Advertisement

CNS Drugs

, Volume 24, Issue 6, pp 501–526 | Cite as

Ocular adverse effects of common psychotropic agents

A Review
  • Sami RichaEmail author
  • Jean-Claude Yazbek
Review Article

Abstract

All psychotropic medications have the potential to induce numerous and diverse unwanted ocular effects. Visual adverse effects can be divided into seven major categories: eyelid and keratoconjunctival disorders; uveal tract disorders; accommodation interference; angle-closure glaucoma; cataract/ pigmentary deposits in the lens and cornea; retinopathy; and other disorders.

The disorders of the eyelid and of the keratoconjunctiva are mainly related to phenothiazines and lithium. Chlorpromazine, at high dosages, can commonly cause abnormal pigmentation of the eyelids, interpalpebral conjunctiva and cornea. It can also cause a more worrisome but rarer visual impairment, namely corneal oedema. Lithium can rarely lead to a bothersome eye irritation by affecting sodium transport.

Uveal tract problems are mainly associated with tricyclic antidepressants (TCAs), typical antipsychotics, topiramate and selective serotonin reuptake inhibitors (SSRIs). TCAs, typical antipsychotics and SSRIs can all cause mydriasis that is often transient and with no major consequences, but that can promote closure of angles in susceptible patients. Topiramate has been frequently associated with a number of significant ocular symptoms including acquired myopia and angle-closure glaucoma.

Problems with accommodation are related to TCAs and to low-potency antipsychotics. TCAs cause transient blurred vision in up to one-third of patients.

Angle-closure glaucoma is a serious condition that has been mainly associated with TCAs, low-potency antipsychotics, topiramate and, to a lesser extent, SSRIs. When patients with narrow angles are given TCAs, they all appear to experience induction of glaucomatous attacks. Antipsychotics and SSRIs may lead to an added risk of developing angle-closure glaucoma, but only in predisposed eyes. Topiramate can lead to an allergic-type reaction whereby structures of the lens and ciliary body are displaced, which results in angle-closure glaucoma.

Cataractous changes can result from antipsychotics, mainly from high dosages of chlorpromazine or thioridazine. These two drugs, when used at high dosages and for prolonged periods, frequently cause lenticular opacifications.

Retinopathy has been shown to be related to high dosages of typical antipsychotics, mainly chlorpromazine and thioridazine. The frequency of occurrence of retinal effects seems to be proportional to the total amount of drug used over a long period of time.

Other visual problems of special concern are the ocular dystonias, other eye movement disorders, and decreased ability to perceive colours and to discriminate contrast. Ocular dystonias can occur with antipsychotics (especially high-potency ones), carbamazepine (especially in polytherapy), topiramate and, rarely, with SSRIs. Disturbance in various eye movements is frequently seen with benzodiazepines, antiepileptic drugs and lithium. Impairment in the perception of colours and the discrimination of contrasts has been shown to occur not uncommonly with carbamazepine and lorazepam.

Thus, typical antipsychotics, TCAs, lithium, benzodiazepines, carbamazepine, topiramate and SSRIs appear to produce most of the currently recognized ocular problems. Psychiatrists, ophthalmologists and patients need to be aware of and prepared for any medication-induced adverse effect. Early prevention and intervention can avoid most of the serious and potentially irreversible ocular toxicities.

Keywords

Glaucoma Carbamazepine Dystonia Lamotrigine Topiramate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

References

  1. 1.
    Malone Jr DA, Camara EG, Krug Jr JH. Ophthalmologic effects of psychotropic medications. Psychosomatics 1992 Summer; 33(3): 271–7PubMedCrossRefGoogle Scholar
  2. 2.
    Li J, Tripathi RC, Tripathi BJ. Drug-induced ocular disorders. Drug Saf 2008; 31(2): 127–41PubMedCrossRefGoogle Scholar
  3. 3.
    Oshika T. Ocular adverse effects of neuropsychiatric agents: incidence and management. Drug Saf 1995 Apr; 12(4): 256–63PubMedCrossRefGoogle Scholar
  4. 4.
    Hadjikoutis S, Morgan JE, Wild JM, et al. Ocular complications of neurological therapy. Eur J Neurol 2005 Jul; 12(7): 499–507PubMedCrossRefGoogle Scholar
  5. 5.
    Stahl SM. Essential psychopharmacology: the prescriber’s guide. Cambridge: Cambridge University Press, 2005Google Scholar
  6. 6.
    Bond WS, Yee GC. Ocular and cutaneous effects of chronic phenothiazine therapy. Am J Hosp Pharm 1980; 37(1): 74–8PubMedGoogle Scholar
  7. 7.
    Johnson AW, Buffaloe WJ. Chlorpromazine epithelial keratopathy. Arch Ophthalmol 1966; 76(5): 664–7PubMedCrossRefGoogle Scholar
  8. 8.
    Edler K, Gottfries CG, Haslund J, et al. Eye changes in connection with neuroleptic treatment especially concerning phenothiazines and thioxanthenes. Acta Psychiatr Scand 1971; 47(4): 377–84PubMedCrossRefGoogle Scholar
  9. 9.
    Hansen TE, Casey DE, Hoffman WF. Neuroleptic intolerance. Schizophr Bull 1997; 23(4): 567–82PubMedCrossRefGoogle Scholar
  10. 10.
    Elmar G, Lutz M. Allergic conjunctivitis due to diazepam [abstract]. Am J Psychiatry 1975; 132: 548Google Scholar
  11. 11.
    Pakes GE. Eye irritation and lithium carbonate [letter]. Arch Ophthalmol 1980; 98(5): 930PubMedCrossRefGoogle Scholar
  12. 12.
    Lauf PK, Chimote AA, Adragna NC. Lithium fluxes indicate presence of Na-Cl cotransport (NCC) in human lens epithelial cells. 2008; 21(5–6): 335–46Google Scholar
  13. 13.
    Doughty MJ, McIntosh M, McFadden S, et al. Impression cytology of a case of conjunctival metaplasia associated with oral carbamazepine use? Cont Lens Anterior Eye 2007 Sep; 30(4): 254–7PubMedCrossRefGoogle Scholar
  14. 14.
    Moeller JJ, Maxner CE. The dilated pupil: an update. Curr Neurol Neurosci Rep 2007; 7(5): 417–22PubMedCrossRefGoogle Scholar
  15. 15.
    Yu Y, Koss MC. Alpha(1A)-adrenoreceptors mediate sympathetically evoked pupillary dilation in rats. J Pharmacol Exp Ther 2002; 300(2): 521–5PubMedCrossRefGoogle Scholar
  16. 16.
    Szabadi E, Bradshaw CM. Autonomic pharmacology of alpa-2-adrenoceptors. J Psychopharmacol 1996; 10: 6–18Google Scholar
  17. 17.
    Lieberman E, Stoudemire A. Use of tricyclic antidepressants in patients with glaucoma: assessment and appropriate precautions. Psychosomatics 1987; 28(3): 145–8PubMedCrossRefGoogle Scholar
  18. 18.
    Shur E, Checkley S. Pupil studies in depressed patients: an investigation of the mechanism of action of desipramine. Br J Psychiatry 1982; 140: 181–4PubMedCrossRefGoogle Scholar
  19. 19.
    Schear MJ, Rowan AJ, Weiner JA, et al. Drug-induced myopia: a transient side effect of topiramate. Epilepsia 1990; 31: 643Google Scholar
  20. 20.
    Harsh AS, Henry SO, William BL, et al. Topiramate-induced acute myopia and retinal striae. Arch Ophthalmol 2001; 119: 775–7Google Scholar
  21. 21.
    Krieg PH, Schipper I. Drug-induced ciliary body oedema: a new theory. Eye 1996; 10 (Pt 1): 121–6PubMedCrossRefGoogle Scholar
  22. 22.
    Fraunfelder FW, Fraunfelder FT. Adverse ocular drug reactions recently identified by the National Registry of Drug-Induced Ocular Side Effects. Ophthalmology 2004 Jul; 111(7): 1275–9PubMedCrossRefGoogle Scholar
  23. 23.
    Hilton EJ, Hosking SL, Betts T. The effect of antiepileptic drugs on visual performance. Seizure 2004 Mar; 13(2): 113–28PubMedCrossRefGoogle Scholar
  24. 24.
    Rhee DJ, Goldberg MJ, Parrish RK. Bilateral angleclosure glaucoma and ciliary body swelling from topiramate. Arch Ophthalmol 2001; 119(11): 1721–3PubMedGoogle Scholar
  25. 25.
    Costagliola C, Parmeggiani F, Sebastiani A. SSRIs and intraocular pressure modifications: evidence, therapeutic implications and possible mechanisms. CNS Drugs 2004; 18(8): 475–84PubMedCrossRefGoogle Scholar
  26. 26.
    Patel OP, Simon MR. Oculogyric dystonic reaction to escitalopram with features of anaphylaxis including response to epinephrine. Int Arch Allergy Immunol 2006; 140(1): 27–9PubMedCrossRefGoogle Scholar
  27. 27.
    Schmitt JA, Riedel WJ, Vuurman EF, et al. Modulation of the critical flicker fusion effects of serotonin reuptake inhibitors by concomitant pupillary changes. Psychopharmacology (Berl) 2002 Apr; 160(4): 381–6CrossRefGoogle Scholar
  28. 28.
    Costagliola C, Mastropasqua L, Capone D, et al. Effect of fluoxetine on intraocular pressure in the rabbit. Exp Eye Res 2000 May; 70(5): 551–5PubMedCrossRefGoogle Scholar
  29. 29.
    Tobin AB, Unger W, Osborne NN. Evidence for the presence of serotonergic neurons and receptors in the irisciliary body complex of the rabbit. J Neurosci 1988; 8: 3713–21PubMedGoogle Scholar
  30. 30.
    Chidlow G, Le Corre S, Osborne SS. Localization of 5-hydroxytryptamine1A and 5-hydroxytryptamine7 receptors in rabbit ocular and brain tissues. Neuroscience 1998; 87: 675–89PubMedCrossRefGoogle Scholar
  31. 31.
    Osborne NN, Chidlow G. Do beta-adrenoceptors and serotonin 5-HT1A receptors have similar functions in the control of intraocular pressure in the rabbit? Ophthalmologica 1996; 210: 308–14PubMedCrossRefGoogle Scholar
  32. 32.
    Tobin AB, Osborne NN. Evidence for the presence of serotonin receptors negatively coupled to adenylate cyclase in the rabbit iris-ciliary body. J Neurochem 1989; 53: 686–91PubMedCrossRefGoogle Scholar
  33. 33.
    Preskorn SH. Comparison of the tolerability of bupropion, fluoxetine, imipramine, nefazodone, paroxetine, sertraline and venlafaxine. J Clin Psychiatry 1995; 56 Suppl. 6: 12–21Google Scholar
  34. 34.
    Trindade E, Menon D, Topfer LA, et al. Adverse effects associated with selective serotonin reuptake inhibitors and tricyclic antidepressants: a meta-analysis. CMAJ 1998; 159: 1245–52PubMedGoogle Scholar
  35. 35.
    Beasley Jr CM, Koke SC, Nilsson ME, et al. Adverse events and treatment discontinuations in clinical trials of fluoxetine in major depressive disorder: an updated meta-analysis. Clin Ther 2000; 22: 1319–30PubMedCrossRefGoogle Scholar
  36. 36.
    Thompson C, Peveler RC, Stephenson D, et al. Compliance with antidepressant medication in the treatment of major depressive disorder in primary care: a randomized comparison of fluoxetine and a tricyclic antidepressant. Am J Psychiatry 2000; 157: 338–43PubMedCrossRefGoogle Scholar
  37. 37.
    Ahmad S. Fluoxetine and glaucoma [letter]. DICP 1991; 25: 436PubMedGoogle Scholar
  38. 38.
    Kirwan JF, Subak-Sharpe I, Teimory M. Bilateral acute angle closure glaucoma after administration of paroxetine [letter]. Br J Ophthalmol 1997; 81: 252PubMedCrossRefGoogle Scholar
  39. 39.
    Lewis CF, DeQuardo JR, DuBose C, et al. Acute angle-closure glaucoma and paroxetine. J Clin Psychiatry 1997; 58: 123–4PubMedCrossRefGoogle Scholar
  40. 40.
    Eke T, Bates AK. Acute angle closure glaucoma associated with paroxetine [letter]. BMJ 1997; 314: 1387PubMedCrossRefGoogle Scholar
  41. 41.
    Bennett HG, Wyllie AM. Paroxetine and acute angle closure glaucoma. Eye 1999; 13: 691–2PubMedCrossRefGoogle Scholar
  42. 42.
    Browning AC, Reck AC, Chisholm IH, et al. Acute angle closure glaucoma presenting in a young patient after administration of paroxetine. Eye 2000; 14: 406–8PubMedCrossRefGoogle Scholar
  43. 43.
    Jimenez-Jimenez FJ, Orti-Pareja M, Zurdo JM. Aggravation of glaucoma with fluvoxamine. Ann Pharmacother 2001; 35: 1565–6PubMedCrossRefGoogle Scholar
  44. 44.
    Adverse Drug Reactions Advisory Committee (ADRAC). SSRIs and increased intraocular pressure [abstract]. Aust Adv Drugs Reac Bull 2001; 20(1): 3Google Scholar
  45. 45.
    Saletu B, Grünberger J. Drug profiling by computed electroencephalography and brain maps, with special consideration of sertraline and its psychometric effects. J Clin Psychiatry 1988; 49: 59–71PubMedGoogle Scholar
  46. 46.
    Deijen JB, Loriaux SM, Orlebeke JF, et al. Effects of paroxetine and maprotiline on mood, perceptual-motor skills and eye movements in healthy volunteers. J Psychopharmacol 1989; 3: 148–55CrossRefGoogle Scholar
  47. 47.
    Ramaekers JG, Muntjewerff ND, O’Hanlon JF. A comparative study of acute and subchronic effects of dothiepin, fluoxetine and placebo on psychomotor and actual driving performance. Br J Clin Pharmacol 1995; 39: 397–404PubMedCrossRefGoogle Scholar
  48. 48.
    Tripathi RC, Tripathi BJ, Haggerty C. Drug-induced glaucomas: mechanism and management. Drug Saf 2003; 26(11): 749–67PubMedCrossRefGoogle Scholar
  49. 49.
    Ritch R, Krupin T, Henry C, et al. Oral imipramine and acute angle closure glaucoma. Arch Ophthalmol 1994; 112(1): 67–8PubMedCrossRefGoogle Scholar
  50. 50.
    Lowe RF. Amitriptyline and glaucoma. Med J Aust 1966; 2(11): 509–10PubMedGoogle Scholar
  51. 51.
    Hyams SW, Keroub C. Glaucoma due to diazepam. Am J Psychiatry 1997; 134: 447–8Google Scholar
  52. 52.
    Sankar PS, Pasquale LR, Grosskreutz CL. Uveal effusion and secondary angle-closure glaucoma associated with topiramate use. Arch Ophthalmol 2001; 119: 1210–1PubMedGoogle Scholar
  53. 53.
    Fraunfelder FW, Fraunfelder FT, Keates EU. Topiramate-associated acute, bilateral, secondary angle-closure glaucoma. Ophthalmology 2004; 111: 109–11PubMedCrossRefGoogle Scholar
  54. 54.
    Banta JT, Hoffman K, Budezn L, et al. Presumed topiramate-induced bilateral acute angle-closure glaucoma. Am J Ophthalmol 2001; 132: 112–4PubMedCrossRefGoogle Scholar
  55. 55.
    Thambi L, Kapcala LP, Chambers W, et al. Topiramate-associated secondary angle-closure glaucoma: a case series. Arch Ophthalmol 2002; 120: 1210–1CrossRefGoogle Scholar
  56. 56.
    Croos R, Thirumalai S, Hassan S, et al. Citalopram associated with acute angle-closure glaucoma: case report [letter]. BMC Ophthalmol 2005; 5: 23PubMedCrossRefGoogle Scholar
  57. 57.
    Massaoutis P, Goh D, Foster PJ. Bilateral symptomatic angle closure associated with a regular dose of citalopram, an SSRI antidepressant. Br J Ophthalmol 2007; 91(8): 1086–7PubMedCrossRefGoogle Scholar
  58. 58.
    Zelefsky JR, Fine HF, Rubinstein VJ, et al. Escitalopram-induced effusions and bilateral angle closure glaucoma. Am J Ophthalmol 2006; 141(6): 1144–7PubMedCrossRefGoogle Scholar
  59. 59.
    Levy J, Tessler Z, Klemperer I, et al. Late bilateral acute angle-closure glaucoma after administration of paroxetine in a patient with plateau iris configuration. Can J Ophthalmol 2004; 39(7): 780–1PubMedGoogle Scholar
  60. 60.
    Costagliola C, Mastropasqua L, Steardo L, et al. Fluoxetine oral administration increases intraocular pressure [letter]. Br J Ophthalmol 1996; 80: 678PubMedCrossRefGoogle Scholar
  61. 61.
    Shahzad S, Suleman MI, Shahab H, et al. Cataract occurrence with antipsychotic drugs. Psychosomatics 2002 Sep–Oct; 43(5): 354–9PubMedCrossRefGoogle Scholar
  62. 62.
    Boet DJ. Toxic effects of phenothiazines on the eye. Doc Ophthalmol 1970; 28(1): 1–69PubMedCrossRefGoogle Scholar
  63. 63.
    Gowdey CW, Coleman LM, Crawford EM. Ocular changes and phenothiazine derivatives in long-term residents of a mental retardation center. Psychiatr J Univ Ott 1985; 10(4): 248–53PubMedGoogle Scholar
  64. 64.
    Thaler JS, Curinga R, Kiracofe G. Relation of graded ocular anterior chamber pigmentation to phenothiazine intake in schizophrenics: quantification procedures. Am J Optom Physiol Opt 1985; 62(9): 600–4PubMedCrossRefGoogle Scholar
  65. 65.
    Barnes GJ, Cameron ME. Skin and eye changes associated with chlorpromazine therapy. Med J Aust 1966; 1(12): 478–81PubMedGoogle Scholar
  66. 66.
    Zigman S, Datiles M, Torczynski E. Sunlight and human cataracts. Invest Ophthalmol Vis Sci 1979; 18(5): 462–7PubMedGoogle Scholar
  67. 67.
    Feldman PE, Frierson BD. Dermatological and ophthalmological changes associated with prolonged chlorpromazine therapy. Am J Psychiatry 1964 Aug; 121: 187–8PubMedGoogle Scholar
  68. 68.
    Greiner AC, Berry K. Skin pigmentation and corneal and lens opacities with prolonged chlorpromazine therapy. CMAJ 1964 Mar 14; 90: 663–5Google Scholar
  69. 69.
    Satanove A. Pigmentation due to phenothiazines in high and prolonged dosage. JAMA 1965; 191(4): 263–8PubMedCrossRefGoogle Scholar
  70. 70.
    Siddall JR. Ocular complications related to phenothiazines. Dis Nerv Syst 1968; 29(3) Suppl.: 10–3PubMedGoogle Scholar
  71. 71.
    Buffaloe WJ, Johnson AW, Sandifer Jr MG. Total dosage of chlorpromazine and ocular opacities. Am J Psychiatry 1967; 124: 250–1PubMedGoogle Scholar
  72. 72.
    Wetterholm DH, Snow HL, Winter FC, et al. A clinical study of pigmentary changes in cornea and lens in chronic chlorpromazine therapy. Arch Ophthalmol 1965; 74: 55–6PubMedCrossRefGoogle Scholar
  73. 73.
    Seroquel® (quetiapine) [package insert]. Wilmington (DE); Zeneca Pharmaceuticals, 2001Google Scholar
  74. 74.
    Stip E, Boisjoly H. Quetiapine: are we overreacting in our concern about cataracts (the beagle effect) [abstract]? Can J Psychiatry 1999 Jun; 44(5): 503PubMedGoogle Scholar
  75. 75.
    Siddall JR. Ocular toxic changes associated with chlorpromazine and thioridazine. Can J Ophthalmol 1966; 1: 190–8PubMedGoogle Scholar
  76. 76.
    Hagopian Y, Stratton DB. Five cases of pigmentary retinopathy associated with thioridazine administration. Am J Psychiatry 1966; 123: 97–100PubMedGoogle Scholar
  77. 77.
    Meredith TA, Aaberg TM, Willerson WD. Progressive chorioretinopathy after receiving thioridazine. Arch Ophthalmol 1978; 96: 1172–6PubMedCrossRefGoogle Scholar
  78. 78.
    Legros J, Rosner I, Berger C. Ocular effects of chlorpromazine and oxypertine on beagle dogs. Br J Ophthalmol 1971 Jun; 55(6): 407–15PubMedCrossRefGoogle Scholar
  79. 79.
    Kashi S, Takahashi M, Mandai M, et al. Protective action of dopamine against glutamate neurotoxicity in the retina. Invest Ophthalmol Vis Sci 1994 Feb; 35(2): 685–95Google Scholar
  80. 80.
    Lobefalo L, Rapinese M, Altobelli E, et al. Retinal nerve fiber layer and macular thickness in adolescents with epilepsy treated with valproate and carbamazepine. Epilepsia 2006 Apr; 47(4): 717–9PubMedCrossRefGoogle Scholar
  81. 81.
    Nielsen NV, Syversen K. Possible retinotoxic effect of carbamazepine. Acta Ophthalmol (Copenh) 1986; 64(3): 287–90CrossRefGoogle Scholar
  82. 82.
    Verrotti A, Lobefalo L, Tocco AM, et al. Color vision and macular recovery time in epileptic adolescents treated with valproate and carbamazepine. Eur J Neurol 2006; 13(7): 736–41PubMedCrossRefGoogle Scholar
  83. 83.
    Alkawi A, Kattah JC, Wyman K. Downbeat nystagmus as a result of lamotrigine toxicity. Epilepsy Res 2005; 63(2–3): 85–8PubMedCrossRefGoogle Scholar
  84. 84.
    Sener EC, Kiratli H. Presumed sertraline maculopathy. Acta Ophthalmol Scand 2001 Aug; 79(4): 428–30PubMedCrossRefGoogle Scholar
  85. 85.
    Litovitz GL. Amitriptyline and contact lenses [letter]. J Clin Psychiatry 1984; 45: 188PubMedGoogle Scholar
  86. 86.
    Goode DJ. Increased palpebral aperture in a patient receiving amitriptyline. Am J Psychiatry 1977; 134: 1043–4PubMedGoogle Scholar
  87. 87.
    Hughes MS, Lessell S. Trazodone-induced palinopsia. Arch Ophthalmol 1990; 108: 399–400PubMedCrossRefGoogle Scholar
  88. 88.
    Adam OR, Jankovic J. Treatment of dystonia. Parkinsonism Relat Disord 2007; 13Suppl. 3: S362–8PubMedCrossRefGoogle Scholar
  89. 89.
    Tan CH, Chiang PC, Ng LL, et al. Oculogyric spasm in Asian psychiatric in-patients on maintenance medication [abstract]. Br J Psychiatry 1995; 166(1): 117Google Scholar
  90. 90.
    Faulks RS, Gilmore JH, Jensen EW, et al. Risperidone-induced dystonic reaction [letter]. Am J Psychiatry 1996; 153(4): 577Google Scholar
  91. 91.
    Rosenhagen MC, Schmidt U, Winkelmann J, et al. Olanzapine-induced oculogyric crisis [letter]. J Clin Psychopharmacol 2006; 26(4): 431PubMedCrossRefGoogle Scholar
  92. 92.
    Desarkar P, Das A, Sinha VK. Olanzapine-induced oculogyric crisis [letter]. Aust N Z J Psychiatry 2006; 40(4): 374PubMedCrossRefGoogle Scholar
  93. 93.
    Uzun O, Doruk A. Tardive oculogyric crisis during treatment with clozapine: report of three cases. Clin Drug Investig 2007; 27(12): 861–4PubMedCrossRefGoogle Scholar
  94. 94.
    Fountoulakis KN, Siamouli M, Kantartzis S, et al. Acute dystonia with low dosage aripiprazole in Tourette’s disorder. Ann Pharmacother 2006; 40(4): 775–7PubMedCrossRefGoogle Scholar
  95. 95.
    Berchou RC, Rodin EA. Carbamazepine-induced oculogyric crisis. Arch Neurol 1979; 36(8): 522–3PubMedCrossRefGoogle Scholar
  96. 96.
    Arnstein E. Oculogyric crisis: a distinct toxic effect of carbamazepine. J Child Neurol 1986; 1(3): 289–90PubMedCrossRefGoogle Scholar
  97. 97.
    Gorman M, Barkley GL. Oculogyric crisis induced by carbamazepine. Epilepsia 1995; 36(11): 1158–60PubMedCrossRefGoogle Scholar
  98. 98.
    Henry EV. Oculogyric crisis and carbamazepine [letter]. Arch Neurol 1980; 37(5): 326PubMedCrossRefGoogle Scholar
  99. 99.
    Leo RJ. Movement disorders associated with the serotonin selective reuptake inhibitors. J Clin Psychiatry 1996; 57(10): 449–54PubMedCrossRefGoogle Scholar
  100. 100.
    Gerber PE, Lynd LD. Selective serotonin-reuptake inhibitor-induced movement disorders. Ann Pharmacother 1998; 32(6): 692–8PubMedCrossRefGoogle Scholar
  101. 101.
    Stapleton JM, Guthrie S, Linnoila M. Effects of alcohol and other psychotropic drugs on eye movements: relevance to traffic safety. J Stud Alcohol 1986; 47: 426–32PubMedGoogle Scholar
  102. 102.
    Hommer DW, Matsuo V, Wolkowitz O, et al. Benzodiazepine sensitivity in normal human subjects. Arch Gen Psychiatry 1986; 43: 542–52PubMedCrossRefGoogle Scholar
  103. 103.
    Bittencourt PRM, Wade P, Smith AT, et al. Benzodiazepines impair smooth pursuit eye movements. Br J Clin Pharmacol 1983; 15: 259–62PubMedCrossRefGoogle Scholar
  104. 104.
    Khouzam HR, Highet VS. A review of clonazepam use in neurology. Neurobiologist 1997; 3: 120–7CrossRefGoogle Scholar
  105. 105.
    Rucker JC. Current treatment of nystagmus. Curr Treat Options Neurol 2005; 7(1): 69–77PubMedCrossRefGoogle Scholar
  106. 106.
    Young YH, Huang TW. Role of clonazepam in the treatment of idiopathic downbeat nystagmus. Laryngoscope 2001; 111(8): 1490–3PubMedCrossRefGoogle Scholar
  107. 107.
    Coppeto JR, Monteiro MLR, Lessell S. Downbeat nystagmus: long-term therapy with moderate-dose lithium carbonate. Arch Neurol 1983; 40: 754–5PubMedCrossRefGoogle Scholar
  108. 108.
    Williams DP, Troost BT, Rogers J. Lithium-induced downbeat nystagmus. Arch Neurol 1988; 45: 1022–3PubMedCrossRefGoogle Scholar
  109. 109.
    Rosenberg ML. Permanent lithium-induced down-beating nystagmus [letter]. Arch Neurol 1989; 46: 839PubMedCrossRefGoogle Scholar
  110. 110.
    Halmagyi GM, Lessell I, Curthoys IS, et al. Lithium-induced downbeat nystagmus. Am J Ophthalmol 1989; 107: 664–74PubMedGoogle Scholar
  111. 111.
    Chrousos GA, Cowdry R, Schuelein M, et al. Two-cases of downbeat nystagmus and oscillopsia associated with carbamazepine. Am J Ophthalmol 1987; 103: 221–4PubMedGoogle Scholar
  112. 112.
    Mullally WJ. Carbamazepine-induced ophthalmoplegia [letter]. Arch Neurol 1982; 39: 64PubMedCrossRefGoogle Scholar
  113. 113.
    Besag FMC, Berry DJ, Pool F, et al. Carbamazepine toxicity with lamotrigine: pharmacokinetic or pharmaco-dynamic interactions? Epilepsia 1998; 39: 183–7PubMedCrossRefGoogle Scholar
  114. 114.
    Loiseau P. Tolerability of newer and older anticonvulsants: a comparative review. CNS Drugs 1996; 6: 148–66CrossRefGoogle Scholar
  115. 115.
    Segal RL, Rosenblatt S, Eliasoph I. Endocrine exophthal-mos during lithium therapy of manic-depressive disease. N Engl J Med 1973; 289: 136–8PubMedCrossRefGoogle Scholar
  116. 116.
    Lobo A, Pilek E, Stokes PE. Papilledema following therapeutic dosages of lithium carbonate. J Nerv Ment Dis 1978; 166: 526–9PubMedCrossRefGoogle Scholar
  117. 117.
    Verrotti A, Lobefalo L, Priolo T, et al. Colour vision in epileptic adolescents treated with valproate and carbamazepine. Seizure 2004; 13: 411–7PubMedCrossRefGoogle Scholar
  118. 118.
    Sorri I, Rissanen E, Mantyjarvi M, et al. Visual function in epilepsy patients treated with initial valproate mono-therapy. Seizure 2005 Sep; 14(6): 367–70PubMedCrossRefGoogle Scholar
  119. 119.
    Steinhoff BJ, Freudenthaler N, Paulus W. The influence of established and new antiepileptic drugs on visual perception: II. A controlled study in patients with epilepsy under long-term antiepileptic medication. Epilepsy Res 1997; 29: 49–58Google Scholar
  120. 120.
    Nousiainen I, Kalviainen R, Mantyjarvi M. Colour vision in epilepsy patients treated with vigabatrin or carbamazepine monotherapy. Ophthalmology 2000; 107: 884–8PubMedCrossRefGoogle Scholar
  121. 121.
    Paulus W, Schwarz G, Steinhoff BJ. The effect of antiepileptic drugs on visual perception in patients with epilepsy. Brain 1996; 119: 539–49PubMedCrossRefGoogle Scholar
  122. 122.
    Mecarelli O, Rinalduzzi S, Accornero N. Changes in colour vision after a single dose of vigabatrin or carbamazepine in healthy volunteers. Clin Neuropharmacol 2001; 24: 23–6PubMedCrossRefGoogle Scholar
  123. 123.
    Steinhoff B, Freudenthaler N, Paulus W. The influence of established and new antiepileptic drugs on visual perception: I. A placebo-controlled, double blind, single-dose study in healthy volunteers. Epilepsy Res 1997; 29: 35–47Google Scholar
  124. 124.
    Giersch A, Speeg-Schatz C, Tondre M, et al. Impairment of contrast sensitivity in long-term lorazepam users. Psychopharmacology (Berl) 2006 Jul; 186(4): 594–600CrossRefGoogle Scholar
  125. 125.
    Klein BE, Klein R, Knudtson MD, et al. Associations of selected medications and visual function: the Beaver Dam Eye Study. Br J Ophthalmol 2003 Apr; 87(4): 403–8PubMedCrossRefGoogle Scholar
  126. 126.
    Leung AT, Cheng AC, Chan WM, et al. Chlorpromazine-induced refractile corneal deposits and cataract. Arch Ophthalmol 1999; 117(12): 1662–3PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2010

Authors and Affiliations

  1. 1.Department of PsychiatryPsychiatric Hospital of the CrossJall-EddibLebanon

Personalised recommendations