Drugs

, Volume 70, Issue 3, pp 313–333 | Cite as

Infections with Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae

Changing Epidemiology and Drug Treatment Choices
Review Article

Abstract

Since 2000, Escherichia coli producing CTX-M enzymes (especially CTX-M-15) have emerged worldwide as important causes of community-onset urinary tract infections (UTIs) and bloodstream infections due to extended-spectrum β-lactamase (ESBL)-producing bacteria. Molecular epidemiology studies suggested that the sudden worldwide increase of CTX-M-15-producing E. coli is mostly due to a single clone named ST131 and that foreign travel to high-risk areas such as the Indian subcontinent might in part play a role in the spread of this clone across different continents. Empirical antibacterial coverage for these resistant organisms should be considered in community patients presenting with sepsis involving the urinary tract especially if a patient recently travelled to a high-risk area. Infections due to ESBL-producing Enterobacteriaceae are associated with a delay in initiation of appropriate antibacterial therapy, which consequently prolongs hospital stays and increases hospital costs. Failure to initiate appropriate antibacterial therapy from the start appears to be responsible for higher patient mortality. The carbapenems are widely regarded as the drugs of choice for the treatment of severe infections due to ESBL-producing Enterobacteriaceae, although comparative clinical trials are lacking. Agents that may be useful for the treatment of ESBL-associated UTIs include fosfomycin, nitrofurantoin and temocillin. If this emerging public health threat is ignored, it is possible that clinicians may be forced in the near future to use the carbapenems as the first choice for empirical treatment of serious infections associated with UTIs originating from the community.

Notes

Acknowledgements

No sources of funding were used in the preparation of this manuscript. The author has previously received funding from Wyeth (Canada) and Merck (Canada) for research projects.

References

  1. 1.
    Jacoby GA, Munoz-Price LS. The new beta-lactamases. N Engl J Med 2005 Jan 27; 352(4): 380–91PubMedCrossRefGoogle Scholar
  2. 2.
    Paterson DL, Bonomo RA. Extended-spectrum betalactamases: a clinical update. Clin Microbiol Rev 2005 Oct; 18(4): 657–86PubMedCrossRefGoogle Scholar
  3. 3.
    Nicolas-Chanoine MH, Jarlier V. Extended-spectrum beta-lactamases in long-term-care facilities. Clin Microbiol Infect 2008 Jan; 14 Suppl. 1:111–6PubMedCrossRefGoogle Scholar
  4. 4.
    Schwaber MJ, Navon-Venezia S, Kaye KS, et al. Clinical and economic impact of bacteremia with extended-spectrum-beta-lactamase-producing Enterobacteriaceae. Antimicrob Agents Chemother 2006 Apr; 50(4): 1257–62PubMedCrossRefGoogle Scholar
  5. 5.
    Tumbarello M, Sanguinetti M, Montuori E, et al. Predictors of mortality in patients with bloodstream infections caused by extended-spectrum-beta-lactamase-producing Enterobacteriaceae: importance of inadequate initial antimicrobial treatment. Antimicrob Agents Chemother 2007 Jun; 51(6): 1987–94PubMedCrossRefGoogle Scholar
  6. 6.
    Pitout JD, Nordmann P, Laupland KB, et al. Emergence of Enterobacteriaceae producing extended-spectrum beta-lactamases (ESBLs) in the community. J Antimicrob Chemother 2005 Jul; 56(1): 52–9PubMedCrossRefGoogle Scholar
  7. 7.
    Hawser SP, Bouchillon SK, Hoban DJ, et al. In vitro susceptibilities of aerobic and facultative anaerobic Gram-negative bacilli from patients with intra-abdominal infections worldwide from 2005–2007: results from the SMART study. Int J Antimicrob Agents 2009 Dec; 34(6): 585–8PubMedCrossRefGoogle Scholar
  8. 8.
    Hawser SP, Bouchillon SK, Hoban DJ, et al. Emergence of high levels of extended-spectrum-beta-lactamase-producing gram-negative bacilli in the Asia-Pacific region: data from the Study for Monitoring Antimicrobial Resistance Trends (SMART) program, 2007. Antimicrob Agents Chemother 2009 Aug; 53(8): 3280–4PubMedCrossRefGoogle Scholar
  9. 9.
    Herzer PJ, Inouye S, Inouye M, et al. Phylogenetic distribution of branched RNA-linked multicopy single-stranded DNA among natural isolates of Escherichia coli J Bacteriol 1990 Nov; 172(11): 6175–81PubMedGoogle Scholar
  10. 10.
    Johnson JR, Delavari P, Kuskowski M, et al. Phylogenetic distribution of extraintestinal virulence-associated traits in Escherichia coli. J Infect Dis 2001 Jan 1; 183(1): 78–88PubMedCrossRefGoogle Scholar
  11. 11.
    Canton R, Coque TM. The CTX-M beta-lactamase pandemic. Curr Opin Microbiol 2006 Oct; 9(5): 466–75PubMedCrossRefGoogle Scholar
  12. 12.
    Talbot GH, Bradley J, Edwards Jr JE, et al. Bad bugs need drugs: an update on the development pipeline from the Antimicrobial Availability Task Force of the Infectious Diseases Society of America. Clin Infect Dis 2006 Mar 1; 42(5): 657–68PubMedCrossRefGoogle Scholar
  13. 13.
    Matsumoto Y, Ikeda F, Kamimura T, et al. Novel plasmid-mediated beta-lactamase from Escherichia coli that inactivates oxyimino-cephalosporins. Antimicrob Agents Chemother 1988 Aug; 32(8): 1243–6PubMedCrossRefGoogle Scholar
  14. 14.
    Radice M, Power P, Di Conza J, et al. Early dissemination of CTX-M-derived enzymes in South America. Antimicrob Agents Chemother 2002 Feb; 46(2): 602–4PubMedCrossRefGoogle Scholar
  15. 15.
    Pitout JD, Laupland KB. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 2008 Mar; 8(3): 159–66PubMedCrossRefGoogle Scholar
  16. 16.
    Rossolini GM, D’Andrea MM, Mugnaioli C. The spread of CTX-M-type extended-spectrum beta-lactamases. Clin Microbiol Infect 2008 Jan; 14 Suppl. 1: 33–41CrossRefGoogle Scholar
  17. 17.
    Poirel L, Lartigue MF, Decousser JW, et al. ISEcp1B-mediated transposition of blaCTX-M in Escherichia coli. Antimicrob Agents Chemother 2005 Jan; 49(1): 447–50PubMedCrossRefGoogle Scholar
  18. 18.
    Poirel L, Naas T, Nordmann P. Genetic support of extended-spectrum beta-lactamases. Clin Microbiol Infect 2008 Jan; 14 Suppl. 1: 75–81CrossRefGoogle Scholar
  19. 19.
    Poirel L, Decousser JW, Nordmann P. Insertion sequence ISEcp1B is involved in expression and mobilization of a bla(CTX-M) beta-lactamase gene. Antimicrob Agents Chemother 2003 Sep; 47(9): 2938–45PubMedCrossRefGoogle Scholar
  20. 20.
    Carattoli A. Resistance plasmid families in Enterobacteriaceae. Antimicrob Agents Chemother 2009 Jun; 53(6): 2227–38PubMedCrossRefGoogle Scholar
  21. 21.
    Bonnet R. Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother 2004 Jan; 48(1): 1–14PubMedCrossRefGoogle Scholar
  22. 22.
    Poirel L, Gniadkowski M, Nordmann P. Biochemical analysis of the ceftazidime-hydrolysing extended-spectrum beta-lactamase CTX-M-15 and of its structurally related beta-lactamase CTX-M-3. J Antimicrob Chemother 2002 Dec; 50(6): 1031–4PubMedCrossRefGoogle Scholar
  23. 23.
    Laupland KB, Church DL, Vidakovich J, et al. Community-onset extended-spectrum beta-lactamase (ESBL) producing Escherichia coli: importance of international travel. J Infect 2008 Dec; 57(6): 441–8PubMedCrossRefGoogle Scholar
  24. 24.
    Rodriguez-Bano J, Navarro MD. Extended-spectrum beta-lactamases in ambulatory care: a clinical perspective. Clin Microbiol Infect 2008 Jan; 14 Suppl. 1: 104–10CrossRefGoogle Scholar
  25. 25.
    Pitout JD, Church DL, Gregson DB, et al. Molecular epidemiology of CTX-M-producing Escherichia coli in the Calgary Health Region: emergence of CTX-M-15-producing isolates. Antimicrob Agents Chemother 2007 Apr; 51(4): 1281–6PubMedCrossRefGoogle Scholar
  26. 26.
    Karim A, Poirel L, Nagarajan S, et al. Plasmid-mediated extended-spectrum beta-lactamase (CTX-M-3 like) from India and gene association with insertion sequence ISEcp 1. FEMS Microbiol Lett 2001 Jul 24; 201(2): 237–41PubMedGoogle Scholar
  27. 27.
    Novais A, Canton R, Moreira R, et al. Emergence and dissemination of Enterobacteriaceae isolates producing CTX-M-1-like enzymes in Spain are associated with IncFII (CTX-M-15) and broad-host-range (CTX-M-1, -3, and −32) plasmids. Antimicrob Agents Chemother 2007 Feb; 51(2): 796–9PubMedCrossRefGoogle Scholar
  28. 28.
    Boyd DA, Tyler S, Christianson S, et al. Complete nucleotide sequence of a 92-kilobase plasmid harboring the CTX-M-15 extended-spectrum beta-lactamase involved in an outbreak in long-term-care facilities in Toronto, Canada. Antimicrob Agents Chemother 2004 Oct; 48(10): 3758–64PubMedCrossRefGoogle Scholar
  29. 29.
    Robicsek A, Strahilevitz J, Jacoby GA, et al. Fluoro-quinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med 2006 Jan; 12(1): 83–8PubMedCrossRefGoogle Scholar
  30. 30.
    Livermore DM, Canton R, Gniadkowski M, et al. CTX-M: changing the face of ESBLs in Europe. J Antimicrob Chemother 2007 Feb; 59(2): 165–74PubMedCrossRefGoogle Scholar
  31. 31.
    Hawkey PM. Prevalence and clonality of extended-spectrum beta-lactamases in Asia. Clin Microbiol Infect 2008 Jan; 14 Suppl. 1: 159–65PubMedCrossRefGoogle Scholar
  32. 32.
    Lewis 2nd JS, Herrera M, Wickes B, et al. First report of the emergence of CTX-M-type extended-spectrum beta-lactamases (ESBLs) as the predominant ESBL isolated in a U.S. health care system. Antimicrob Agents Chemother 2007 Nov;51(11): 4015–21PubMedCrossRefGoogle Scholar
  33. 33.
    Mulvey MR, Bryce E, Boyd D, et al. Ambler class A extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella spp. in Canadian hospitals. Antimicrob Agents Chemother 2004 Apr; 48(4): 1204–14PubMedCrossRefGoogle Scholar
  34. 34.
    Villegas MV, Kattan JN, Quinteros MG, et al. Prevalence of extended-spectrum beta-lactamases in South America. Clin Microbiol Infect 2008 Jan; 14 Suppl. 1: 154–8CrossRefGoogle Scholar
  35. 35.
    Zong Z, Partridge SR, Thomas L, et al. Dominance of blaCTX-M within an Australian extended-spectrum beta-lactamase gene pool. Antimicrob Agents Chemother 2008 Nov; 52(11): 4198–202PubMedCrossRefGoogle Scholar
  36. 36.
    Canton R, Novais A, Valverde A, et al. Prevalence and spread of extended-spectrum beta-lactamase-producing Enterobacteriaceae in Europe. Clin Microbiol Infect 2008 Jan; 14 Suppl. 1: 144–53CrossRefGoogle Scholar
  37. 37.
    Ensor VM, Shahid M, Evans JT, et al. Occurrence, prevalence and genetic environment of CTX-M beta-lactamases in Enterobacteriaceae from Indian hospitals. J Antimicrob Chemother 2006 Dec; 58(6): 1260–3PubMedCrossRefGoogle Scholar
  38. 38.
    Gupta V, Datta P. Extended-spectrum beta-lactamases (ESBL) in community isolates from North India: frequency and predisposing factors. Int J Infect Dis 2007 Jan; 11(1): 88–9PubMedCrossRefGoogle Scholar
  39. 39.
    Moubareck C, Daoud Z, Hakime NI, et al. Countrywide spread of community- and hospital-acquired extended-spectrum beta-lactamase (CTX-M-15)-producing Enterobacteriaceae in Lebanon. J Clin Microbiol 2005 Jul; 43(7): 3309–13PubMedCrossRefGoogle Scholar
  40. 40.
    Blomberg B, Jureen R, Manji KP, et al. High rate of fatal cases of pediatric septicemia caused by gram-negative bacteria with extended-spectrum beta-lactamases in Dar es Salaam, Tanzania. J Clin Microbiol 2005 Feb; 43(2): 745–9PubMedCrossRefGoogle Scholar
  41. 41.
    Gangoue-Pieboji J, Miriagou V, Vourli S, et al. Emergence of CTX-M-15-producing enterobacteria in Cameroon and characterization of a blaCTX-M-15-carrying element. Antimicrob Agents Chemother 2005 Jan; 49(1): 441–3PubMedCrossRefGoogle Scholar
  42. 42.
    Mamlouk K, Boutiba-Ben Boubaker I, Gautier V, et al. Emergence and outbreaks of CTX-M beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae strains in a Tunisian hospital. J Clin Microbiol 2006 Nov; 44(11): 4049–56PubMedCrossRefGoogle Scholar
  43. 43.
    Touati A, Benallaoua S, Djoudi F, et al. Characterization of CTX-M-15-producing Klebsiella pneumoniae and Escherichia coli strains isolated from hospital environments in Algeria. Microb Drug Resist 2007 Summer; 13(2): 85–9PubMedCrossRefGoogle Scholar
  44. 44.
    Bush K. Extended-spectrum beta-lactamases in North America, 1987–2006. Clin Microbiol Infect 2008 Jan; 14 Suppl. 1: 134–43PubMedCrossRefGoogle Scholar
  45. 45.
    Moland ES, Black JA, Hossain A, et al. Discovery of CTX-M-like extended-spectrum beta-lactamases in Escherichia coli isolates from five US States. Antimicrob Agents Chemother 2003 Jul; 47(7): 2382–3PubMedCrossRefGoogle Scholar
  46. 46.
    Castanheira M, Mendes RE, Rhomberg PR, et al. Rapid emergence of blaCTX-M among Enterobacteriaceae in U.S. Medical Centers: molecular evaluation from the MYSTIC Program (2007). Microb Drug Resist 2008 Sep; 14(3): 211–6PubMedCrossRefGoogle Scholar
  47. 47.
    Pitout JD, Laupland KB, Church DL, et al. Virulence factors of Escherichia coli isolates that produce CTX-M-type extended-spectrum beta-lactamases. Antimicrob Agents Chemother 2005 Nov; 49(11): 4667–70PubMedCrossRefGoogle Scholar
  48. 48.
    Pallecchi L, Malossi M, Mantella A, et al. Detection of CTX-M-type beta-lactamase genes in fecal Escherichia coli isolates from healthy children in Bolivia and Peru. Antimicrob Agents Chemother 2004 Dec; 48(12): 4556–61PubMedCrossRefGoogle Scholar
  49. 49.
    Valenzuela de Silva EM, Mantilla Anaya JR, Reguero Reza MT, et al. Detection of CTX-M-1, CTX-M-15, and CTX-M-2 in clinical isolates of Enterobacteriaceae in Bogota, Colombia. J Clin Microbiol 2006 May; 44(5): 1919–20PubMedCrossRefGoogle Scholar
  50. 50.
    Edelstein M, Pimkin M, Palagin I, et al. Prevalence and molecular epidemiology of CTX-M extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in Russian hospitals. Antimicrob Agents Chemother 2003 Dec; 47(12): 3724–32PubMedCrossRefGoogle Scholar
  51. 51.
    Woodford N, Ward ME, Kaufmann ME, et al. Community and hospital spread of Escherichia coli producing CTX-M extended-spectrum beta-lactamases in the UK. J Antimicrob Chemother 2004 Oct; 54(4): 735–43PubMedCrossRefGoogle Scholar
  52. 52.
    Oteo J, Navarro C, Cercenado E, et al. Spread of Escherichia coli strains with high-level cefotaxime and ceftazidime resistance between the community, long-term care facilities, and hospital institutions. J Clin Microbiol 2006 Jul; 44(7): 2359–66PubMedCrossRefGoogle Scholar
  53. 53.
    Eisner A, Fagan EJ, Feierl G, et al. Emergence of Enterobacteriaceae isolates producing CTX-M extended-spectrum beta-lactamase in Austria. Antimicrob Agents Chemother 2006 Feb; 50(2): 785–7PubMedCrossRefGoogle Scholar
  54. 54.
    Mugnaioli C, Luzzaro F, De Luca F, et al. CTX-M-type extended-spectrum beta-lactamases in Italy: molecular epidemiology of an emerging countrywide problem. Antimicrob Agents Chemother 2006 Aug; 50(8): 2700–6PubMedCrossRefGoogle Scholar
  55. 55.
    Mendonca N, Leitao J, Manageiro V, et al. Spread of extended-spectrum beta-lactamase CTX-M-producing Escherichia coli clinical isolates in community and noso-comial environments in Portugal. Antimicrob Agents Chemother 2007 Jun; 51(6): 1946–55PubMedCrossRefGoogle Scholar
  56. 56.
    Galas M, Decousser JW, Breton N, et al. Nationwide study of the prevalence, characteristics, and molecular epidemiology of extended-spectrum-beta-lactamase-producing Enterobacteriaceae in France. Antimicrob Agents Chemother 2008 Feb; 52(2): 786–9PubMedCrossRefGoogle Scholar
  57. 57.
    Fang H, Ataker F, Hedin G, et al. Molecular epidemiology of extended-spectrum beta-lactamases among Escherichia coli isolates collected in a Swedish hospital and its associated health care facilities from 2001 to 2006. J Clin Microbiol 2008 Feb; 46(2): 707–12PubMedCrossRefGoogle Scholar
  58. 58.
    Tenover FC, Arbeit RD, Goering RV, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 1995 Sep; 33(9): 2233–9PubMedGoogle Scholar
  59. 59.
    Lavollay M, Mamlouk K, Frank T, et al. Clonal dissemination of a CTX-M-15 beta-lactamase-producing Escherichia coli strain in the Paris area, Tunis, and Bangui. Antimicrob Agents Chemother 2006 Jul; 50(7): 2433–8PubMedCrossRefGoogle Scholar
  60. 60.
    Gonullu N, Aktas Z, Kayacan CB, et al. Dissemination of CTX-M-15 beta-lactamase genes carried on Inc FI and FII plasmids among clinical isolates of Escherichia coli in a university hospital in Istanbul, Turkey. J Clin Microbiol 2008 Mar; 46(3): 1110–2PubMedCrossRefGoogle Scholar
  61. 61.
    Marcade G, Deschamps C, Boyd A, et al. Replicon typing of plasmids in Escherichia coli producing extended-spectrum beta-lactamases. J Antimicrob Chemother 2009 Jan; 63(1): 67–71PubMedCrossRefGoogle Scholar
  62. 62.
    Coque TM, Novais A, Carattoli A, et al. Dissemination of clonally related Escherichia coli strains expressing extended-spectrum beta-lactamase CTX-M-15. Emerg Infect Dis 2008 Feb; 14(2): 195–200PubMedCrossRefGoogle Scholar
  63. 63.
    Nicolas-Chanoine MH, Blanco J, Leflon-Guibout V, et al. Intercontinental emergence of Escherichia coli clone O25: H4-ST131 producing CTX-M-15. J Antimicrob Chemother 2008 Feb; 61(2): 273–81PubMedCrossRefGoogle Scholar
  64. 64.
    Sullivan CB, Diggle MA, Clarke SC. Multilocus sequence typing: data analysis in clinical microbiology and public health. Mol Biotechnol 2005 Mar; 29(3): 245–54PubMedCrossRefGoogle Scholar
  65. 65.
    Lau SH, Cheesborough J, Kaufmann ME, et al. Rapid identification of uropathogenic Escherichia coli of the O25:H4-ST131 clonal lineage using the DiversiLab repetitive sequence-based PCR system. Clin Microbiol Infect. Epub 2009 Mar 21Google Scholar
  66. 66.
    Pitout JD, Campbell L, Church DL, et al. Using a commercial DiversiLab semiautomated repetitive sequence-based PCR typing technique for identification of Escherichia coli clone ST131 producing CTX-M-15. J Clin Microbiol 2009 Apr; 47(4): 1212–5PubMedCrossRefGoogle Scholar
  67. 67.
    Clermont O, Dhanji H, Upton M, et al. Rapid detection of the O25b-ST131 clone of Escherichia coli encompassing the CTX-M-15-producing strains. J Antimicrob Chemother 2009 Aug; 64(2): 274–7PubMedCrossRefGoogle Scholar
  68. 68.
    Johnson JR, Menard M, Johnston B, et al. Epidemic clonal groups of Escherichia coli as a cause of antimicrobialresistant urinary tract infections in Canada, 2002 to 2004. Antimicrob Agents Chemother 2009 Jul; 53(7): 2733–9PubMedCrossRefGoogle Scholar
  69. 69.
    Blanco M, Alonso MP, Nicolas-Chanoine MH, et al. Molecular epidemiology of Escherichia coli producing extended-spectrum ta-lactamases in Lugo (Spain): dissemination of clone O25b:H4-ST131 producing CTX-M-15. J Antimicrob Chemother 2009 Jun; 63(6): 1135–41PubMedCrossRefGoogle Scholar
  70. 70.
    Lau SH, Kaufmann ME, Livermore DM, et al. UK epidemic Escherichia coli strains A-E, with CTX-M-15 betalactamase, all belong to the international O25:H4-ST131 clone. J Antimicrob Chemother 2008 Dec; 62(6): 1241–4PubMedCrossRefGoogle Scholar
  71. 71.
    Cagnacci S, Gualco L, Debbia E, et al. European emergence of ciprofloxacin-resistant Escherichia coli clonal groups O25:H4-ST 131 and O15:K52:H1 causing community-acquired uncomplicated cystitis. J Clin Microbiol 2008 Aug; 46(8): 2605–12PubMedCrossRefGoogle Scholar
  72. 72.
    Yumuk Z, Afacan G, Nicolas-Chanoine MH, et al. Turkey: a further country concerned by community-acquired Escherichia coli clone O25-ST131 producing CTX-M-15. J Antimicrob Chemother 2008 Aug; 62(2): 284–8PubMedCrossRefGoogle Scholar
  73. 73.
    Literacka E, Bedenic B, Baraniak A, et al. blaCTX-M genes in Escherichia coli strains from Croatian hospitals are located in new (blaCTX-M-3a) and widely spread (blaCTX-M-3a, blaCTX-M-15) genetic structures. Antimicrob Agents Chemother 2009; 53(4): 1630–5PubMedCrossRefGoogle Scholar
  74. 74.
    Suzuki S, Shibata N, Yamane K, et al. Change in the prevalence of extended-spectrum-beta-lactamase-producing Escherichia coli in Japan by clonal spread. J Antimicrob Chemother 2009 Jan; 63(1): 72–9PubMedCrossRefGoogle Scholar
  75. 75.
    Johnson JR, Johnston BD, Jorgensen JH, et al., editors. CTX-M-15-producing E. coli in the United States: predominance of sequence type ST131 (O25:H4). Proceedings of the Forty-eighth Interscience Conference on Antimicrobial Agents and Chemotherapy. Washington (DC): American Society for Microbiology, 2008Google Scholar
  76. 76.
    Naseer U, Haldorsen B, Tofteland S, et al. Molecular characterization of CTX-M-15-producing clinical isolates of Escherichia coli reveals the spread of multidrug-resistant ST131 (O25:H4) and ST964 (O102:H6) strains in Norway. APMIS 2009 Jul; 117(7): 526–36PubMedCrossRefGoogle Scholar
  77. 77.
    Leflon-Guibout V, Blanco J, Amaqdouf K, et al. Absence of CTX-M enzymes but high prevalence of clones, including clone ST131, among fecal Escherichia coli isolates from healthy subjects living in the area of Paris, France. J Clin Microbiol 2008 Dec; 46(12): 3900–5PubMedCrossRefGoogle Scholar
  78. 78.
    Arpin C, Quentin C, Grobost F, et al. Nationwide survey of extended-spectrum ta-lactamase-producing Enterobacteriaceae in the French community setting. J Antimicrob Chemother 2009 Jun; 63(6): 1205–14PubMedCrossRefGoogle Scholar
  79. 79.
    Oteo J, Diestra K, Juan C, et al. Extended-spectrum betalactamase-producing Escherichia coli in Spain belong to a large variety of multilocus sequence typing types, including ST10 complex/A, ST23 complex/A and ST131/B2. Int J Antimicrob Agents 2009 Aug; 34(2): 173–6PubMedCrossRefGoogle Scholar
  80. 80.
    Rooney PJ, O’Leary MC, Loughrey AC, et al. Nursing homes as a reservoir of extended-spectrum ta-lactamase (ESBL)-producing ciprofloxacin-resistant Escherichia coli. J Antimicrob Chemother 2009 Sep; 64(3): 635–41PubMedCrossRefGoogle Scholar
  81. 81.
    Pomba C, da Fonseca JD, Baptista BC, et al. Detection of the pandemic O25-ST131 human virulent Escherichia coli CTX-M-15-producing clone harboring the qnrB2 and aac(6′)-Ib-cr genes in a dog. Antimicrob Agents Chemother 2009 Jan; 53(1): 327–8PubMedCrossRefGoogle Scholar
  82. 82.
    Freeman JT, McBride SJ, Heffernan H, et al. Community-onset genitourinary tract infection due to CTX-M-15-producing Escherichia coli among travelers to the Indian subcontinent in New Zealand. Clin Infect Dis 2008 Sep 1; 47(5): 689–92PubMedCrossRefGoogle Scholar
  83. 83.
    Pitout JD, Campbell L, Church DL, et al. Molecular characteristics of travel-related extended-spectrum-beta-lactamase-producing Escherichia coli isolates from the Calgary Health Region. Antimicrob Agents Chemother 2009 Jun; 53(6): 2539–43PubMedCrossRefGoogle Scholar
  84. 84.
    Pitout JD, Gregson DB, Campbell L, et al. Molecular characteristics of extended-spectrum-beta-lactamase-producing Escherichia coli isolates causing bacteremia in the Calgary Health Region from 2000 to 2007: emergence of clone ST131 as a cause of community-acquired infections. Antimicrob Agents Chemother 2009 Jul; 53(7): 2846–51PubMedCrossRefGoogle Scholar
  85. 85.
    Lee SY, Kotapati S, Kuti JL, et al. Impact of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella species on clinical outcomes and hospital costs: a matched cohort study. Infect Control Hosp Epidemiol 2006 Nov; 27(11): 1226–32PubMedCrossRefGoogle Scholar
  86. 86.
    Lautenbach E, Patel JB, Bilker WB, et al. Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae: risk factors for infection and impact of resistance on outcomes. Clin Infect Dis 2001 Apr 15; 32(8): 1162–71PubMedCrossRefGoogle Scholar
  87. 87.
    Paterson DL, Ko WC, Von Gottberg A, et al. Antibiotic therapy for Klebsiella pneumoniae bacteremia: implications of production of extended-spectrum beta-lactamases. Clin Infect Dis 2004 Jul 1; 39(1): 31–7PubMedCrossRefGoogle Scholar
  88. 88.
    Schwaber MJ, Carmeli Y. Mortality and delay in effective therapy associated with extended-spectrum beta-lactamase production in Enterobacteriaceae bacteraemia: a systematic review and meta-analysis. J Antimicrob Chemother 2007 Nov; 60(5): 913–20PubMedCrossRefGoogle Scholar
  89. 89.
    Giske CG, Monnet DL, Cars O, et al. Clinical and economic impact of common multidrug-resistant gramnegative bacilli. Antimicrob Agents Chemother 2008 Mar; 52(3): 813–21PubMedCrossRefGoogle Scholar
  90. 90.
    Maragakis LL, Perencevich EN, Cosgrove SE. Clinical and economic burden of antimicrobial resistance. Expert Rev Anti Infect Ther 2008 Oct; 6(5): 751–63PubMedCrossRefGoogle Scholar
  91. 91.
    Slama TG. Gram-negative antibiotic resistance: there is a price to pay. Crit Care 2008; 12 Suppl. 4: S4PubMedCrossRefGoogle Scholar
  92. 92.
    Peterson LR. Antibiotic policy and prescribing strategies for therapy of extended-spectrum beta-lactamase-producing Enterobacteriaceae: the role of piperacillin-tazobactam. Clin Microbiol Infect 2008 Jan; 14 Suppl. 1: 181–4CrossRefGoogle Scholar
  93. 93.
    Lopez-Cerero L, Picon E, Morillo C, et al. Comparative assessment of inoculum effects on the antimicrobial activity of amoxycillin-clavulanate and piperacillin-tazobactam with extended-spectrum beta-lactamase-producing and extended-spectrum beta-lactamase-non-producing Escherichia coli isolates. Clin Microbiol Infect. Epub 2009 Jul 15Google Scholar
  94. 94.
    Thomson KS, Moland ES. Cefepime, piperacillin-tazobactam, and the inoculum effect in tests with extended-spectrum beta-lactamase-producing Enterobacteriaceae. Antimicrob Agents Chemother 2001 Dec; 45(12): 3548–54PubMedCrossRefGoogle Scholar
  95. 95.
    Pangon B, Bizet C, Bure A, et al. In vivo selection of a cephamycin-resistant, porin-deficient mutant of Klebsiella pneumoniae producing a TEM-3 beta-lactamase. J Infect Dis 1989 May; 159(5): 1005–6PubMedCrossRefGoogle Scholar
  96. 96.
    Paterson DL. Recommendation for treatment of severe infections caused by Enterobacteriaceae producing extended-spectrum beta-lactamases (ESBLs). Clin Microbiol Infect 2000 Sep; 6(9): 460–3PubMedCrossRefGoogle Scholar
  97. 97.
    del Mar Tomas M, Cartelle M, Pertega S, et al. Hospital outbreak caused by a carbapenem-resistant strain of Acinetobacter baumannii: patient prognosis and risk-factors for colonisation and infection. Clin Microbiol Infect 2005 Jul; 11(7): 540–6PubMedCrossRefGoogle Scholar
  98. 98.
    Clinical Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing: 18th informational supplement (CLSI document M100-S18). Wayne (PA): Clinical Laboratory Standards Institute, 2008Google Scholar
  99. 99.
    Szabo D, Silveira F, Hujer AM, et al. Outer membrane protein changes and efflux pump expression together may confer resistance to ertapenem in Enterobacter cloacae. Antimicrob Agents Chemother 2006 Aug; 50(8): 2833–5PubMedCrossRefGoogle Scholar
  100. 100.
    Garau J. Other antimicrobials of interest in the era of extended-spectrum beta-lactamases: fosfomycin, nitrofurantoin and tigecycline. Clin Microbiol Infect 2008 Jan; 14 Suppl. 1: 198–202CrossRefGoogle Scholar
  101. 101.
    Morosini MI, Garcia-Castillo M, Coque TM, et al. Antibiotic coresistance in extended-spectrum-beta-lactamase-producing Enterobacteriaceae and in vitro activity of tigecycline. Antimicrob Agents Chemother 2006 Aug; 50(8): 2695–9PubMedCrossRefGoogle Scholar
  102. 102.
    Pitout JD, Le P, Church DL, et al. Antimicrobial susceptibility of well-characterised multiresistant CTX-M-producing Escherichia coli: failure of automated systems to detect resistance to piperacillin/tazobactam. Int J Antimicrob Agents 2008 Oct; 32(4): 333–8PubMedCrossRefGoogle Scholar
  103. 103.
    Puerto AS, Fernandez JG, del Castillo D, et al. In vitro activity of beta-lactam and non-beta-lactam antibiotics in extended-spectrum beta-lactamase-producing clinical isolates of Escherichia coli. Diagn Microbiol Infect Dis 2006 Feb; 54(2): 135–9PubMedCrossRefGoogle Scholar
  104. 104.
    Endimiani A, Luzzaro F, Perilli M, et al. Bacteremia due to Klebsiella pneumoniae isolates producing the TEM-52 extended-spectrum beta-lactamase: treatment outcome of patients receiving imipenem or ciprofloxacin. Clin Infect Dis 2004 Jan 15; 38(2): 243–51PubMedCrossRefGoogle Scholar
  105. 105.
    Wong-Beringer A, Hindler J, Loeloff M, et al. Molecular correlation for the treatment outcomes in bloodstream infections caused by Escherichia coli and Klebsiella pneumoniae with reduced susceptibility to ceftazidime. Clin Infect Dis 2002 Jan 15; 34(2): 135–46PubMedCrossRefGoogle Scholar
  106. 106.
    Bassetti M, Righi E, Fasce R, et al. Efficacy of ertapenem in the treatment of early ventilator-associated pneumonia caused by extended-spectrum beta-lactamase-producing organisms in an intensive care unit. J Antimicrob Chemother 2007 Aug; 60(2): 433–5PubMedCrossRefGoogle Scholar
  107. 107.
    Oteo J, Delgado-Iribarren A, Vega D, et al. Emergence of imipenem resistance in clinical Escherichia coli during therapy. Int J Antimicrob Agents 2008 Dec; 32(6): 534–7PubMedCrossRefGoogle Scholar
  108. 108.
    Skurnik D, Lasocki S, Bremont S, et al. Development of ertapenem resistance in a patient with mediastinitis caused by an extended-spectrum beta-lactamase producing Klebsiella pneumoniae. J Med Microbiol. Epub 2009 Sep 10Google Scholar
  109. 109.
    Doumith M, Ellington MJ, Livermore DM, et al. Molecular mechanisms disrupting porin expression in ertapenem-resistant Klebsiella and Enterobacter spp. clinical isolates from the UK. J Antimicrob Chemother 2009 Apr; 63(4): 659–67PubMedCrossRefGoogle Scholar
  110. 110.
    Leavitt A, Chmelnitsky I, Colodner R, et al. Ertapenem resistance among extended-spectrum-beta-lactamase-producing Klebsiella pneumoniae isolates. J Clin Microbiol 2009 Apr; 47(4): 969–74PubMedCrossRefGoogle Scholar
  111. 111.
    MacGowan AP, Bowker KE, Noel AR. Pharmacodynamics of the antibacterial effect and emergence of resistance to tomopenem, formerly RO4908463/CS-023, in an in vitro pharmacokinetic model of Staphylococcus aureus infection. Antimicrob Agents Chemother 2008 Apr; 52(4): 1401–6PubMedCrossRefGoogle Scholar
  112. 112.
    Du B, Long Y, Liu H, et al. Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae bloodstream infection: risk factors and clinical outcome. Intensive Care Med 2002 Dec; 28(12): 1718–23PubMedCrossRefGoogle Scholar
  113. 113.
    Bin C, Hui W, Renyuan Z, et al. Outcome of cephalosporin treatment of bacteremia due to CTX-M-type extended-spectrum beta-lactamase-producing Escherichia coli. Diagn Microbiol Infect Dis 2006 Dec; 56(4): 351–7PubMedCrossRefGoogle Scholar
  114. 114.
    Jones RN, Biedenbach DJ, Gales AC. Sustained activity and spectrum of selected extended-spectrum beta-lactams (carbapenems and cefepime) against Enterobacter spp. and ESBL-producing Klebsiella spp.: report from the SENTRY antimicrobial surveillance program (USA, 1997–2000). Int J Antimicrob Agents 2003 Jan; 21(1): 1–7PubMedCrossRefGoogle Scholar
  115. 115.
    Ramphal R, Ambrose PG. Extended-spectrum beta-lactamases and clinical outcomes: current data. Clin Infect Dis 2006 Apr 15; 42 Suppl. 4: S164–72PubMedCrossRefGoogle Scholar
  116. 116.
    Zanetti G, Bally F, Greub G, et al. Cefepime versus imipenem-cilastatin for treatment of nosocomial pneumonia in intensive care unit patients: a multicenter, evaluator-blind, prospective, randomized study. Antimicrob Agents Chemother 2003 Nov; 47(11): 3442–7PubMedCrossRefGoogle Scholar
  117. 117.
    Lee CH, Su LH, Tang YF, et al. Treatment of ESBL-producing Klebsiella pneumoniae bacteraemia with carbapenems or flomoxef: a retrospective study and laboratory analysis of the isolates. J Antimicrob Chemother 2006 Nov; 58(5): 1074–7PubMedCrossRefGoogle Scholar
  118. 118.
    Tumbarello M, Spanu T, Sanguinetti M, et al. Bloodstream infections caused by extended-spectrum-beta-lactamaseproducing Klebsiella pneumoniae: risk factors, molecular epidemiology, and clinical outcome. Antimicrob Agents Chemother 2006 Feb; 50(2): 498–504PubMedCrossRefGoogle Scholar
  119. 119.
    Gavin PJ, Suseno MT, Thomson Jr RB, et al. Clinical correlation of the CLSI susceptibility breakpoint for piperacillin-tazobactam against extended-spectrum-beta-lactamase-producing Escherichia coli and Klebsiella species. Antimicrob Agents Chemother 2006 Jun; 50(6): 2244–7PubMedCrossRefGoogle Scholar
  120. 120.
    Rodríguez-Baño J, Navarro MD, Romero L, et al. Bacteremia due to extended-spectrum beta-lactamase-producing Escherichia coli in the CTX-M era: a new clinical challenge. Clin Infect Dis 2006 Dec 1; 43(11): 1407–14PubMedCrossRefGoogle Scholar
  121. 121.
    Rodríguez-Baño J, Alcala JC, Cisneros JM, et al. Community infections caused by extended-spectrum beta-lactamase-producing Escherichia coli. Arch Intern Med 2008 Sep 22; 168(17): 1897–902PubMedCrossRefGoogle Scholar
  122. 122.
    Lagace-Wiens PR, Nichol KA, Nicolle LE, et al. Treatment of lower urinary tract infection caused by multidrug-resistant extended-spectrum-beta-lactamase-producing Escherichia coli with amoxicillin/clavulanate: case report and characterization of the isolate. J Antimicrob Chemo-ther 2006 Jun; 57(6): 1262–3CrossRefGoogle Scholar
  123. 123.
    Kim YK, Pai H, Lee HJ, et al. Bloodstream infections by extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in children: epidemiology and clinical outcome. Antimicrob Agents Chemother 2002 May; 46(5): 1481–91PubMedCrossRefGoogle Scholar
  124. 124.
    Pitout JD. Multiresistant Enterobacteriaceae: new threat of an old problem. Expert Rev Anti Infect Ther 2008 Oct; 6(5): 657–69PubMedCrossRefGoogle Scholar
  125. 125.
    de Cueto M, Hernandez JR, Lopez-Cerero L, et al. Activity of fosfomycin against extended-spectrum beta-lactamase producing Escherichia coli and Klebsiella pneumoniae. Enferm Infecc Microbiol Clin 2006 Dec; 24(10): 613–6PubMedCrossRefGoogle Scholar
  126. 126.
    Galatti L, Sessa A, Mazzaglia G, et al. Antibiotic prescribing for acute and recurrent cystitis in primary care: a 4 year descriptive study. J Antimicrob Chemother 2006 Mar; 57(3): 551–6PubMedCrossRefGoogle Scholar
  127. 127.
    Oteo J, Orden B, Bautista V, et al. CTX-M-15-producing urinary Escherichia coli O25b-ST131-phylogroup B2 has acquired resistance to fosfomycin. J Antimicrob Chemother 2009 Oct; 64(4): 712–7PubMedCrossRefGoogle Scholar
  128. 128.
    Falagas ME, Karageorgopoulos DE, Dimopoulos G. Clinical significance of the pharmacokinetic and pharmacodynamic characteristics of tigecycline. Curr Drug Metab 2009 Jan; 10(1): 13–21PubMedCrossRefGoogle Scholar
  129. 129.
    Zahar JR, Lortholary O, Martin C, et al. Addressing the challenge of extended-spectrum beta-lactamases. Curr Opin Investig Drugs 2009 Feb; 10(2): 172–80PubMedGoogle Scholar
  130. 130.
    Livermore DM, Tulkens PM. Temocillin revived. J Antimicrob Chemother 2009 Feb; 63(2): 243–5PubMedCrossRefGoogle Scholar
  131. 131.
    Glupczynski Y, Huang TD, Berhin C, et al. In vitro activity of temocillin against prevalent extended-spectrum beta-lactamases producing Enterobacteriaceae from Belgian intensive care units. Eur J Clin Microbiol Infect Dis 2007 Nov; 26(11): 777–83PubMedCrossRefGoogle Scholar
  132. 132.
    Barton E, Flanagan P, Hill S. Spinal infection caused by ESBL-producing Klebsiella pneumoniae treated with temocillin. J Infect 2008 Oct; 57(4): 347–9PubMedCrossRefGoogle Scholar
  133. 133.
    Nicolle LE, Mulvey MR. Successful treatment of CTX-M ESBL producing Escherichia coli relapsing pyelonephritis with long term pivmecillinam. Scand J Infect Dis 2007; 39(8): 748–9PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2010

Authors and Affiliations

  1. 1.Division of Microbiology, Calgary Laboratory ServicesUniversity of CalgaryCalgaryCanada
  2. 2.Departments of Pathology & Laboratory MedicineUniversity of CalgaryCalgaryCanada
  3. 3.Microbiology and Infectious DiseasesUniversity of CalgaryCalgaryCanada

Personalised recommendations