotherapeutics 2008; 5: 26–36PubMedCrossRefGoogle Scholar
  157. 157.
    Choi-Lundberg DL, Lin Q, Chang YN, et al. Dopaminergic neurons protected from degeneration by GDNF gene therapy. Science 1997 Feb 7; 275(5301): 838–41PubMedCrossRefGoogle Scholar
  158. 158.
    Nutt JG, Burchiel KJ, Comella CL, et al. Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology 2003 Jan 14; 60(1): 69–73PubMedCrossRefGoogle Scholar
  159. 159.
    Barker RA. Continuing trials of GDNF in Parkinson’s disease. Lancet Neurol 2006 Apr; 5(4): 285–6PubMedCrossRefGoogle Scholar
  160. 160.
    Sherer TB, Fiske BK, Svendsen CN, et al. Crossroads in GDNF therapy for Parkinson’s disease. Mov Disord 2006 Feb; 21(2): 136–41PubMedCrossRefGoogle Scholar
  161. 161.
    Bespalov MM, Saarma M. GDNF family receptor complexes are emerging drug targets. Trends Pharmacol Sci 2007 Feb; 28(2): 68–74PubMedCrossRefGoogle Scholar
  162. 162.
    Gasmi M, Brandon EP, Herzog CD, et al. AAV2-mediated delivery of human neurturin to the rat nigrostriatal system: long-term efficacy and tolerability of CERE-120 for Parkinson’s disease. Neurobiol Dis 2007 Jul; 27(1): 67–76PubMedCrossRefGoogle Scholar
  163. 163.
    Gasmi M, Herzog CD, Brandon EP, et al. Striatal delivery of neurturin by CERE-120, an AAV2 vector for the treatment of dopaminergic neuron degeneration in Parkinson’s disease. Mol Ther 2007 Jan; 15(1): 62–8PubMedCrossRefGoogle Scholar
  164. 164.
    Gottwald MD, Aminoff MJ. New frontiers in the pharmacological management of Parkinson’s disease. Drugs Today (Barc) 2008 Jul; 44(7): 531–45CrossRefGoogle Scholar
  165. 165.
    Herzog CD, Dass B, Gasmi M, et al. Transgene expression, bioactivity, and safety of CERE-120 (AAV2-neurturin) following delivery to the monkey striatum. Mol Ther 2008 Oct; 16(10): 1737–44PubMedCrossRefGoogle Scholar
  166. 166.
    Herzog CD, Brown L, Gammon D, et al. Expression, bioactivity, and safety 1 year after adeno-associated viral vector type 2-mediated delivery of neurturin to the monkey nigrostriatal system support cere-120 for Parkinson’s disease. Neurosurgery 2009 Apr; 64(4): 602–12; discussion 12-3PubMedCrossRefGoogle Scholar
  167. 167.
    Peterson AL, Nutt JG. Treatment of Parkinson’s disease with trophic factors. Neurotherapeutics 2008 Apr; 5(2): 270–80PubMedCrossRefGoogle Scholar
  168. 168.
    Rosenblad C, Kirik D, Devaux B, et al. Protection and regeneration of nigral dopaminergic neurons by neurturin or GDNF in a partial lesion model of Parkinson’s disease after administration into the striatum or the lateral ventricle. Eur J Neurosci 1999 May; 11(5): 1554–66PubMedCrossRefGoogle Scholar
  169. 169.
    Bartus RT, Herzog CD, Bishop K, et al. Issues regarding gene therapy products for Parkinson’s disease: the development of CERE-120 (AAV-NTN) as one reference point. Parkinsonism Relat Disord 2007; 13Suppl. 3: S469–77PubMedCrossRefGoogle Scholar
  170. 170.
    Kotzbauer PT, Lampe PA, Heuckeroth RO, et al. Neurturin, a relative of glial-cell-line-derived neurotrophic factor. Nature 1996 Dec 5; 384(6608): 467–70PubMedCrossRefGoogle Scholar
  171. 171.
    Ceregene Inc. Ceregene announces clinical data from phase 2 clinical trial of CERE-120 for Parkinson’s disease [online]. Available from URL: [Accessed 2010 Jan 13]
  172. 172.
    Ceregene Inc. Ceregene presents additional clinical data from phase 2 trial of CERE-120 for Parkinson’s disease [online]. Available from URL: [Accessed 2010 Jan 13]
  173. 173.
    Cartier N, Hacein-Bey-Abina S, Bartholomae CC, et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 2009 Nov 6; 326(5954): 818–23PubMedCrossRefGoogle Scholar
  174. 174.
    Haberman RP, McCown TJ. Regulation of gene expression in adeno-associated virus vectors in the brain. Methods 2002 Oct; 28(2): 219–26PubMedCrossRefGoogle Scholar
  175. 175.
    Maguire-Zeiss KA, Federoff HJ. Safety of viral vectors for neurological gene therapies. Curr Opin Mol Ther 2004; 6(5): 473–81PubMedGoogle Scholar
  176. 176.
    Asokan A, Johnson JS, Li C, et al. Bioluminescent virion shells: new tools for quantitation of AAV vector dynamics in cells and live animals. Gene Ther 2008 Dec; 15(24): 1618–22PubMedCrossRefGoogle Scholar
  177. 177.
    Fiandaca MS, Varenika V, Eberling J, et al. Real-time MR imaging of adeno-associated viral vector delivery to the primate brain. Neuroimage 2009 Aug; 47Suppl. 2: T27–35PubMedCrossRefGoogle Scholar
  178. 178.
    Ravina B, Tanner C, Dieuliis D, et al. A longitudinal program for biomarker development in Parkinson’s disease: a feasibility study. Mov Disord 2009 Oct 30; 24(14): 2081–90PubMedCrossRefGoogle Scholar
  179. 179.
    Klein C, Schlossmacher MG. Parkinson disease, 10 years after its genetic revolution: multiple clues to a complex disorder. Neurology 2007 Nov 27; 69(22): 2093–104PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2010

Authors and Affiliations

  1. 1.Department of NeuroscienceGeorgetown University Medical CenterWashington DCUSA

Personalised recommendations