Clinical Pharmacokinetics

, Volume 48, Issue 8, pp 489–516 | Cite as

Pharmacokinetic Optimization of Immunosuppressive Therapy in Thoracic Transplantation: Part II

Review Article

Abstract

Part I of this article, which appeared in the previous issue of the Journal, reviewed calcineurin inhibitors —ciclosporin and tacrolimus. In part II, we review the pharmacokinetics and therapeutic drug monitoring of mycophenolate and mammalian target of rapamycin inhibitors — sirolimus and everolimus — in thoracic transplantation, and we provide an overall discussion and suggest various areas for future study.

Supplementary material

40262_2012_48080489_MOESM1_ESM.pdf (237 kb)
Supplementary material, approximately 242 KB.

References

  1. 1.
    Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of mycophenolate in solid organ transplant recipients. Clin Pharmacokinet 2007; 46(1): 13–58PubMedCrossRefGoogle Scholar
  2. 2.
    Ensom MH, Partovi N, Decarie D, et al. Pharmacokinetics and protein binding of mycophenolic acid in stable lung transplant recipients. Ther Drug Monit 2002 Apr; 24(2): 310–4PubMedCrossRefGoogle Scholar
  3. 3.
    van Gelder T, Le Meur Y, Shaw LM, et al. Therapeutic drug monitoring of mycophenolate mofetil in transplantation. Ther Drug Monit 2006 Apr; 28(2): 145–54PubMedCrossRefGoogle Scholar
  4. 4.
    Baraldo M, Isola M, Feruglio MT, et al. Therapeutic mycophenolic acid monitoring by means of limited sampling strategy in orthotopic heart transplant patients. Transplant Proc 2005 Jun; 37(5): 2240–3PubMedCrossRefGoogle Scholar
  5. 5.
    Armstrong VW, Tenderich G, Shipkova M, et al. Pharmacokinetics and bioavailability of mycophenolic acid after intravenous administration and oral administration of mycophenolate mofetil to heart transplant recipients. Ther Drug Monit 2005 Jun; 27(3): 315–21PubMedCrossRefGoogle Scholar
  6. 6.
    Vidal E, Cantarell C, Capdevila L, et al. Mycophenolate mofetil pharmacokinetics in transplant patients receiving cyclosporine or tacrolimus in combination therapy. Pharmacol Toxicol 2000 Oct; 87(4): 182–4PubMedCrossRefGoogle Scholar
  7. 7.
    Ensom MH, Partovi N, Decarie D, et al. Mycophenolate pharmacokinetics in early period following lung or heart transplantation. Ann Pharmacother 2003 Dec; 37(12): 1761–7PubMedCrossRefGoogle Scholar
  8. 8.
    Taylor DO, Edwards LB, Boucek MM, et al. Registry of the International Society for Heart and Lung Transplantation: twenty-fourth official adult heart transplant report — 2007. J Heart Lung Transplant 2007 Aug; 26(8): 769–81PubMedCrossRefGoogle Scholar
  9. 9.
    Trulock EP, Christie JD, Edwards LB, et al. Registry of the International Society for Heart and Lung Transplantation: twenty-fourth official adult lung and heart-lung transplantation report — 2007. J Heart Lung Transplant 2007 Aug; 26(8): 782–95PubMedCrossRefGoogle Scholar
  10. 10.
    Aurora P, Boucek MM, Christie J, et al. Registry of the International Society for Heart and Lung Transplantation: tenth official pediatric lung and heart/lung transplantation report — 2007. J Heart Lung Transplant 2007 Dec; 26(12): 1223–8PubMedCrossRefGoogle Scholar
  11. 11.
    Kaufman D, Shapiro RLM, Cherikh W, et al. Immunosuppression: practice and trends. Am J Transplant 2004; 4 Suppl. 9: 38–53PubMedCrossRefGoogle Scholar
  12. 12.
    Pou L, Brunet M, Cantarell C, et al. Mycophenolic acid plasma concentrations: influence of comedication. Ther Drug Monit 2001 Feb; 23(1): 35–8PubMedCrossRefGoogle Scholar
  13. 13.
    Galiwango PJ, Delgado DH, Yan R, et al. Mycophenolate mofetil dose reduction for gastrointestinal intolerance is associated with increased rates of rejection in heart transplant patients. J Heart Lung Transplant 2008 Jan; 27(1): 72–7PubMedCrossRefGoogle Scholar
  14. 14.
    Eisen HJ, Kobashigawa J, Keogh A, et al. Three-year results of a randomized, double-blind, controlled trial of mycophenolate mofetil versus azathioprine in cardiac transplant recipients. J Heart Lung Transplant 2005 May; 24(5): 517–25PubMedCrossRefGoogle Scholar
  15. 15.
    Kobashigawa J, Miller L, Renlund D, et al. A randomized active-controlled trial of mycophenolate mofetil in heart transplant recipients. Mycophenolate Mofetil Investigators. Transplantation 1998 Aug 27; 66(4): 507–15PubMedCrossRefGoogle Scholar
  16. 16.
    Meiser BM, Pfeiffer M, Schmidt D, et al. Combination therapy with tacrolimus and mycophenolate mofetil following cardiac transplantation: importance of mycophenolic acid therapeutic drug monitoring. J Heart Lung Transplant 1999 Feb; 18(2): 143–9PubMedCrossRefGoogle Scholar
  17. 17.
    Cantarovich M, Giannetti N, Cecere R, et al. Time points predictors of cyclosporine microemulsion and of mycophenolic acid area-under-the-curve (0–12 hr) in long-term heart transplant patients [abstract no. 66]. Am J Transplant 2003 May; 3(S5): 168Google Scholar
  18. 18.
    Ting LS, Partovi N, Levy RD, et al. Pharmacokinetics of mycophenolic acid and its phenolic-glucuronide and acyl glucuronide metabolites in stable thoracic transplant recipients. Ther Drug Monit 2008 Jun; 30(3): 282–91PubMedCrossRefGoogle Scholar
  19. 19.
    Devyatko E, Ploner M, Zuckermann A, et al. Value of mycophenolic acid trough level monitoring after lung transplantation. Transplant Proc 2002 Aug; 34(5): 1881–3PubMedCrossRefGoogle Scholar
  20. 20.
    Knoop C, Haverich A, Fischer S. Immunosuppressive therapy after human lung transplantation. Eur Respir J 2004 Jan; 23(1): 159–71PubMedCrossRefGoogle Scholar
  21. 21.
    Snell GI, Westall GP. Immunosuppression for lung transplantation: evidence to date. Drugs 2007; 67(11): 1531–9PubMedCrossRefGoogle Scholar
  22. 22.
    Kahan BD, Keown P, Levy GA, et al. Therapeutic drug monitoring of immunosuppressant drugs in clinical practice. Clin Ther 2002 Mar; 24(3): 330–50PubMedCrossRefGoogle Scholar
  23. 23.
    DeNofrio D, Loh E, Kao A, et al. Mycophenolic acid concentrations are associated with cardiac allograft rejection. J Heart Lung Transplant 2000 Nov; 19(11): 1071–6PubMedCrossRefGoogle Scholar
  24. 24.
    Shaw LM, Korecka M, DeNofrio D, et al. Pharmacokinetic, pharmacodynamic, and outcome investigations as the basis for mycophenolic acid therapeutic drug monitoring in renal and heart transplant patients. Clin Biochem 2001 Feb; 34(1): 17–22PubMedCrossRefGoogle Scholar
  25. 25.
    Dosch AO, Ehlermann P, Koch A, et al. A comparison of measured trough levels and abbreviated AUC estimation by limited sampling strategies for monitoring mycophenolic acid exposure in stable heart transplant patients receiving cyclosporin A-containing and cyclosporin A-free immunosuppressive regimens. Clin Ther 2006 Jun; 28(6): 893–905PubMedCrossRefGoogle Scholar
  26. 26.
    Mardigyan V, Giannetti N, Cecere R, et al. Best single time points to predict the area-under-the-curve in long-term heart transplant patients taking mycophenolate mofetil in combination with cyclosporine or tacrolimus. J Heart Lung Transplant 2005 Oct; 24(10): 1614–8PubMedCrossRefGoogle Scholar
  27. 27.
    Gajarski RJ, Crowley DC, Zamberlan MC, et al. Lack of correlation between mycophenolate mofetil dose and MPA level in pediatric and young adult cardiac transplant patients: does the MPA level matter? Am J Transplant 2004 Sep; 4(9): 1495–500PubMedCrossRefGoogle Scholar
  28. 28.
    Ting LS, Partovi N, Levy RD, et al. Limited sampling strategy for predicting area under the concentration-time curve of mycophenolic acid in adult lung transplant recipients. Pharmacotherapy 2006 Sep; 26(9): 1232–40PubMedCrossRefGoogle Scholar
  29. 29.
    Yamani MH, Starling RC, Goormastic M, et al. The impact of routine mycophenolate mofetil drug monitoring on the treatment of cardiac allograft rejection. Transplantation 2000 Jun 15; 69(11): 2326–30PubMedCrossRefGoogle Scholar
  30. 30.
    Bullingham RE, Nicholls AJ, Kamm BR. Clinical pharmacokinetics of mycophenolate mofetil. Clin Pharmacokinet 1998 Jun; 34(6): 429–55PubMedCrossRefGoogle Scholar
  31. 31.
    Premaud A, Debord J, Rousseau A, et al. A double absorption-phase model adequately describes mycophenolic acid plasma profiles in de novo renal transplant recipients given oral mycophenolate mofetil. Clin Pharmacokinet 2005; 44(8): 837–47PubMedCrossRefGoogle Scholar
  32. 32.
    Gerbase MW, Fathi M, Spiliopoulos A, et al. Pharmacokinetics of mycophenolic acid associated with calcineurin inhibitors: long-term monitoring in stable lung recipients with and without cystic fibrosis. J Heart Lung Transplant 2003 May; 22(5): 587–90PubMedCrossRefGoogle Scholar
  33. 33.
    Cussonneau X, Bolon-Larger M, Prunet-Spano C, et al. Relationship between MPA free fraction and free MPAG concentrations in heart transplant recipients based on simultaneous HPLC quantification of the target compounds in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2007 Jun 1; 852(1–2): 674–8PubMedGoogle Scholar
  34. 34.
    Picard N, Ratanasavanh D, Premaud A, et al. Identification of the UDP-glucuronosyltransferase isoforms involved in mycophenolic acid phase II metabolism. Drug Metab Dispos 2005 Jan; 33(1): 139–46PubMedCrossRefGoogle Scholar
  35. 35.
    Shipkova M, Armstrong VW, Wieland E, et al. Identification of glucoside and carboxyl-linked glucuronide conjugates of mycophenolic acid in plasma of transplant recipients treated with mycophenolate mofetil. Br J Pharmacol 1999 Mar; 126(5): 1075–82PubMedCrossRefGoogle Scholar
  36. 36.
    Shipkova M, Strassburg CP, Braun F, et al. Glucuronide and glucoside conjugation of mycophenolic acid by human liver, kidney and intestinal microsomes. Br J Pharmacol 2001 Mar; 132(5): 1027–34PubMedCrossRefGoogle Scholar
  37. 37.
    Picard N, Cresteil T, Premaud A, et al. Characterization of a phase 1 metabolite of mycophenolic acid produced by CYP3A4/5. Ther Drug Monit 2004 Dec; 26(6): 600–8PubMedCrossRefGoogle Scholar
  38. 38.
    Schutz E, Shipkova M, Armstrong VW, et al. Identification of a pharmacologically active metabolite of mycophenolic acid in plasma of transplant recipients treated with mycophenolate mofetil. Clin Chem 1999 Mar; 45(3): 419–22PubMedGoogle Scholar
  39. 39.
    Briffa N, Morris RE. New immunosuppressive regimens in lung transplantation. Eur Respir J 1997 Nov; 10(11): 2630–7PubMedCrossRefGoogle Scholar
  40. 40.
    Mandla R, Line PD, Midtvedt K, et al. Automated determination of free mycophenolic acid and its glucuronide in plasma from renal allograft recipients. Ther Drug Monit 2003 Jun; 25(3): 407–14PubMedCrossRefGoogle Scholar
  41. 41.
    Gensburger O, Picard N, Marquet P. Effect of mycophenolate acylglucuronide on human recombinant type 2 inosine monophosphate dehydrogenase. Clin Chem 2009 May; 55(5): 986–93PubMedCrossRefGoogle Scholar
  42. 42.
    Shipkova M, Armstrong VW, Weber L, et al. Pharmacokinetics and protein adduct formation of the pharmacologically active acyl glucuronide metabolite of mycophenolic acid in pediatric renal transplant recipients. Ther Drug Monit 2002 Jun; 24(3): 390–9PubMedCrossRefGoogle Scholar
  43. 43.
    Zucker K, Rosen A, Tsaroucha A, et al. Unexpected augmentation of mycophenolic acid pharmacokinetics in renal transplant patients receiving tacrolimus and mycophenolate mofetil in combination therapy, and analogous in vitro findings. Transpl Immunol 1997 Sep; 5(3): 225–32PubMedCrossRefGoogle Scholar
  44. 44.
    Meiser BM, Groetzner J, Kaczmarek I, et al. Tacrolimus or cyclosporine: which is the better partner for mycophenolate mofetil in heart transplant recipients? Transplantation 2004 Aug 27; 78(4): 591–8PubMedCrossRefGoogle Scholar
  45. 45.
    Groetzner J, Meiser B, Schirmer J, et al. Tacrolimus/mycophenolate mofetil versus cyclosporine/mycophenolate mofetil: comparison of mycophenolate acid trough levels and coronary vasomotor function. J Heart Lung Transplant 2001 Feb; 20(2): 191CrossRefGoogle Scholar
  46. 46.
    Zucker K, Tsaroucha A, Olson L, et al. Evidence that tacrolimus augments the bioavailability of mycophenolate mofetil through the inhibition of mycophenolic acid glucuronidation. Ther Drug Monit 1999 Feb; 21(1): 35–43PubMedCrossRefGoogle Scholar
  47. 47.
    Smak Gregoor PJ, van Gelder T, Hesse CJ, et al. Mycophenolic acid plasma concentrations in kidney allograft recipients with or without cyclosporin: a cross-sectional study. Nephrol Dial Transplant 1999 Mar; 14(3): 706–8PubMedCrossRefGoogle Scholar
  48. 48.
    van Gelder T, Klupp J, Barten MJ, et al. Comparison of the effects of tacrolimus and cyclosporine on the pharmacokinetics of mycophenolic acid. Ther Drug Monit 2001 Apr; 23(2): 119–28PubMedCrossRefGoogle Scholar
  49. 49.
    Cattaneo D, Perico N, Gaspari F, et al. Glucocorticoids interfere with mycophenolate mofetil bioavailability in kidney transplantation. Kidney Int 2002 Sep; 62(3): 1060–7PubMedCrossRefGoogle Scholar
  50. 50.
    Kearns GL, Abdel-Rahman SM, Alander SW, et al. Developmental pharmacology: drug disposition, action, and therapy in infants and children. N Engl J Med 2003 Sep 18; 349(12): 1157–67PubMedCrossRefGoogle Scholar
  51. 51.
    Bartelink IH, Rademaker CM, Schobben AF, et al. Guidelines on paediatric dosing on the basis of developmental physiology and pharmacokinetic considerations. Clin Pharmacokinet 2006; 45(11): 1077–97PubMedCrossRefGoogle Scholar
  52. 52.
    Filler G, Drick-Peart J, Christians U. Pharmacokinetics of mycophenolate mofetil and sirolimus in children. Ther Drug Monit 2008 Apr; 30(2): 138–42PubMedCrossRefGoogle Scholar
  53. 53.
    Dipchand AI, Pietra B, McCrindle BW, et al. Mycophenolic acid levels in pediatric heart transplant recipients receiving mycophenolate mofetil. J Heart Lung Transplant 2001 Oct; 20(10): 1035–43PubMedCrossRefGoogle Scholar
  54. 54.
    Ting LS, Partovi N, Levy RD, et al. Pharmacokinetics of mycophenolic acid and its glucuronidated metabolites in stable lung transplant recipients. Ann Pharmacother 2006 Sep; 40(9): 1509–16PubMedCrossRefGoogle Scholar
  55. 55.
    Knight SR, Morris PJ. Does the evidence support the use of mycophenolate mofetil therapeutic drug monitoring in clinical practice? A systematic review. Transplantation 2008 Jun 27; 85(12): 1675–85PubMedCrossRefGoogle Scholar
  56. 56.
    Cantin B, Giannetti N, Parekh H, et al. Mycophenolic acid concentrations in long-term heart transplant patients: relationship with calcineurin antagonists and acute rejection. Clin Transplant 2002 Jun; 16(3): 196–201PubMedCrossRefGoogle Scholar
  57. 57.
    Le Meur Y, Buchler M, Thierry A, et al. Individualized mycophenolate mofetil dosing based on drug exposure significantly improves patient outcomes after renal transplantation. Am J Transplant 2007 Nov; 7(11): 2496–503PubMedCrossRefGoogle Scholar
  58. 58.
    Kuypers DR, de Jonge H, Naesens M, et al. Current target ranges of mycophenolic acid exposure and drug-related adverse events: a 5-year, open-label, prospective, clinical follow-up study in renal allograft recipients. Clin Ther 2008 Apr; 30(4): 673–83PubMedCrossRefGoogle Scholar
  59. 59.
    Meiser BM, Pfeiffer M, Schmidt D, et al. The efficacy of the combination of tacrolimus and mycophenolate mofetil for prevention of acute myocardial rejection is dependent on routine monitoring of mycophenolic acid trough acid levels. Transplant Proc 1999 Feb; 31(1–2): 84–7PubMedCrossRefGoogle Scholar
  60. 60.
    van Gelder T, Hilbrands LB, Vaurenterghem Y, et al. A randomized doubleblind, multicenter plasma concentration controlled study of the safety and efficacy of oral mycophenolate mofetil for the prevention of acute rejection after kidney transplantation. Transplantation 1999 Jul 27; 68(2): 261–6PubMedCrossRefGoogle Scholar
  61. 61.
    Kaczmarek I, Bigdeli AK, Vogeser M, et al. Defining algorithms for efficient therapeutic drug monitoring of mycophenolate mofetil in heart transplant recipients. Ther Drug Monit 2008 Aug; 30(4): 419–27PubMedGoogle Scholar
  62. 62.
    Premaud A, Le Meur Y, Debord J, et al. Maximum a posteriori Bayesian estimation of mycophenolic acid pharmacokinetics in renal transplant recipients at different postgrafting periods. Ther Drug Monit 2005 Jun; 27(3): 354–61PubMedCrossRefGoogle Scholar
  63. 63.
    Le Guellec C, Bourgoin H, Buchler M, et al. Population pharmacokinetics and Bayesian estimation of mycophenolic acid concentrations in stable renal transplant patients. Clin Pharmacokinet 2004; 43(4): 253–66PubMedCrossRefGoogle Scholar
  64. 64.
    Hesse CJ, Vantrimpont P, van Riemsdijk-van Overbeeke IC, et al. The value of routine monitoring of mycophenolic acid plasma levels after clinical heart transplantation. Transplant Proc 2001 May; 33(3): 2163–4PubMedCrossRefGoogle Scholar
  65. 65.
    Hale MD, Nicholls AJ, Bullingham RE, et al. The pharmacokineticpharmacodynamic relationship for mycophenolate mofetil in renal transplantation. Clin Pharmacol Ther 1998 Dec; 64(6): 672–83PubMedCrossRefGoogle Scholar
  66. 66.
    Shipkova M, Beck H, Voland A, et al. Identification of protein targets for mycophenolic acid acyl glucuronide in rat liver and colon tissue. Proteomics 2004 Sep; 4(9): 2728–38PubMedCrossRefGoogle Scholar
  67. 67.
    Shipkova M, Wieland E, Schutz E, et al. The acyl glucuronide metabolite of mycophenolic acid inhibits the proliferation of human mononuclear leukocytes. Transplant Proc 2001 Feb; 33(1–2): 1080–1PubMedCrossRefGoogle Scholar
  68. 68.
    Kuypers DR, Claes K, Evenepoel P, et al. Clinical efficacy and toxicity profile of tacrolimus and mycophenolic acid in relation to combined long-term pharmacokinetics in de novo renal allograft recipients. Clin Pharmacol Ther 2004 May; 75(5): 434–47PubMedCrossRefGoogle Scholar
  69. 69.
    Zuckermann A, Klepetko W. Use of cyclosporine in thoracic transplantation. Transplant Proc 2004 Mar; 36 (2 Suppl.): 331–6SCrossRefGoogle Scholar
  70. 70.
    Poirier CD. Promise of Neoral C2, basiliximab, and everolimus in lung transplantation. Transplant Proc 2004 Mar; 36 (2 Suppl.): 509–13SCrossRefGoogle Scholar
  71. 71.
    Stenton SB, Partovi N, Ensom MH. Sirolimus: the evidence for clinical pharmacokinetic monitoring. Clin Pharmacokinet 2005; 44(8): 769–86PubMedCrossRefGoogle Scholar
  72. 72.
    McWilliams TJ, Levvey BJ, Russell PA, et al. Interstitial pneumonitis associated with sirolimus: a dilemma for lung transplantation. J Heart Lung Transplant 2003 Feb; 22(2): 210–3PubMedCrossRefGoogle Scholar
  73. 73.
    King-Biggs MB, Dunitz JM, Park SJ, et al. Airway anastomotic dehiscence associated with use of sirolimus immediately after lung transplantation. Transplantation 2003 May 15; 75(9): 1437–43PubMedCrossRefGoogle Scholar
  74. 74.
    Zuckermann A, Manito N, Epailly E, et al. Multidisciplinary insights on clinical guidance for the use of proliferation signal inhibitors in heart transplantation. J Heart Lung Transplant 2008 Feb; 27(2): 141–9PubMedCrossRefGoogle Scholar
  75. 75.
    Zahir H, Keogh AM, Akhlaghi F. Apparent clearance of sirolimus in heart transplant recipients: impact of primary diagnosis and serum lipids. Ther Drug Monit 2006 Oct; 28(5): 614–22PubMedGoogle Scholar
  76. 76.
    Mahalati K, Kahan BD. Clinical pharmacokinetics of sirolimus. Clin Pharmacokinet 2001; 40(8): 573–85PubMedCrossRefGoogle Scholar
  77. 77.
    Keogh A, Richardson M, Ruygrok P, et al. Sirolimus in de novo heart transplant recipients reduces acute rejection and prevents coronary artery disease at 2 years: a randomized clinical trial. Circulation 2004 Oct 26; 110(17): 2694–700PubMedCrossRefGoogle Scholar
  78. 78.
    Zucker MJ, Baran DA, Arroyo LH, et al. De novo immunosuppression with sirolimus and tacrolimus in heart transplant recipients compared with cyclosporine and mycophenolate mofetil: a one-year follow-up analysis. Transplant Proc 2005 Jun; 37(5): 2231–9PubMedCrossRefGoogle Scholar
  79. 79.
    Groetzner J, Meiser B, Landwehr P, et al. Mycophenolate mofetil and sirolimus as calcineurin inhibitor-free immunosuppression for late cardiactransplant recipients with chronic renal failure. Transplantation 2004 Feb 27; 77(4): 568–74PubMedCrossRefGoogle Scholar
  80. 80.
    Zimmerman JJ, Ferron GM, Lim HK, et al. The effect of a high-fat meal on the oral bioavailability of the immunosuppressant sirolimus (rapamycin). J Clin Pharmacol 1999 Nov; 39(11): 1155–61PubMedGoogle Scholar
  81. 81.
    Picard N, Djebli N, Sauvage FL, et al. Metabolism of sirolimus in the presence or absence of cyclosporine by genotyped human liver microsomes and recombinant cytochromes P450 3A4 and 3A5. Drug Metab Dispos 2007 Mar; 35(3): 350–5PubMedCrossRefGoogle Scholar
  82. 82.
    Djebli N, Rousseau A, Hoizey G, et al. Sirolimus population pharmacokinetic/pharmacogenetic analysis and Bayesian modelling in kidney transplant recipients. Clin Pharmacokinet 2006; 45(11): 1135–48PubMedCrossRefGoogle Scholar
  83. 83.
    Zimmerman JJ. Exposure-response relationships and drug interactions of sirolimus. AAPS J 2004; 6(4): e28PubMedCrossRefGoogle Scholar
  84. 84.
    Mabasa VH, Ensom MH. The role of therapeutic monitoring of everolimus in solid organ transplantation. Ther Drug Monit 2005 Oct; 27(5): 666–76PubMedCrossRefGoogle Scholar
  85. 85.
    Eisen HJ, Tuzcu EM, Dorent R, et al. Everolimus for the prevention of allograft rejection and vasculopathy in cardiac-transplant recipients. N Engl J Med 2003 Aug 28; 349(9): 847–58PubMedCrossRefGoogle Scholar
  86. 86.
    Snell GI, Valentine VG, Vitulo P, et al. Everolimus versus azathioprine in maintenance lung transplant recipients: an international, randomized, double-blind clinical trial. Am J Transplant 2006 Jan; 6(1): 169–77PubMedCrossRefGoogle Scholar
  87. 87.
    Kirchner GI, Meier-Wiedenbach I, Manns MP. Clinical pharmacokinetics of everolimus. Clin Pharmacokinet 2004; 43(2): 83–95PubMedCrossRefGoogle Scholar
  88. 88.
    Kovarik JM, Noe A, Berthier S, et al. Clinical development of an everolimus pediatric formulation: relative bioavailability, food effect, and steady-state pharmacokinetics. J Clin Pharmacol 2003 Feb; 43(2): 141–7PubMedCrossRefGoogle Scholar
  89. 89.
    Kovarik JM, Hsu CH, McMahon L, et al. Population pharmacokinetics of everolimus in de novo renal transplant patients: impact of ethnicity and comedications. Clin Pharmacol Ther 2001 Sep; 70(3): 247–54PubMedCrossRefGoogle Scholar
  90. 90.
    Kovarik JM, Eisen H, Dorent R, et al. Everolimus in de novo cardiac transplantation: pharmacokinetics, therapeutic range, and influence on cyclosporine exposure. J Heart Lung Transplant 2003 Oct; 22(10): 1117–25PubMedCrossRefGoogle Scholar
  91. 91.
    Kovarik JM, Snell GI, Valentine V, et al. Everolimus in pulmonary transplantation: pharmacokinetics and exposure-response relationships. J Heart Lung Transplant 2006 Apr; 25(4): 440–6PubMedCrossRefGoogle Scholar
  92. 92.
    Brandhorst G, Tenderich G, Zittermann A, et al. Everolimus exposure in cardiac transplant recipients is influenced by concomitant calcineurin inhibitor. Ther Drug Monit 2008 Feb; 30(1): 113–6PubMedCrossRefGoogle Scholar
  93. 93.
    Kovarik JM, Hartmann S, Figueiredo J, et al. Effect of rifampin on apparent clearance of everolimus. Ann Pharmacother 2002 Jun; 36(6): 981–5PubMedCrossRefGoogle Scholar
  94. 94.
    Van Damme-Lombaerts R, Webb NA, Hoyer PF, et al. Single-dose pharmacokinetics and tolerability of everolimus in stable pediatric renal transplant patients. Pediatr Transplant 2002 Apr; 6(2): 147–52PubMedCrossRefGoogle Scholar
  95. 95.
    Hoyer PF, Ettenger R, Kovarik JM, et al. Everolimus in pediatric de nova renal transplant patients. Transplantation 2003 Jun 27; 75(12): 2082–5PubMedCrossRefGoogle Scholar
  96. 96.
    Doyle RL, Hertz MI, Dunitz JM, et al. RAD in stable lung and heart/lung transplant recipients: safety, tolerability, pharmacokinetics, and impact of cystic fibrosis. J Heart Lung Transplant 2001 Mar; 20(3): 330–9PubMedCrossRefGoogle Scholar
  97. 97.
    Zuckermann A. Clinical experience with Certican (everolimus) in maintenance heart transplant patients at the Medical University of Vienna. J Heart Lung Transplant 2005 Apr; 24 (4 Suppl.): S206–9PubMedCrossRefGoogle Scholar
  98. 98.
    Starling RC, Hare JM, Hauptman P, et al. Therapeutic drug monitoring for everolimus in heart transplant recipients based on exposure-effect modeling. Am J Transplant 2004 Dec; 4(12): 2126–31PubMedCrossRefGoogle Scholar
  99. 99.
    Anglicheau D, Thervet E, Etienne I, et al. CYP3A5 and MDR1 genetic polymorphisms and cyclosporine pharmacokinetics after renal transplantation. Clin Pharmacol Ther 2004; 75(5): 422–33PubMedCrossRefGoogle Scholar
  100. 100.
    Anglicheau D, Pallet N, Rabant M, et al. Role of P-glycoprotein in cyclosporine cytotoxicity in the cyclosporine-sirolimus interaction. Kidney Int 2006 Sep; 70(6): 1019–25PubMedCrossRefGoogle Scholar
  101. 101.
    Oellerich M, Armstrong VW. The role of therapeutic drug monitoring in individualizing immunosuppressive drug therapy: recent developments. Ther Drug Monit 2006 Dec; 28(6): 720–5PubMedCrossRefGoogle Scholar
  102. 102.
    Cole OJ, Shehata M, Rigg KM. Effect of SDZ RAD on transplant arteriosclerosis in the rat aortic model. Transplant Proc 1998 Aug; 30(5): 2200–3PubMedCrossRefGoogle Scholar
  103. 103.
    Schuurman HJ, Pally C, Weckbecker G, et al. SDZ RAD inhibits cold ischemia-induced vascular remodeling. Transplant Proc 1999 Feb; 31(1–2): 1024–5PubMedCrossRefGoogle Scholar
  104. 104.
    Nishimura T, Faul JL, Berry GJ, et al. 40-O-(2-hydroxyethyl)-rapamycin attenuates pulmonary arterial hypertension and neointimal formation in rats. Am J Respir Crit Care Med 2001 Feb; 163(2): 498–502PubMedGoogle Scholar
  105. 105.
    Vigano M, Tuzcu M, Benza R, et al. Prevention of acute rejection and allograft vasculopathy by everolimus in cardiac transplants recipients: a 24-month analysis. J Heart Lung Transplant 2007 Jun; 26(6): 584–92PubMedCrossRefGoogle Scholar
  106. 106.
    Dumont RJ, Ensom MH. Methods for clinical monitoring of cyclosporin in transplant patients. Clin Pharmacokinet 2000 May; 38(5): 427–47PubMedCrossRefGoogle Scholar
  107. 107.
    Trull A, Steel L, Sharples L, et al. Randomized, trough blood cyclosporine concentration-controlled trial to compare the pharmacodynamics of Sandimmune and Neoral in de novo lung transplant recipients. Ther Drug Monit 1999 Feb; 21(1): 17–26PubMedCrossRefGoogle Scholar
  108. 108.
    Nohria A, Ehtisham J, Ramahi TM. Optimum maintenance trough levels of cyclosporine in heart transplant recipients given corticosteroid-free regimen. J Heart Lung Transplant 1998 Sep; 17(9): 849–53PubMedGoogle Scholar
  109. 109.
    El Gamel A, Keevil B, Rahman A, et al. Cardiac allograft rejection: do trough cyclosporine levels correlate with the grade of histologic rejection? J Heart Lung Transplant 1997 Mar; 16(3): 268–74PubMedGoogle Scholar
  110. 110.
    Trull A, Hue K, Tan K, et al. Cross-correlation of cyclosporine concentrations and biochemical measures of kidney and liver function in heart and heart-lung transplant recipients. Clin Chem 1990 Aug; 36(8 Pt 1): 1474–8PubMedGoogle Scholar
  111. 111.
    Trull AK, Best NG, Tan KK, et al. Blood cyclosporin concentrations but not doses correlate with acute changes in renal function following heart and heart-lung transplantation. Ther Drug Monit 1992 Aug; 14(4): 275–80PubMedCrossRefGoogle Scholar
  112. 112.
    Aumente MD, Arizón JM, Segura J, et al. Relationship between pharmacokinetic parameters of cyclosporin and the incidence of acute rejection after heart transplantation. Transplant Proc 2005 Nov; 37(9): 4014–7PubMedCrossRefGoogle Scholar
  113. 113.
    Monforte V, Bullich S, Pou L, et al. Blood cyclosporine C0 and C2 concentrations and cytomegalovirus infections following lung transplantation. Transplant Proc 2003 Aug; 35(5): 1992–3PubMedCrossRefGoogle Scholar
  114. 114.
    Akhlaghi F, Gonzalez L, Trull AK. Association between cyclosporine concentrations at 2 hours post-dose and clinical outcomes in de novo lung transplant recipients. J Heart Lung Transplant 2005 Dec; 24(12): 2120–8PubMedCrossRefGoogle Scholar
  115. 115.
    Solari SG, Goldberg LR, DeNofrio D, et al. Cyclosporine monitoring with 2-hour postdose levels in heart transplant recipients. Ther Drug Monit 2005 Aug; 27(4): 417–21PubMedCrossRefGoogle Scholar
  116. 116.
    Best NG, Trull AK, Tan KK, et al. Blood cyclosporin concentrations and the short-term risk of lung rejection following heart-lung transplantation. Br J Clin Pharmacol 1992 Dec; 34(6): 513–20PubMedCrossRefGoogle Scholar
  117. 117.
    Cantarovich M, Elstein E, de Varennes B, et al. Clinical benefit of Neoral dose monitoring with cyclosporine 2-hr post-dose levels compared with trough levels in stable heart transplant patients. Transplantation 1999 Dec 27; 68(12): 1839–42PubMedCrossRefGoogle Scholar
  118. 118.
    Cantarovich M, Besner JG, Barkun JS, et al. Two-hour cyclosporine level determination is the appropriate tool to monitor Neoral therapy. Clin Transplant 1998 Jun; 12(3): 243–9PubMedGoogle Scholar
  119. 119.
    Baraldo M, Francesconi A, Barbone F, et al. C(2) monitoring of cyclosporine in stable heart transplant patients after two daily and three daily doses. Transplant Proc 2002 Dec; 34(8): 3246–8PubMedCrossRefGoogle Scholar
  120. 120.
    Caforio AL, Tona F, Piaserico S, et al. C2 is superior to C0 as predictor of renal toxicity and rejection risk profile in stable heart transplant recipients. Transpl Int 2005 Jan; 18(1): 116–24PubMedCrossRefGoogle Scholar
  121. 121.
    Delgado DH, Rao V, Hamel J, et al. Monitoring of cyclosporine 2-hour post-dose levels in heart transplantation: improvement in clinical outcomes. J Heart Lung Transplant 2005 Sep; 24(9): 1343–6PubMedCrossRefGoogle Scholar
  122. 122.
    Glanville AR, Morton JM, Aboyoun CL, et al. Cyclosporine C2 monitoring improves renal dysfunction after lung transplantation. J Heart Lung Transplant 2004 Oct; 23(10): 1170–4PubMedCrossRefGoogle Scholar
  123. 123.
    Glanville AR, Aboyoun CL, Morton JM, et al. Cyclosporine C2 target levels and acute cellular rejection after lung transplantation. J Heart Lung Transplant 2006 Aug; 25(8): 928–34PubMedCrossRefGoogle Scholar
  124. 124.
    Cantarovich M, Giannetti N, Cecere R. Impact of cyclosporine 2-h level and mycophenolate mofetil dose on clinical outcomes in de novo heart transplant patients receiving anti-thymocyte globulin induction. Clin Transplant 2003 Apr; 17(2): 144–50PubMedCrossRefGoogle Scholar
  125. 125.
    Mathias HC, Ozalp F, Will MB, et al. A randomized, controlled trial of C0- versus C2-guided therapeutic drug monitoring of cyclosporine in stable heart transplant patients. J Heart Lung Transplant 2005 Dec; 24(12): 2137–43PubMedCrossRefGoogle Scholar
  126. 126.
    Cantarovich M, Quantz M, Elstein E, et al. Neoral dose monitoring with cyclosporine 2-hour postdose levels in heart transplant patients receiving anti-thymocyte globulin induction. Transplant Proc 2000 Mar; 32(2): 446–8PubMedCrossRefGoogle Scholar
  127. 127.
    Cantarovich M, Giannetti N, Cecere R. Relationship between endomyocardial biopsy score and cyclosporine 2-h post-dose levels (C) in heart transplant patients receiving anti-thymocyte globulin induction. Clin Transplant 2004 Apr; 18(2): 148–51PubMedCrossRefGoogle Scholar
  128. 128.
    Cantarovich M, Ross H, Arizón JM, et al. Benefit of Neoral C2 monitoring in de novo cardiac transplant recipients receiving basiliximab induction. Transplantation 2008 Apr 15; 85(7): 992–9PubMedCrossRefGoogle Scholar
  129. 129.
    Morton JM, Aboyoun CL, Malouf MA, et al. Enhanced clinical utility of de novo cyclosporine C2 monitoring after lung transplantation. J Heart Lung Transplant 2004 Sep; 23(9): 1035–9PubMedCrossRefGoogle Scholar
  130. 130.
    Schubert S, Abdul-Khaliq H, Lehmkuhl HB, et al. Advantages of C2 monitoring to avoid acute rejection in pediatric heart transplant recipients. J Heart Lung Transplant 2006 Jun; 25(6): 619–25PubMedCrossRefGoogle Scholar
  131. 131.
    Cooney GF, Johnston A. Neoral C-2 monitoring in cardiac transplant patients. Transplant Proc 2001 Feb; 33(1–2): 1572–5PubMedCrossRefGoogle Scholar
  132. 132.
    Balram C, Sivathasan C, Cheung YB, et al. A limited sampling strategy for the estimation of 12-hour Neoral systemic drug exposure in heart transplant recipients. J Heart Lung Transplant 2002 Sep; 21(9): 1016–21PubMedCrossRefGoogle Scholar
  133. 133.
    Monchaud C, Rousseau A, Leger F, et al. Limited sampling strategies using Bayesian estimation or multilinear regression for cyclosporin AUC(0–12) monitoring in cardiac transplant recipients over the first year post-transplantation. Eur J Clin Pharmacol 2003 Apr; 58(12): 813–20PubMedGoogle Scholar
  134. 134.
    Rousseau A, Monchaud C, Debord J, et al. Bayesian forecasting of oral cyclosporin pharmacokinetics in stable lung transplant recipients with and without cystic fibrosis. Ther Drug Monit 2003 Feb; 25(1): 28–35PubMedCrossRefGoogle Scholar
  135. 135.
    Undre NA, Stevenson PJ. Pharmacokinetics of tacrolimus in heart transplantation. Transplant Proc 2002 Aug; 34(5): 1836–8PubMedCrossRefGoogle Scholar
  136. 136.
    Wang CH, Ko WJ, Chou NK, et al. Therapeutic drug monitoring of tacrolimus in cardiac transplant recipients: a comparison with cyclosporine Neoral. Transplant Proc 2004 Oct; 36(8): 2386–7PubMedCrossRefGoogle Scholar
  137. 137.
    Aumente Rubio MD, Arizón del Prado JM, López Malo de Molina MD, et al. Clinical pharmacokinetics of tacrolimus in heart transplantation: new strategies of monitoring. Transplant Proc 2003 Aug; 35(5): 1988–91CrossRefGoogle Scholar
  138. 138.
    Sgrosso JL, Araujo GL, Vazquez MC. Tacrolimus pharmacokinetics in heart transplant. Transplant Proc 2002 Feb; 34(1): 142–3PubMedCrossRefGoogle Scholar
  139. 139.
    Knoop C, Thiry P, Saint-Marcoux F, et al. Tacrolimus pharmacokinetics and dose monitoring after lung transplantation for cystic fibrosis and other conditions. Am J Transplant 2005 Jun; 5(6): 1477–82PubMedCrossRefGoogle Scholar
  140. 140.
    Aidong W, Zhenjie C, Tong L, et al. Therapeutic drug monitoring of tacrolimus in early stage after heart transplantation. Transplant Proc 2004 Oct; 36(8): 2388–9PubMedCrossRefGoogle Scholar
  141. 141.
    Saint-Marcoux F, Knoop C, Debord J, et al. Pharmacokinetic study of tacrolimus in cystic fibrosis and non-cystic fibrosis lung transplant patients and design of Bayesian estimators using limited sampling strategies. Clin Pharmacokinet 2005; 44(12): 1317–28PubMedCrossRefGoogle Scholar
  142. 142.
    Etienne I, Toupance O, Thierry A, et al. Benefit of a 50% reduction of cyclosporine exposure in stable kidney transplant recipients treated with mycophenolate mofetil without corticosteroids [abstract no. 232]. The DICAM Randomized Study. Am J Transplant 2007 May; 7(52): 207Google Scholar
  143. 143.
    Ray JE, Keogh AM, McLachlan AJ. Decision support tool to individualize cyclosporine dose in stable, long-term heart transplant recipients receiving metabolic inhibitors: overcoming limitations of cyclosporine C2 monitoring. J Heart Lung Transplant 2006 Oct; 25(10): 1223–9PubMedCrossRefGoogle Scholar
  144. 144.
    Morton JM, Mcwhinney B, Hickman PE, et al. Therapeutic drug monitoring (TDM) of prednisolone in lung transplantation. J Heart Lung Transplant 2001 Feb; 20(2): 192PubMedCrossRefGoogle Scholar
  145. 145.
    Majid O, Akhlaghi F, Lee T, et al. Simultaneous determination of plasma prednisolone, prednisone, and cortisol levels by high-performance liquid chromatography. Ther Drug Monit 2001 Apr; 23(2): 163–8PubMedCrossRefGoogle Scholar
  146. 146.
    Glander P, Hambach P, Braun KP, et al. Pre-transplant inosine monophosphate dehydrogenase activity is associated with clinical outcome after renal transplantation. Am J Transplant 2004 Dec; 4(12): 2045–51PubMedCrossRefGoogle Scholar
  147. 147.
    Wang J, Yang JW, Zeevi A, et al. IMPDH1 gene polymorphisms and association with acute rejection in renal transplant patients. Clin Pharmacol Ther 2008 May; 83(5): 711–7PubMedCrossRefGoogle Scholar
  148. 148.
    Hoffmann SC, Stanley EM, Darrin CE, et al. Association of cytokine polymorphic inheritance and in vitro cytokine production in anti-CD3/CD28-stimulated peripheral blood lymphocytes. Transplantation 2001 Oct 27; 72(8): 1444–50PubMedCrossRefGoogle Scholar
  149. 149.
    Kutukculer N, Clark K, Rigg KM, et al. The value of posttransplant monitoring of interleukin (IL)-2, IL-3, IL-4, IL-6, IL-8, and soluble CD23 in the plasma of renal allograft recipients. Transplantation 1995 Feb 15; 59(3): 333–40PubMedGoogle Scholar

Copyright information

© Adis Data Information BV 2009

Authors and Affiliations

  1. 1.INSERM Unit 850, CHU LimogesUniversity of LimogesLimogesFrance

Personalised recommendations