Advertisement

Sports Medicine

, Volume 39, Issue 12, pp 1011–1032 | Cite as

Does Antioxidant Vitamin Supplementation Protect against Muscle Damage?

  • Cian McGinley
  • Amir Shafat
  • Alan E. DonnellyEmail author
Review Article

Abstract

The high forces undergone during repetitive eccentric, or lengthening, contractions place skeletal muscle under considerable stress, in particular if unaccustomed. Although muscle is highly adaptive, the responses to stress may not be optimally regulated by the body. Reactive oxygen species (ROS)are one component of the stress response that may contribute to muscle damage after eccentric exercise. Antioxidants may in turn scavenge ROS, thereby preventing or attenuating muscle damage. The antioxidant vitamins C (ascorbic acid) and E (tocopherol) are among the most commonly used sport supplements, and are often taken in large doses by athletes and other sportspersons because of their potential protective effect against muscle damage. This review assesses studies that have investigated the effects of these two antioxidants, alone or in combination, on muscle damage and oxidative stress. Studies have used a variety of supplementation strategies, with variations in dosage, timing and duration of supplementation. Although there is some evidence to show that both antioxidants can reduce indices of oxidative stress, there is little evidence to support a role for vitamin C and/or vitamin E in protecting against muscle damage. Indeed, antioxidant supplementation may actually interfere with the cellular signalling functions of ROS, thereby adversely affecting muscle performance. Furthermore, recent studies have cast doubt on the benign effects of long-term, high-dosage antioxidant supplementation. High doses of vitamin E, in particular, may increase all-cause mortality. Although some equivocation remains in the extant literature regarding the beneficial effects of antioxidant vitamin supplementation on muscle damage, there is little evidence to support such a role. Since the potential for long-term harm does exist, the casual use of high doses of antioxidants by athletes and others should perhaps be curtailed.

Notes

Acknowledgments

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

References

  1. 1.
    Allen DG. Eccentric muscle damage: mechanisms of early reduction of force. Acta Physiol Scand 2001 Mar; 171 (3): 311–9PubMedCrossRefGoogle Scholar
  2. 2.
    Armstrong RB. Initial events in exercise-induced muscular injury. Med Sci Sports Exerc 1990 Aug; 22 (4): 429–35PubMedGoogle Scholar
  3. 3.
    Clarkson PM, Hubal MJ. Exercise-induced muscle damage in humans. Am J Phys Med Rehabil 2002 Nov; 81 (11 Suppl.): S52–69CrossRefGoogle Scholar
  4. 4.
    Dop Bär PR, Reijneveld JC, Wokke JHJ, et al. Muscle damage induced by exercise: nature, prevention and repair. In: Salmons S, editor. Muscle damage. Oxford: Oxford University Press, 1997: 1–27Google Scholar
  5. 5.
    Proske U, Morgan DL. Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J Physiol 2001 Dec 1; 537 (Pt 2): 333–45PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Faulkner JA. Terminology for contractions of muscles during shortening, while isometric, and during lengthening. J Appl Physiol 2003 Aug; 95 (2): 455–9PubMedCrossRefGoogle Scholar
  7. 7.
    Ebbeling CB, Clarkson PM. Exercise-induced muscle damage and adaptation. Sports Med 1989 Apr; 7 (4): 207–34PubMedCrossRefGoogle Scholar
  8. 8.
    Warren GL, Ingalls CP, Lowe DA, et al. Excitation-contraction uncoupling: major role in contraction-induced muscle injury. Exerc Sport Sci Rev 2001 Apr; 29 (2): 82–7PubMedGoogle Scholar
  9. 9.
    Jones DA. High-and low-frequency fatigue revisited. Acta Physiol Scand 1996 Mar; 156 (3): 265–70PubMedCrossRefGoogle Scholar
  10. 10.
    Westerblad H, Bruton JD, Allen DG, et al. Functional significance of Ca2+ in long-lasting fatigue of skeletal muscle. Eur J Appl Physiol 2000 Oct; 83 (2-3): 166–74PubMedCrossRefGoogle Scholar
  11. 11.
    Lovering RM, De Deyne PG. Contractile function, sarcolemma integrity, and the loss of dystrophin after skeletal muscle eccentric contraction-induced injury. Am J Physiol Cell Physiol 2004 Feb; 286 (2): C230–8CrossRefGoogle Scholar
  12. 12.
    Sorichter S, Puschendorf B, Mair J. Skeletal muscle injury induced by eccentric muscle action: muscle proteins as markers of muscle fiber injury. Exerc Immunol Rev 1999; 5: 5–21PubMedGoogle Scholar
  13. 13.
    Reid MB, Li YP. Cytokines and oxidative signalling in skeletal muscle. Acta Physiol Scand 2001 Mar; 171 (3): 225–32PubMedCrossRefGoogle Scholar
  14. 14.
    Tidball JG. Inflammatory cell response to acute muscle injury. Med Sci Sports Exerc 1995 Jul; 27 (7): 1022–32PubMedCrossRefGoogle Scholar
  15. 15.
    Smith LL. Acute inflammation: the underlying mechanism in delayed onset muscle soreness? Med Sci Sports Exerc 1991 May; 23 (5): 542–51PubMedCrossRefGoogle Scholar
  16. 16.
    Hoppeler H. Exercise-induced ultrastructural changes in skeletal muscle. Int J Sports Med 1986 Aug; 7 (4): 187–204PubMedCrossRefGoogle Scholar
  17. 17.
    Warren GL, Lowe DA, Armstrong RB. Measurement tools used in the study of eccentric contraction-induced injury. Sports Med 1999 Jan; 27 (1): 43–59PubMedCrossRefGoogle Scholar
  18. 18.
    Close GL, Kayani A, Vasilaki A, et al. Skeletal muscle damage with exercise and aging. Sports Med 2005; 35 (5): 413–27PubMedCrossRefGoogle Scholar
  19. 19.
    Finaud J, Lac G, Filaire E. Oxidative stress: relationship with exercise and training. Sports Med 2006; 36 (4): 327–58PubMedCrossRefGoogle Scholar
  20. 20.
    Urso ML, Clarkson PM. Oxidative stress, exercise, and antioxidant supplementation. Toxicology 2003 Jul 15; 189 (1-2): 41–54PubMedCrossRefGoogle Scholar
  21. 21.
    Jackson MJ. Free radicals generated by contracting muscle: by-products of metabolism or key regulators of mus- cle function? Free Radic Biol Med 2008 Jan 15; 44 (2): 132–41PubMedCrossRefGoogle Scholar
  22. 22.
    Close GL, Ashton T, McArdle A, et al. The emerging role of free radicals in delayed onset muscle soreness and contraction-induced muscle injury. Comp Biochem Physiol A Mol Integr Physiol 2005 Nov; 142 (3): 257–66PubMedCrossRefGoogle Scholar
  23. 23.
    Vollaard NB, Shearman JP, Cooper CE. Exercise-induced oxidative stress: myths, realities and physiological relevance. Sports Med 2005; 35 (12): 1045–62PubMedCrossRefGoogle Scholar
  24. 24.
    Jackson MJ, Pye D, Palomero J. The production of reactive oxygen and nitrogen species by skeletal muscle. J Appl Physiol 2007 Apr; 102 (4): 1664–70PubMedCrossRefGoogle Scholar
  25. 25.
    Jackson MJ, O’Farrell S. Free radicals and muscle damage. Br Med Bull 1993 Jul; 49 (3): 630–41PubMedCrossRefGoogle Scholar
  26. 26.
    White CR, Shelton JE, Moellering D, et al. Exercise and xanthine oxidase in the vasculature: superoxide and nitric oxide interactions. In: Sen CK, Packer L, Hänninen O, editors. Handbook of oxidants and antioxidants in exercise. Amsterdam: Elsevier, 2000: 69–86CrossRefGoogle Scholar
  27. 27.
    Jackson MJ. Exercise and oxygen radical production by muscle. In: Sen CK, Packer L, Hänninen O, editors. Handbook of oxidants and antioxidants in exercise. Amsterdam: Elsevier, 2000: 57–68CrossRefGoogle Scholar
  28. 28.
    McArdle TA, Pattwell D, Vasilaki A, et al. Contractile activity-induced oxidative stress: cellular origin and adaptive responses. Am J Physiol Cell Physiol 2001 Mar; 280 (3): C621–7CrossRefGoogle Scholar
  29. 29.
    Packer L. Highlight: oxidative stress. Biol Chem 2002 Mar-Apr; 383 (3-4): 345PubMedCrossRefGoogle Scholar
  30. 30.
    Jackson MJ, Khassaf M, Vasilaki A, et al. Vitamin E and the oxidative stress of exercise. Ann N Y Acad Sci 2004 Dec; 1031: 158–68PubMedCrossRefGoogle Scholar
  31. 31.
    Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 2000 Dec; 279 (6): L1005–28CrossRefGoogle Scholar
  32. 32.
    Gomez-Cabrera MC, Domenech E, Viña J. Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic Biol Med 2008 Jan 15; 44 (2): 126–31PubMedCrossRefGoogle Scholar
  33. 33.
    Jackson MJ. Free radicals in skin and muscle: damaging agents or signals for adaptation? Proc Nutr Soc 1999 Aug; 58 (3): 673–6PubMedCrossRefGoogle Scholar
  34. 34.
    Ji LL, Gomez-Cabrera MC, Viña J. Exercise and hormesis: activation of cellular antioxidant signaling pathway. Ann N Y Acad Sci 2006 May; 1067: 425–35PubMedCrossRefGoogle Scholar
  35. 35.
    Reid MB. Redox modulation of skeletal muscle contraction: what we know and what we don’t. J Appl Physiol 2001 Feb; 90 (2): 724–31PubMedCrossRefGoogle Scholar
  36. 36.
    Sandstrom ME, Zhang SJ, Bruton J, et al. Role of reactive oxygen species in contraction-mediated glucose transport in mouse skeletal muscle. J Physiol 2006 Aug 15; 575 (Pt 1): 251–62PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Packer L, Cadenas E. Oxidants and antioxidants revisited: new concepts of oxidative stress. Free Radic Res 2007 Sep; 41 (9): 951–2PubMedCrossRefGoogle Scholar
  38. 38.
    Brooks SV, Zerba E, Faulkner JA. Injury to muscle fibres after single stretches of passive and maximally stimulated muscles in mice. J Physiol 1995 Oct 15; 488 (Pt 2): 459–69PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Rodenburg JB, Bar PR, De Boer RW. Relations between muscle soreness and biochemical and functional outcomes of eccentric exercise. J Appl Physiol 1993 Jun; 74 (6): 2976–83PubMedCrossRefGoogle Scholar
  40. 40.
    Slatore CG, Littman AJ, Au DH, et al. Long-term use of supplemental multivitamins, vitamin C, vitamin E, and folate does not reduce the risk of lung cancer. Am J Respir Crit Care Med 2008 Mar 1; 177 (5): 524–30PubMedCrossRefGoogle Scholar
  41. 41.
    Miller III ER, Pastor-Barriuso R, Dalal D, et al. Metaanalysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med 2005 Jan 4; 142 (1): 37–46PubMedCrossRefGoogle Scholar
  42. 42.
    Bjelakovic G, Nikolova D, Gluud LL, et al. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and metaanalysis. JAMA 2007 Feb 28; 297 (8): 842–57PubMedCrossRefGoogle Scholar
  43. 43.
    Bjelakovic G, Nikolova D, Gluud LL, et al. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst Rev 2008; (2): CD007176Google Scholar
  44. 44.
    Hathcock JN, Azzi A, Blumberg J, et al. Vitamins E and C are safe across a broad range of intakes. Am J Clin Nutr 2005 Apr; 81 (4): 736–45PubMedCrossRefGoogle Scholar
  45. 45.
    Carr A, Frei B. Does vitamin C act as a pro-oxidant under physiological conditions? Faseb J 1999 Jun; 13 (9): 1007–24PubMedCrossRefGoogle Scholar
  46. 46.
    Machlin LJ, Bendich A. Free radical tissue damage: protective role of antioxidant nutrients. Faseb J 1987 Dec; 1 (6): 441–5PubMedCrossRefGoogle Scholar
  47. 47.
    Sjodin B, Hellsten Westing Y, Apple FS. Biochemical mechanisms for oxygen free radical formation during exercise. Sports Med 1990 Oct; 10 (4): 236–54PubMedCrossRefGoogle Scholar
  48. 48.
    Powers SK, Sen CK. Physiological antioxidants and exercise training. In: Sen CK, Packer L, Hänninen O, editors. Handbook of oxidants and antioxidants in exercise. Amsterdam: Elsevier, 2000: 221–42CrossRefGoogle Scholar
  49. 49.
    Decker EA, Clarkson PM. Dietary sources and bioavailability of essential and nonessential antioxidants. In: Sen CK, Packer L, Hänninen O, editors. Handbook of oxidants and antioxidants in exercise. Amsterdam: Elsevier, 2000: 323–58CrossRefGoogle Scholar
  50. 50.
    Frei B, England L, Ames BN. Ascorbate is an outstanding antioxidant in human blood plasma. Proc Natl Acad Sci U S A 1989 Aug; 86 (16): 6377–81PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Packer JE, Slater TF, Willson RL. Direct observation of a free radical interaction between vitamin E and vitamin C. Nature 1979 Apr 19; 278 (5706): 737–8PubMedCrossRefGoogle Scholar
  52. 52.
    Carr AC, Frei B. Toward a new recommended dietary allowance for vitamin C based on antioxidant and health effects in humans. Am J Clin Nutr 1999 Jun; 69 (6): 1086–107PubMedCrossRefGoogle Scholar
  53. 53.
    Naidu KA. Vitamin C in human health and disease is still a mystery? An overview. Nutr J 2003 Aug 21; 2: 7Google Scholar
  54. 54.
    Evans WJ. Vitamin E, vitamin C, and exercise. Am J Clin Nutr 2000 Aug; 72 (2 Suppl.): 647S–52SPubMedCrossRefGoogle Scholar
  55. 55.
    Levine M, Conry-Cantilena C, Wang Y, et al. Vitamin C pharmacokinetics in healthy volunteers: evidence for a recommended dietary allowance. Proc Natl Acad Sci U S A 1996 Apr 16; 93 (8): 3704–9PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Packer L. Oxidants, antioxidant nutrients and the athlete. J Sports Sci 1997 Jun; 15 (3): 353–63PubMedCrossRefGoogle Scholar
  57. 57.
    Traber MG. Vitamin E. In: Sen CK, Packer L, Hänninen O, editors. Handbook of oxidants and antioxidants in exercise. Amsterdam: Elsevier, 2000: 359–71CrossRefGoogle Scholar
  58. 58.
    Burton GW, Traber MG. Vitamin E: antioxidant activity, biokinetics, and bioavailability. Annu Rev Nutr 1990; 10: 357–82PubMedCrossRefGoogle Scholar
  59. 59.
    Traber MG, Kayden HJ. Tocopherol distribution and intracellular localization in human adipose tissue. AmJ Clin Nutr 1987 Sep; 46 (3): 488–95CrossRefGoogle Scholar
  60. 60.
    Pincemail J, Deby C, Camus G, et al. Tocopherol mobilization during intensive exercise. Eur J Appl Physiol Occup Physiol 1988; 57 (2): 189–91PubMedCrossRefGoogle Scholar
  61. 61.
    Niki E. Interaction of ascorbate and a-tocopherol. Ann N Y Acad Sci 1987; 498: 186–99PubMedCrossRefGoogle Scholar
  62. 62.
    Bowry VW, Mohr D, Cleary J, et al. Prevention of tocopherol-mediated peroxidation in ubiquinol-10-free human low density lipoprotein. J Biol Chem 1995 Mar 17; 270 (11): 5756–63PubMedCrossRefGoogle Scholar
  63. 63.
    Meydani M, Evans WJ, Handelman G, et al. Protective effect of vitamin E on exercise-induced oxidative damage in young and older adults. Am J Physiol 1993 May; 264 (5 Pt 2): R992–8Google Scholar
  64. 64.
    Meydani M, Fielding RA, Cannon JG, et al. Muscle uptake of vitamin E and its association with muscle fiber type. J Nutr Biochem 1997 Feb; 8 (2): 74–8CrossRefGoogle Scholar
  65. 65.
    Jiang Q, Ames BN. γ-Tocopherol, but not α-tocopherol, decreases proinflammatory eicosanoids and inflammation damage in rats. FASEB J 2003 May; 17 (8): 816–22PubMedCrossRefGoogle Scholar
  66. 66.
    Sen CK, Goldfarb AH. Antioxidants and physical exercise. In: Sen CK, Packer L, Hänninen O, editors. Handbook of oxidants and antioxidants in exercise. Amsterdam: Elsevier, 2000: 297–20CrossRefGoogle Scholar
  67. 67.
    Gohil K, Packer L, de Lumen B, et al. Vitamin E deficiency and vitamin C supplements: exercise and mitochondrial oxidation. J Appl Physiol 1986 Jun; 60 (6): 1986–91PubMedCrossRefGoogle Scholar
  68. 68.
    You T, Goldfarb AH, Bloomer RJ, et al. Oxidative stress response in normal and antioxidant supplemented rats to a downhill run: changes in blood and skeletal muscles. Can J Appl Physiol 2005 Dec; 30 (6): 677–89PubMedCrossRefGoogle Scholar
  69. 69.
    Warren JA, Jenkins RR, Packer L, et al. Elevated muscle vitamin E does not attenuate eccentric exercise-induced muscle injury. J Appl Physiol 1992 Jun; 72 (6): 2168–75PubMedCrossRefGoogle Scholar
  70. 70.
    Coombes JS, Powers SK, Rowell B, et al. Effects of vitamin E and a-lipoic acid on skeletal muscle contractile properties. J Appl Physiol 2001 Apr; 90 (4): 1424–30PubMedCrossRefGoogle Scholar
  71. 71.
    Van Der Meulen JH, McArdle A, Jackson MJ, et al. Contraction-induced injury to the extensor digitorum longus muscles of rats: the role of vitamin E. J Appl Physiol 1997 Sep; 83 (3): 817–23CrossRefGoogle Scholar
  72. 72.
    Dalle-Donne I, Rossi R, Giustarini D, et al. Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 2003 Mar; 329 (1-2): 23–38PubMedCrossRefGoogle Scholar
  73. 73.
    Sen CK. Oxidants and antioxidants in exercise. J Appl Physiol 1995 Sep; 79 (3): 675–86PubMedCrossRefGoogle Scholar
  74. 74.
    Thompson D, Williams C, Kingsley M, et al. Muscle soreness and damage parameters after prolonged intermittent shuttle-running following acute vitamin C supplementation. Int J Sports Med 2001 Jan; 22 (1): 68–75PubMedCrossRefGoogle Scholar
  75. 75.
    Thompson D, Williams C, Garcia-Roves P, et al. Postexercise vitamin C supplementation and recovery from de-manding exercise. Eur J Appl Physiol 2003 May; 89 (3-4): 393–400PubMedCrossRefGoogle Scholar
  76. 76.
    Childs A, Jacobs C, Kaminski T, et al. Supplementation with vitamin C and N-acetyl-cysteine increases oxidative stress in humans after an acute muscle injury induced by eccentric exercise. Free Radic Biol Med 2001 Sep 15; 31 (6): 745–53PubMedCrossRefGoogle Scholar
  77. 77.
    Thompson D, Williams C, McGregor SJ, et al. Prolonged vitamin C supplementation and recovery from demanding exercise. Int J Sport Nutr Exerc Metab 2001 Dec; 11 (4): 466–81PubMedCrossRefGoogle Scholar
  78. 78.
    Davison G, Gleeson M. The effect of 2 weeks vitamin C supplementation on immunoendocrine responses to 2.5 h cycling exercise in man. Eur J Appl Physiol 2006 Jul; 97 (4): 454–61PubMedCrossRefGoogle Scholar
  79. 79.
    Tauler P, Aguiló A, Gimeno I, et al. Influence of vitamin C diet supplementation on endogenous antioxidant defences during exhaustive exercise. Pflugers Arch 2003 Sep; 446 (6): 658–64PubMedCrossRefGoogle Scholar
  80. 80.
    Kaminski M, Boal R. An effect of ascorbic acid on delayedonset muscle soreness. Pain 1992 Sep; 50 (3): 317–21PubMedCrossRefGoogle Scholar
  81. 81.
    Bryer SC, Goldfarb AH. Effect of high dose vitamin C supplementation on muscle soreness, damage, function, and oxidative stress to eccentric exercise. Int J Sport Nutr Exerc Metab 2006 Jun; 16 (3): 270–80PubMedCrossRefGoogle Scholar
  82. 82.
    Close GL, Ashton T, Cable T, et al. Ascorbic acid supplementation does not attenuate post-exercise muscle soreness following muscle-damaging exercise but may delay the recovery process. Br J Nutr 2006 May; 95 (5): 976–81PubMedCrossRefGoogle Scholar
  83. 83.
    Connolly DAJ, Lauzon C, Agnew J, et al. The effects of vitamin C supplementation on symptoms of delayed onset muscle soreness. J Sports Med Phys Fitness 2006 Sep; 46 (3): 462–7PubMedGoogle Scholar
  84. 84.
    Thompson D, Bailey DM, Hill J, et al. Prolonged vitamin C supplementation and recovery from eccentric exercise. Eur J Appl Physiol 2004 Jun; 92 (1-2): 133–8PubMedCrossRefGoogle Scholar
  85. 85.
    Ashton T, Young IS, Peters JR, et al. Electron spin resonance spectroscopy, exercise, and oxidative stress: an ascorbic acid intervention study. J Appl Physiol 1999 Dec; 87 (6): 2032–6PubMedCrossRefGoogle Scholar
  86. 86.
    Han D, Loukianoff S, McLaughlin L. Oxidative stress indices: analytical aspects and significance. In: Sen CK, Packer L, Hänninen O, editors. Handbook of oxidants and antioxidants in exercise. Amsterdam: Elsevier, 2000: 433–83CrossRefGoogle Scholar
  87. 87.
    Khassaf M, McArdle A, Esanu C, et al. Effect of vitamin C supplements on antioxidant defence and stress proteins in human lymphocytes and skeletal muscle. J Physiol 2003 Jun 1; 549 (Pt 2): 645–52PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Petersen EW, Ostrowski K, Ibfelt T, et al. Effect of vitamin supplementation on cytokine response and on muscle damage after strenuous exercise. Am J Physiol Cell Physiol 2001 Jun; 280 (6): C1570–5CrossRefGoogle Scholar
  89. 89.
    Fischer CP, Hiscock NJ, Penkowa M, et al. Supplementation with vitamins C and E inhibits the release of interleukin-6 from contracting human skeletal muscle. J Physiol 2004 Jul 15; 558 (Pt 2): 633–45PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Bailey DM. Supplemental ascorbate and exercise-induced IL-6 metabolism: focus on Fenton chemistry and redox- regulation of vascular homeostasis. Eur J Appl Physiol 2005 Jul; 94 (4): 487–9PubMedCrossRefGoogle Scholar
  91. 91.
    Cannon JG, Orencole SF, Fielding RA, et al. Acute phase response in exercise: interaction of age and vitamin E on neutrophils and muscle enzyme release. Am J Physiol 1990 Dec; 259 (6 Pt 2): R1214–9Google Scholar
  92. 92.
    Cannon JG, Meydani SN, Fielding RA, et al. Acute phase response in exercise: II, associations between vitamin E, cytokines, and muscle proteolysis. Am J Physiol 1991 Jun; 260 (6 Pt 2): R1235–40Google Scholar
  93. 93.
    Beaton LJ, Allan DA, Tarnopolsky MA, et al. Contraction-induced muscle damage is unaffected by vitamin E supplementation. Med Sci Sports Exerc 2002 May; 34 (5): 798–805PubMedCrossRefGoogle Scholar
  94. 94.
    McBride JM, Kraemer WJ, Triplett-McBride T, et al. Effect of resistance exercise on free radical production. Med Sci Sports Exerc 1998 Jan; 30 (1): 67–72PubMedCrossRefGoogle Scholar
  95. 95.
    Avery NG, Kaiser JL, Sharman MJ, et al. Effects of vitamin E supplementation on recovery from repeated bouts of resistance exercise. J Strength Cond Res 2003 Nov; 17 (4): 801–9PubMedGoogle Scholar
  96. 96.
    Sacheck JM, Milbury PE, Cannon JG, et al. Effect of vitamin E and eccentric exercise on selected biomarkers of oxidative stress in young and elderly men. Free Radic Biol Med 2003 Jun 15; 34 (12): 1575–88PubMedCrossRefGoogle Scholar
  97. 97.
    Phillips T, Childs AC, Dreon DM, et al. A dietary supplement attenuates IL-6 and CRP after eccentric exercise in untrained males. Med Sci Sports Exerc 2003 Dec; 35 (12): 2032–37PubMedCrossRefGoogle Scholar
  98. 98.
    Davison GW, Hughes CM, Bell RA. Exercise and mononuclear cell DNA damage: the effects of antioxidant supplementation. Int J Sport Nutr Exerc Metab 2005 Oct; 15 (5): 480–92PubMedCrossRefGoogle Scholar
  99. 99.
    Mastaloudis A, Morrow JD, Hopkins DW, et al. Antioxidant supplementation prevents exercise-induced lipid peroxidation, but not inflammation, in ultramarathon runners. Free Radic Biol Med 2004 May 15; 36 (10): 1329–41PubMedCrossRefGoogle Scholar
  100. 100.
    Mastaloudis A, Traber MG, Carstensen K, et al. Antioxidants did not prevent muscle damage in response to an ultramarathon run. Med Sci Sports Exerc 2006 Jan; 38 (1): 72–80PubMedCrossRefGoogle Scholar
  101. 101.
    Mastaloudis A, Yu TW, O’Donnell RP, et al. Endurance exercise results in DNA damage as detected by the comet assay. Free Radic Biol Med 2004 Apr 15; 36 (8): 966–75PubMedCrossRefGoogle Scholar
  102. 102.
    Jakeman P, Maxwell S. Effect of antioxidant vitamin supplementation on muscle function after eccentric exercise. Eur J Appl Physiol Occup Physiol 1993; 67 (5): 426–30PubMedCrossRefGoogle Scholar
  103. 103.
    Maxwell SRJ, Jakeman P, Thomason H, et al. Changes in plasma antioxidant status during eccentric exercise and the effect of vitamin supplementation. Free Radic Res Commun 1993; 19 (3): 191–202PubMedCrossRefGoogle Scholar
  104. 104.
    Shafat A, Butler P, Jensen RL, et al. Effects of dietary supplementation with vitamins C and E on muscle function during and after eccentric contractions in humans. Eur J Appl Physiol 2004 Oct; 93 (1-2): 196–202PubMedCrossRefGoogle Scholar
  105. 105.
    McCall MR, Frei B. Can antioxidant vitamins materially reduce oxidative damage in humans? Free Radic Biol Med 1999 Apr; 26 (7-8): 1034–53PubMedCrossRefGoogle Scholar
  106. 106.
    Griffiths HR, Moller L, Bartosz G, et al. Biomarkers. Mol Aspects Med 2002 Feb-Jun; 23 (1-3): 101–208PubMedCrossRefGoogle Scholar
  107. 107.
    Asensi M, Sastre J, Pallardo FV, et al. A high-performance liquid chromatography method for measurement of oxidized glutathione in biological samples. Anal Biochem 1994 Mar; 217 (2): 323–8PubMedCrossRefGoogle Scholar
  108. 108.
    Burcham PC, Kuhan YT. Introduction of carbonyl groups into proteins by the lipid peroxidation product, malondialdehyde. Biochem Biophys Res Commun 1996 Mar 27; 220 (3): 996–1001PubMedCrossRefGoogle Scholar
  109. 109.
    Cao G, Prior RL. Comparison of different analytical methods for assessing total antioxidant capacity of human serum. Clin Chem 1998 Jun; 44 (6 Pt 1): 1309–15PubMedGoogle Scholar
  110. 110.
    de Zwart LL, Meerman JHN, Commandeur JNM, et al. Biomarkers of free radical damage applications in experimental animals and in humans. Free Radic Biol Med 1999 Jan; 26 (1-2): 202–26PubMedCrossRefGoogle Scholar
  111. 111.
    Ghiselli A, Serafini M, Natella F, et al. Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Radic Biol Med 2000 Dec; 29 (11): 1106–14PubMedCrossRefGoogle Scholar
  112. 112.
    Jackson MJ. An overview of methods for assessment of free radical activity in biology. Proc Nutr Soc 1999 Nov; 58 (4): 1001–6PubMedCrossRefGoogle Scholar
  113. 113.
    Jenkins RR. Exercise and oxidative stress methodology: a critique. Am J Clin Nutr 2000 Aug; 72 (2 Suppl.): 670S–4SPubMedCrossRefGoogle Scholar
  114. 114.
    Kadiiska MB, Gladen BC, Baird DD, et al. Biomarkers of oxidative stress study II: are oxidation products of lipids, proteins, and DNA markers of CCl4 poisoning? Free Radic Biol Med 2005 Mar 15; 38 (6): 698–710PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    MØller P, Loft S. Oxidative DNA damage in human white blood cells in dietary antioxidant intervention studies. Am J Clin Nutr 2002 Aug; 76 (2): 303–30PubMedCrossRefGoogle Scholar
  116. 116.
    Morrow JD, Roberts 2nd LJ. Mass spectrometric quantification of F2-isoprostanes in biological fluids and tissues as measure of oxidant stress. Methods Enzymol 1999; 300: 3–12PubMedCrossRefGoogle Scholar
  117. 117.
    Springfield JR, Levitt MD. Pitfalls in the use of breath pentane measurements to assess lipid peroxidation. J Lipid Res 1994 Aug; 35 (8): 1497–504PubMedGoogle Scholar
  118. 118.
    Stadtman ER. Protein oxidation and aging. Science 1992 Aug 28; 257 (5074): 1220–4PubMedCrossRefGoogle Scholar
  119. 119.
    Waring WS, Mishra V, Maxwell SRJ. Comparison of spectrophotometric and enhanced chemiluminescent assays of serum antioxidant capacity. Clin Chim Acta 2003 Dec; 338 (1-2): 67–71PubMedCrossRefGoogle Scholar
  120. 120.
    Cheeseman KH, Slater TF. An introduction to free radical biochemistry. Br Med Bull 1993 Jul; 49 (3): 481–93PubMedCrossRefGoogle Scholar
  121. 121.
    Zerba E, Komorowski TE, Faulkner JA. Free radical injury to skeletal muscles of young, adult, and old mice.Am J Physiol 1990 Mar; 258 (3 Pt 1): C429–35CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2009

Authors and Affiliations

  1. 1.Department of Physical Education and Sport SciencesUniversity of Limerick, CastletroyLimerickIreland

Personalised recommendations