Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Efflux-Mediated Drug Resistance in Bacteria

An Update

Abstract

Drug efflux pumps play a key role in drug resistance and also serve other functions in bacteria. There has been a growing list of multidrug and drug-specific efflux pumps characterized from bacteria of human, animal, plant and environmental origins. These pumps are mostly encoded on the chromosome, although they can also be plasmid-encoded. A previous article in this journal provided a comprehensive review regarding efflux-mediated drug resistance in bacteria. In the past 5 years, significant progress has been achieved in further understanding of drug resistance-related efflux transporters and this review focuses on the latest studies in this field since 2003. This has been demonstrated in multiple aspects that include but are not limited to: further molecular and biochemical characterization of the known drug efflux pumps and identification of novel drug efflux pumps; structural elucidation of the transport mechanisms of drug transporters; regulatory mechanisms of drug efflux pumps; determining the role of the drug efflux pumps in other functions such as stress responses, virulence and cell communication; and development of efflux pump inhibitors. Overall, the multifaceted implications of drug efflux transporters warrant novel strategies to combat multidrug resistance in bacteria.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Li X-Z, Nikaido H. Efflux-mediated drug resistance in bacteria. Drugs 2004; 64 (2): 159–204

  2. 2.

    Poole K. Efflux-mediated antimicrobial resistance. J Antimicrob Chemother 2005; 56 (1): 20–51

  3. 3.

    Alekshun MN, Levy SB. Molecular mechanisms of antibacterial multidrug resistance. Cell 2007;128 (6): 1037–50

  4. 4.

    Higgins CF. Multiple molecular mechanisms for multidrug resistance transporters. Nature 2007; 446 (7137): 749–57

  5. 5.

    Lubelski J, Konings WN, Driessen AJ. Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria. Microbiol Mol Biol Rev 2007; 71 (3): 463–76

  6. 6.

    Poole K. Efflux pumps as antimicrobial resistance mechanisms. Ann Med 2007; 39 (3): 162–76

  7. 7.

    Lomovskaya O, Zgurskaya HI, Bostian KA, et al. Multidrug efflux pumps: structure, mechanism, and inhibition. In: Wax RG, Lewis K, Salyers AA, et al., editors. Bacterial resistance to antimicrobials. 2nd ed. Boca Raton (FL): CRC Press, 2008: 45–70

  8. 8.

    Nikaido H, Takatsuka Y. Mechanisms of RND multidrug efflux pumps. Biochim Biophys Acta 2009; 1794 (5): 769–81

  9. 9.

    Pages JM, James CE, Winterhalter M. The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat Rev Microbiol 2008; 6 (12): 893–903

  10. 10.

    Nikaido H. Multidrug resistance in bacteria. Ann Rev Biochem 2009; 78: 119–46

  11. 11.

    The Royal Society London. Innovative mechanism tacking antibacterial resistance [online]. Available from URL: http://royalsociety.org/document.asp?tip=0&id=7888 [Accessed 2009 Mar 20]

  12. 12.

    Jassal M, Bishai WR. Extensively drug-resistant tuberculosis. Lancet Infect Dis 2009; 9 (1): 19–30

  13. 13.

    Livermore DM. Minimising antibiotic resistance. Lancet Infect Dis 2005; 5 (7): 450–9

  14. 14.

    Mulvey MR, Boyd DA, Olson AB, et al. The genetics of Salmonella genomic island 1. Microbes Infect 2006; 8 (7): 1915–22

  15. 15.

    Li X-Z. Antimicrobial resistance in Salmonella: features and mechanisms. In: Giordano LS, Moretti MA, editors. Salmonella infections: new research. Hauppauge (NY): Nova Science Publishers, 2008: 1–43

  16. 16.

    Fournier PE, Vallenet D, Barbe V, et al. Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLoS Genet 2006; 2 (1): e7

  17. 17.

    Adams MD, Goglin K, Molyneaux N, et al. Comparative genome sequence analysis of multidrug-resistant Acinetobacter baumannii. J Bacteriol 2008; 190 (24): 8053–64

  18. 18.

    Livermore DM, Woodford N. The β-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter. Trends Microbiol 2006; 14 (9): 413–20

  19. 19.

    Jacoby GA. AmpC β-lactamases. Clin Microbiol Rev 2009; 22 (1): 161–82

  20. 20.

    Robicsek A, Strahilevitz J, Jacoby GA, et al. Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med 2006; 12 (1): 83–8

  21. 21.

    Li X-Z. Quinolone resistance in bacteria: emphasis on plasmid-mediated mechanisms. Int J Antimicrob Agents 2005; 25 (6): 453–63

  22. 22.

    Robicsek A, Jacoby GA, Hooper DC. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis 2006; 6 (10): 629–40

  23. 23.

    Yamane K, Wachino J, Suzuki S, et al. New plasmidmediated fluoroquinolone efflux pump, QepA, found in an Escherichia coli clinical isolate. Antimicrob Agents Chemother 2007; 51 (9): 3354–60

  24. 24.

    Piddock LJ. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev 2006; 19 (2): 382–402

  25. 25.

    Nordmann P, Poirel L, Mak JK, et al. Multidrug-resistant Salmonella strains expressing emerging antibiotic resistance determinants. Clin Infect Dis 2008; 46 (2): 324–5

  26. 26.

    Li X-Z, Mehrotra M, Ghimire S, et al. β-Lactam resistance and β-lactamases in bacteria of animal origin. Vet Microbiol 2007; 121 (3–4): 197–214

  27. 27.

    Aarestrup FM, Wegener HC, Collignon P. Resistance in bacteria of the food chain: epidemiology and control strategies. Expert Rev Anti Infect Ther 2008; 6 (5): 733–50

  28. 28.

    Weese SJ. Antimicrobial resistance in companion animals. Anim Health Res Rev 2008; 9 (2): 169–76

  29. 29.

    de Lencastre H, Oliveira D, Tomasz A. Antibiotic resistant Staphylococcus aureus: a paradigm of adaptive power. Curr Opin Microbiol 2007; 10 (5): 428–35

  30. 30.

    Wulf M, Voss A. MRSA in livestock animals: an epidemic waiting to happen? Clin Microbiol Infect 2008; 14 (6): 519–21

  31. 31.

    Pao SS, Paulsen IT, Saier Jr MH. Major facilitator superfamily. Microbiol Mol Biol Rev 1998; 62 (1): 1–34

  32. 32.

    Kuroda T, Tsuchiya T. Multidrug efflux transporters in the MATE family. Biochim Biophys Acta 2009; 1794 (5): 763–8

  33. 33.

    Jack DL, Yang NM, Saier Jr MH. The drug/metabolite transporter superfamily. Eur J Biochem 2001; 268 (13): 3620–39

  34. 34.

    Tseng TT, Gratwick KS, Kollman J, et al. The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J Mol Microbiol Biotechnol 1999; 1 (1): 107–25

  35. 35.

    Seeger MA, Diederichs K, Eicher T, et al. The AcrB efflux pump: conformational cycling and peristalsis lead to multidrug resistance. Curr Drug Targets 2008; 9 (9): 729–49

  36. 36.

    Altmann SW, Davis Jr HR, Zhu LJ, et al. Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science 2004; 303 (5661): 1201–4

  37. 37.

    Murakami S. Multidrug efflux transporter, AcrB: the pumping mechanism. Curr Opin Struct Biol 2008; 18 (4): 459–65

  38. 38.

    Murakami S, Yamaguchi A. Multidrug-exporting secondary transporters. Curr Opin Struct Biol 2003; 13 (4): 443–52

  39. 39.

    Yu EW, Aires JR, McDermott G, et al. A periplasmic drug-binding site of the AcrB multidrug efflux pump: a crystallographic and site-directed mutagenesis study. J Bacteriol 2005; 187 (19): 6804–15

  40. 40.

    Drew D, Klepsch MM, Newstead S, et al. The structure of the efflux pump AcrB in complex with bile acid. Mol Membr Biol 2008; 25 (8): 677–82

  41. 41.

    Yu EW, Aires JR, Nikaido H. AcrB multidrug efflux pump of Escherichia coli: composite substrate-binding cavity of exceptional flexibility generates its extremely wide substrate specificity. J Bacteriol 2003; 185 (19): 5657–64

  42. 42.

    Törnroth-Horsefield S, Gourdon P, Horsefield R, et al. Crystal structure of AcrB in complex with a single transmembrane subunit reveals another twist. Structure 2007; 15 (12): 1663–73

  43. 43.

    Murakami S, Tamura N, Saito A, et al. Extramembrane central pore of multidrug exporter AcrB in Escherichia coli plays an important role in drug transport. J Biol Chem 2004; 279 (5): 3743–8

  44. 44.

    Middlemiss JK, Poole K. Differential impact of MexB mutations on substrate selectivity of the MexAB-OprM multidrug efflux pump of Pseudomonas aeruginosa. J Bacteriol 2004; 186 (5): 1258-69

  45. 45.

    Takatsuka Y, Nikaido H. Threonine-978 in the transmembrane segment of the multidrug efflux pump AcrB of Escherichia coli is crucial for drug transport as a probable component of the proton relay network. J Bacteriol 2006; 188 (20): 7284–9

  46. 46.

    Su CC, Li M, Gu R, et al. Conformation of the AcrB multidrug efflux pump in mutants of the putative proton relay pathway. J Bacteriol 2006; 188 (20): 7290–6

  47. 47.

    Bohnert JA, Schuster S, Fahnrich E, et al. Altered spectrum of multidrug resistance associated with a single point mutation in the Escherichia coli RND-type MDR efflux pump YhiV (MdtF). J Antimicrob Chemother 2007; 59 (6): 1216–22

  48. 48.

    Das D, Xu QS, Lee JY, et al. Crystal structure of the multidrug efflux transporter AcrB at 3.1A resolution reveals the N-terminal region with conserved amino acids. J Struct Biol 2007; 158 (3): 494–502

  49. 49.

    Dastidar V, Mao W, Lomovskaya O, et al. Drug-induced conformational changes in multidrug efflux transporter AcrB from Haemophilus influenzae. J Bacteriol 2007; 189 (15): 5550–8

  50. 50.

    Bohnert JA, Schuster S, Seeger MA, et al. Site-directed mutagenesis reveals putative substrate binding residues in the Escherichia coli RND efflux pump AcrB. J Bacteriol 2008; 190 (24): 8225–9

  51. 51.

    Wehmeier C, Schuster S, Fahnrich E, et al. Site-directed mutagenesis reveals amino acid residues in the Escherichia coli RND efflux pump AcrB that confer macrolide resistance. Antimicrob Agents Chemother 2009; 53 (1): 329–30

  52. 52.

    Seeger MA, von Ballmoos C, Verrey F, et al. Crucial role of Asp408 in the proton translocation pathway of multidrug transporter AcrB: evidence from site-directed mutagenesis and carbodiimide labeling. Biochemistry 2009; 48 (25): 5801–12

  53. 53.

    Aires JR, Nikaido H. Aminoglycosides are captured from both periplasm and cytoplasm by the AcrD multidrug efflux transporter of Escherichia coli. J Bacteriol 2005; 187 (6): 1923–9

  54. 54.

    Li X-Z, Ma D, Livermore DM, et al. Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: active efflux as a contributing factor to β-lactam resistance. Antimicrob Agents Chemother 1994; 38 (8): 1742–52

  55. 55.

    Murakami S, Nakashima R, Yamashita E, et al. Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature 2006; 443(7108): 173–9

  56. 56.

    Seeger MA, Schiefner A, Eicher T, et al. Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science 2006; 313 (5791): 1295–8

  57. 57.

    Sennhauser G, Amstutz P, Briand C, et al. Drug export pathway of multidrug exporter AcrB revealed by DARPin inhibitors. PLoS Biol 2007; 5 (1): e7

  58. 58.

    Mikolosko J, Bobyk K, Zgurskaya HI, et al. Conformational flexibility in the multidrug efflux system protein AcrA. Structure 2006; 14 (3): 577–87

  59. 59.

    Bavro VN, Pietras Z, Furnham N, et al. Assembly and channel opening in a bacterial drug efflux machine. Mol Cell 2008; 30 (1): 114–21

  60. 60.

    Yin Y, He X, Szewczyk P, et al. Structure of the multidrug transporter EmrD from Escherichia coli. Science 2006; 312 (5774): 741–4

  61. 61.

    Symmons MF, Bokma E, Koronakis E, et al. The assembled structure of a complete tripartite bacterial multidrug efflux pump. Proc Natl Acad Sci U S A 2009; 106 (17): 7173–8

  62. 62.

    Sennhauser G, Bukowska MA, Briand C, et al. Crystal structure of the multidrug exporter MexB from Pseudomonas aeruginosa. J Mol Biol 2009; 389 (1): 134–45

  63. 63.

    Takatsuka Y, Nikaido H. Site-directed disulfide crosslinking shows that cleft flexibility in the periplasmic domain is needed for the multidrug efflux pump AcrB of Escherichia coli. J Bacteriol 2007; 189 (23): 8677–84

  64. 64.

    Seeger MA, von Ballmoos C, Eicher T, et al. Engineered disulfide bonds support the functional rotation mechanism of multidrug efflux pump AcrB. Nat Struct Mol Biol 2008; 15 (2): 199–205

  65. 65.

    Takatsuka Y, Nikaido H. Covalently linked trimer of the AcrB multidrug efflux pump provides support for the functional rotating mechanism. J Bacteriol 2009; 191 (6): 1729–37

  66. 66.

    Zgurskaya HI. Covalently linked AcrB giant offers a new powerful tool for mechanistic analysis of multidrug efflux in bacteria. J Bacteriol 2009; 191 (6): 1727–8

  67. 67.

    Su CC, Yu EW. Ligand-transporter interaction in the AcrB multidrug efflux pump determined by fluorescence polarization assay. FEBS Lett 2007; 581 (25): 4972–6

  68. 68.

    Nagano K, Nikaido H. Kinetic behavior of the major multidrug efflux pump AcrB of Escherichia coli. Proc Natl Acad Sci U S A 2009; 106 (14): 5854–8

  69. 69.

    Alguel Y, Meng C, Teran W, et al. Crystal structures of multidrug binding protein TtgR in complex with antibiotics and plant antimicrobials. JMol Biol 2007; 369 (3): 829–40

  70. 70.

    Li M, Gu R, Su CC, et al. Crystal structure of the transcriptional regulator AcrR from Escherichia coli. J Mol Biol 2007; 374 (3): 591–603

  71. 71.

    Lee A, Mao W, Warren MS, et al. Interplay between efflux pumps may provide either additive or multiplicative effects on drug resistance. J Bacteriol 2000; 182 (11): 3142–50

  72. 72.

    Abramson J, Smirnova I, Kasho V, et al. Structure and mechanism of the lactose permease of Escherichia coli. Science 2003; 301 (5633): 610–5

  73. 73.

    Huang Y, Lemieux MJ, Song J, et al. Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 2003; 301 (5633): 616–20

  74. 74.

    Law CJ, Maloney PC, Wang DN. Ins and outs of major facilitator superfamily antiporters. Annu Rev Microbiol 2008; 62: 289–305

  75. 75.

    Nishino K, Yamaguchi A. Analysis of a complete library of putative drug transporter genes in Escherichia coli. J Bacteriol 2001; 183 (20): 5803–12

  76. 76.

    Sigal N, Lewinson O, Wolf SG, et al. E. coli multidrug transporter MdfA is a monomer. Biochemistry 2007; 46 (17): 5200–8

  77. 77.

    Fluman N, Bibi E. Bacterial multidrug transport through the lens of the major facilitator superfamily. Biochim Biophys Acta 2009; 1794 (5): 738–47

  78. 78.

    Mazurkiewicz P, Poelarends GJ, Driessen AJ, et al. Facilitated drug influx by an energy-uncoupled secondary multidrug transporter. J Biol Chem 2004; 279 (1): 103–8

  79. 79.

    Hassan KA, Souhani T, Skurray RA, et al. Analysis of tryptophan residues in the staphylococcal multidrug transporter QacA reveals long-distance functional associations of residues on opposite sides of the membrane. J Bacteriol 2008; 190 (7): 2441–9

  80. 80.

    Tanabe M, Szakonyi G, Brown KA, et al. The multidrug resistance efflux complex, EmrAB from Escherichia coli forms a dimer in vitro. Biochem Biophys Res Commun 2009; 380 (2): 338–42

  81. 81.

    Omote H, Hiasa M, Matsumoto T, et al. The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends Pharmacol Sci 2006; 27 (11): 587–93

  82. 82.

    Otsuka M, Matsumoto T, Morimoto R, et al. A human transporter protein that mediates the final excretion step for toxic organic cations. Proc Natl Acad Sci U S A 2005; 102 (50): 17923–8

  83. 83.

    Matsumoto T, Kanamoto T, Otsuka M, et al. Role of glutamate residues in substrate recognition by human MATE1 polyspecific H+/organic cation exporter. Am J Physiol Cell Physiol 2008; 294 (4): C1074–8

  84. 84.

    Hiasa M, Matsumoto T, Komatsu T, et al. Functional characterization of testis-specific rodent multidrug and toxic compound extrusion 2, a class III MATE-type polyspecific H+/organic cation exporter. Am J Physiol Cell Physiol 2007; 293 (5): C1437–44

  85. 85.

    Bay DC, Rommens KL, Turner RJ. Small multidrug resistance proteins: a multidrug transporter family that continues to grow. Biochim Biophys Acta 2008; 1778 (9): 1814–38

  86. 86.

    Li X-Z, Poole K, Nikaido H. Contributions of MexABOprM and an EmrE homolog to intrinsic resistance of Pseudomonas aeruginosa to aminoglycosides and dyes. Antimicrob Agents Chemother 2003; 47 (1): 27–33

  87. 87.

    Schuldiner S. EmrE: a model for studying evolution and mechanism of ion-coupled transporters. Biochim Biophys Acta 2009; 1794 (5): 748–62

  88. 88.

    Tal N, Schuldiner S. A coordinated network of transporters with overlapping specificities provides a robust survival strategy. Proc Natl Acad Sci U S A 2009; 106 (22): 9051–6

  89. 89.

    Schuldiner S. When biochemistry meets structural biology: the cautionary tale of EmrE. Trends Biochem Sci 2007; 32 (6): 252–8

  90. 90.

    Fleishman SJ, Harrington SE, Enosh A, et al. Quasi-symmetry in the cryo-EM structure of EmrE provides the key to modeling its transmembrane domain. J Mol Biol 2006; 364 (1): 54–67

  91. 91.

    Chen YJ, Pornillos O, Lieu S, et al. X-ray structure of EmrE supports dual topology model. Proc Natl Acad Sci U S A 2007; 104 (48): 18999–9004

  92. 92.

    Rapp M, Seppala S, Granseth E, et al. Emulating membrane protein evolution by rational design. Science 2007; 315 (5816): 1282–4

  93. 93.

    Kikukawa T, Nara T, Araiso T, et al. Two-component bacterial multidrug transporter, EbrAB: mutations making each component solely functional. Biochim Biophys Acta 2006; 1758 (5): 673–9

  94. 94.

    Kikukawa T, Miyauchi S, Araiso T, et al. Anti-parallel membrane topology of two components of EbrAB, a multidrug transporter. Biochem Biophys Res Commun 2007; 358 (4): 1071–5

  95. 95.

    Steiner-Mordoch S, Soskine M, Solomon D, et al. Parallel topology of genetically fused EmrE homodimers. EMBO J 2008; 27 (1): 17–26

  96. 96.

    Korkhov VM, Tate CG. An emerging consensus for the structure of EmrE. Acta Crystallogr D Biol Crystallogr 2009; 65 (2): 186–92

  97. 97.

    Poulsen BE, Rath A, Deber CM. The assembly motif of a bacterial small multidrug resistance protein. J Biol Chem 2009; 284 (15): 9870–5

  98. 98.

    Dawson RJP, Locher KP. Structure of a bacterial multidrug ABC transporter. Nature 2006; 443 (7108): 180–5

  99. 99.

    Davidson AL, Chen J. ATP-binding cassette transporters in bacteria. Annu Rev Biochem 2004; 73: 241–68

  100. 100.

    Hollenstein K, Dawson RJ, Locher KP. Structure and mechanism of ABC transporter proteins. Curr Opin Struct Biol 2007; 17 (4): 412–8

  101. 101.

    Schuldiner S. Structural biology: the ins and outs of drug transport. Nature 2006; 443 (7108): 156–7

  102. 102.

    Kim SH, Chang AB, Saier Jr MH. Sequence similarity between multidrug resistance efflux pumps of the ABC and RND superfamilies. Microbiology 2004; 150 (Pt 8): 2493–5

  103. 103.

    Ward A, Reyes CL, Yu J, et al. Flexibility in the ABC transporter MsbA: alternating access with a twist. Proc Natl Acad Sci U S A 2007; 104 (48): 19005–10

  104. 104.

    Velamakanni S, Yao Y, Gutmann DA, et al. Multidrug transport by the ABC transporter Sav1866 from Staphylococcus aureus. Biochemistry 2008; 47 (35): 9300–8

  105. 105.

    Venter H, Shilling RA, Velamakanni S, et al. An ABC transporter with a secondary-active multidrug translocator domain. Nature 2003; 426 (6968): 866–70

  106. 106.

    Venter H, Velamakanni S, Balakrishnan L, et al. On the energy-dependence of Hoechst 33342 transport by the ABC transporter LmrA. Biochem Pharmacol 2008; 75 (4): 866–74

  107. 107.

    Zgurskaya HI, Yamada Y, Tikhonova EB, et al. Structural and functional diversity of bacterial membrane fusion proteins. Biochim Biophys Acta 2009; 1794 (5): 794–807

  108. 108.

    Akama H, Matsuura T, Kashiwagi S, et al. Crystal structure of the membrane fusion protein, MexA, of the multidrug transporter in Pseudomonas aeruginosa. J Biol Chem 2004; 279 (25): 25939–42

  109. 109.

    Higgins MK, Bokma E, Koronakis E, et al. Structure of the periplasmic component of a bacterial drug efflux pump. Proc Natl Acad Sci U S A 2004; 101 (27): 9994–9

  110. 110.

    Ge Q, Yamada Y, Zgurskaya H. The C-terminal domain of AcrA is essential for the assembly and function of the multidrug efflux pump AcrAB-TolC. J Bacteriol 2009; 191 (13): 4365–71

  111. 111.

    Yum S, Xu Y, Piao S, et al. Crystal structure of the periplasmic component of a tripartite macrolide-specific efflux pump. J Mol Biol 2009; 387 (5): 1286–97

  112. 112.

    Ip H, Stratton K, Zgurskaya H, et al. pH-induced conformational changes of AcrA, the membrane fusion protein of Escherichia coli multidrug efflux system. J Biol Chem 2003; 278 (50): 50474–82

  113. 113.

    Vaccaro L, Koronakis V, Sansom MS. Flexibility in a drug transport accessory protein: molecular dynamics simulations of MexA. Biophys J 2006; 91 (2): 558–64

  114. 114.

    Touze T, Eswaran J, Bokma E, et al. Interactions underlying assembly of the Escherichia coli AcrAB-TolC multidrug efflux system. Mol Microbiol 2004; 53 (2): 697–706

  115. 115.

    Mokhonov VV, Mokhonova EI, Akama H, et al. Role of the membrane fusion protein in the assembly of resistance-nodulation-cell division multidrug efflux pump in Pseudomonas aeruginosa. Biochem Biophys Res Commun 2004; 322 (2): 483–9

  116. 116.

    Nehme D, Li X-Z, Elliot R, et al. Assembly of theMexAB-OprM multidrug efflux system of Pseudomonas aeruginosa: identification and characterization of mutations in mexA compromising MexA multimerization and interaction with MexB. J Bacteriol 2004; 186 (10): 2973–83

  117. 117.

    Eda S, Maseda H, Yoshihara E, et al. Assignment of the outer-membrane-subunit-selective domain of the membrane fusion protein in the tripartite xenobiotic efflux pump of Pseudomonas aeruginosa. FEMS Microbiol Lett 2006; 254 (1): 101–7

  118. 118.

    Stegmeier JF, Polleichtner G, Brandes N, et al. Importance of the adaptor (membrane fusion) protein hairpin domain for the functionality of multidrug efflux pumps. Biochemistry 2006; 45 (34): 10303–12

  119. 119.

    Nehme D, Poole K. Assembly of the MexAB-OprM multidrug pump of Pseudomonas aeruginosa: component interactions defined by the study of pump mutant suppressors. J Bacteriol 2007; 189 (17): 6118–27

  120. 120.

    Elkins CA, Nikaido H. Chimeric analysis of AcrA function reveals the importance of its C-terminal domain in its interaction with the AcrB multidrug efflux pump. J Bacteriol 2003; 185 (18): 5349–56

  121. 121.

    Nehme D, Poole K. Interaction of the MexA and MexB components of the MexAB-OprM multidrug efflux system of Pseudomonas aeruginosa: identification of MexA extragenic suppressors of a T578I mutation in MexB. Antimicrob Agents Chemother 2005; 49 (10): 4375–8

  122. 122.

    Krishnamoorthy G, Tikhonova EB, Zgurskaya HI. Fitting periplasmic membrane fusion proteins to inner membrane transporters: mutations that enable Escherichia coli AcrA to function with Pseudomonas aeruginosa MexB. J Bacteriol 2008; 190 (2): 691–8

  123. 123.

    Mima T, Joshi S, Gomez-Escalada M, et al. Identification and characterization of TriABC-OpmH, a triclosan efflux pump of Pseudomonas aeruginosa requiring two membrane fusion proteins. J Bacteriol 2007; 189 (21): 7600–9

  124. 124.

    Zgurskaya HI, Nikaido H. Bypassing the periplasm: reconstitution of the AcrAB multidrug efflux pump of Escherichia coli. Proc Natl Acad Sci U S A 1999; 96 (13): 7190–5

  125. 125.

    Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 2003; 67 (4): 593–656

  126. 126.

    Tatsumi R, Wachi M. TolC-dependent exclusion of porphyrins in Escherichia coli. J Bacteriol 2008; 190 (18): 6228–33

  127. 127.

    Akama H, Kanemaki M, Yoshimura M, et al. Crystal structure of the drug discharge outer membrane protein, OprM, of Pseudomonas aeruginosa: dual modes of membrane anchoring and occluded cavity end. J Biol Chem 2004; 279 (51): 52816–9

  128. 128.

    Federici L, Du D, Walas F, et al. The crystal structure of the outer membrane protein VceC from the bacterial pathogen Vibrio cholerae at 1.8 Å resolution. J Biol Chem 2005; 280 (15): 15307–14

  129. 129.

    Li X-Z, Poole K. Mutational analysis of the OprM outer membrane component of the MexA-MexB-OprM multidrug efflux system of Pseudomonas aeruginosa. J Bacteriol 2001; 183 (1): 12–27

  130. 130.

    Yoshihara E, Eda S. Diversity in the oligomeric channel structure of the multidrug efflux pumps in Pseudomonas aeruginosa. Microbiol Immunol 2007; 51 (1): 47–52

  131. 131.

    Gerken H, Misra R. Genetic evidence for functional interactions between TolC and AcrA proteins of a major antibiotic efflux pump of Escherichia coli. Mol Microbiol 2004; 54 (3): 620–31

  132. 132.

    Husain F, Humbard M, Misra R. Interaction between the TolC and AcrA proteins of a multidrug efflux system of Escherichia coli. J Bacteriol 2004; 186 (24): 8533–6

  133. 133.

    Lobedanz S, Bokma E, Symmons MF, et al. A periplasmic coiled-coil interface underlying TolC recruitment and the assembly of bacterial drug efflux pumps. Proc Natl Acad Sci U S A 2007; 104 (11): 4612–7

  134. 134.

    Tikhonova EB, Zgurskaya HI. AcrA, AcrB, and TolC of Escherichia coli form a stable intermembrane multidrug efflux complex. J Biol Chem 2004; 279 (31): 32116–24

  135. 135.

    Tamura N, Murakami S, Oyama Y, et al. Direct interaction of multidrug efflux transporter AcrB and outer membrane channel TolC detected via site-directed disulfide crosslinking. Biochemistry 2005; 44 (33): 11115–21

  136. 136.

    Eswaran J, Koronakis E, Higgins MK, et al. Three’s company: component structures bring a closer view of tripartite drug efflux pumps. Curr Opin Struct Biol 2004; 14 (6): 741–7

  137. 137.

    Misra R, Bavro VN. Assembly and transportmechanismof tripartite drug efflux systems. Biochim Biophys Acta 2009; 1794 (5): 817–25

  138. 138.

    Reffay M, Gambin Y, Benabdelhak H, et al. Tracking membrane protein association in model membranes. PLoS ONE 2009; 4 (4): e5035

  139. 139.

    Bokma E, Koronakis E, Lobedanz S, et al. Directed evolution of a bacterial efflux pump: adaptation of the E. coli TolC exit duct to the Pseudomonas MexAB translocase. FEBS Lett 2006; 580 (22): 5339–43

  140. 140.

    Vediyappan G, Borisova T, Fralick JA. Isolation and characterization of VceC gain-of-function mutants that can function with the AcrAB multiple-drug-resistant efflux pump of Escherichia coli. J Bacteriol 2006; 188 (11): 3757–62

  141. 141.

    Polleichtner G, Andersen C. The channel-tunnel HI1462 of Haemophilus influenzae reveals differences to Escherichia coli TolC. Microbiology 2006; 152 (Pt 6): 1639–47

  142. 142.

    Damier-Piolle L, Magnet S, Bremont S, et al. AdeIJK, a resistance-nodulation-cell division pump effluxing multiple antibiotics in Acinetobacter baumannii. Antimicrob Agents Chemother 2008; 52 (2): 557–62

  143. 143.

    Lin L, Ling BD, Li X-Z. Distribution of the multidrug efflux pump genes, adeABC, adeDE and adeIJK, and class 1 integron genes in multiple-antimicrobial-resistant clinical isolates of Acinetobacter baumannii-Acinetobacter calcoaceticus complex. Int J Antimicrob Agents 2009; 33 (1): 27–32

  144. 144.

    Chau SL, Chu YW, Houang ET. Novel resistance-nodulation-cell division efflux system AdeDE in Acinetobacter genomic DNA group 3. Antimicrob Agents Chemother 2004; 48 (10): 4054–5

  145. 145.

    Chu YW, Chau SL, Houang ET. Presence of active efflux systems AdeABC, AdeDE and AdeXYZ in different Acinetobacter genomic DNA groups. J Med Microbiol 2006; 55 (Pt 4): 477–8

  146. 146.

    Espinal PA, Marti S, Sanchez-Cespedes J, et al. First detection of adeC component of the efflux pump AdeABC in an Acinetobacter genospecies 13TU [abstract no. C1- 1049]. 48th ICAAC/IDSA 46th Annual Meeting; 2008 Oct 25–28; Washington, DC

  147. 147.

    Hernould M, Gagne S, Fournier M, et al. Role of the AheABC efflux pump in Aeromonas hydrophila intrinsic multidrug resistance. Antimicrob Agents Chemother 2008; 52 (4): 1559–63

  148. 148.

    Wexler HM. Bacteroides: the good, the bad, and the nittygritty. Clin Microbiol Rev 2007; 20 (4): 593–621

  149. 149.

    Ueda O, Wexler HM, Hirai K, et al. Sixteen homologs of the mex-type multidrug resistance efflux pump in Bacteroides fragilis. Antimicrob Agents Chemother 2005; 49 (7): 2807–15

  150. 150.

    Pumbwe L, Chang A, Smith RL, et al. BmeRABC5 is a multidrug efflux system that can confer metronidazole resistance in Bacteroides fragilis. Microb Drug Resist 2007; 13 (2): 96–101

  151. 151.

    Posadas DM, Martin FA, Sabio y Garcia JV, et al. The TolC homologue of Brucella suis is involved in resistance to antimicrobial compounds and virulence. Infect Immun 2007; 75 (1): 379–89

  152. 152.

    Martin FA, Posadas DM, Carrica MC, et al. Interplay between two RND systems mediating antimicrobial resistance in Brucella suis. J Bacteriol 2009; 191 (8): 2530–40

  153. 153.

    Nair BM, Cheung Jr KJ, Griffith A, et al. Salicylate induces an antibiotic efflux pump in Burkholderia cepacia complex genomovar III (B. cenocepacia). J Clin Invest 2004; 113 (3): 464–73

  154. 154.

    Guglierame P, Pasca MR, De Rossi E, et al. Efflux pump genes of the resistance-nodulation-division family in Burkholderia cenocepacia genome. BMC Microbiol 2006; 6: 66

  155. 155.

    Kim J, Kim JG, Kang Y, et al. Quorum sensing and the LysR-type transcriptional activator ToxR regulate toxoflavin biosynthesis and transport in Burkholderia glumae. Mol Microbiol 2004; 54 (4): 921–34

  156. 156.

    Chan YY, Tan TM, Ong YM, et al. BpeAB-OprB, a multidrug efflux pump in Burkholderia pseudomallei. Antimicrob Agents Chemother 2004; 48 (4): 1128–35

  157. 157.

    Chan YY, Chua KL. The Burkholderia pseudomallei BpeAB-OprB efflux pump: expression and impact on quorum sensing and virulence. J Bacteriol 2005; 187 (14): 4707–19

  158. 158.

    Kumar A, Chua KL, Schweizer HP. Method for regulated expression of single-copy efflux pump genes in a surrogate Pseudomonas aeruginosa strain: identification of the BpeEF-OprC chloramphenicol and trimethoprim efflux pump of Burkholderia pseudomallei 1026b. Antimicrob Agents Chemother 2006; 50 (10): 3460–3

  159. 159.

    Akiba M, Lin J, Barton YW, et al. Interaction of CmeABC and CmeDEF in conferring antimicrobial resistance and maintaining cell viability in Campylobacter jejuni. J Antimicrob Chemother 2006; 57 (1): 52–60

  160. 160.

    Pumbwe L, Randall LP, Woodward MJ, et al. Evidence for multiple-antibiotic resistance in Campylobacter jejuni not mediated by CmeB or CmeF. Antimicrob Agents Chemother 2005; 49 (4): 1289–93

  161. 161.

    Tokunaga H, Mitsuo K, Ichinose S, et al. Salt-inducible multidrug efflux pump protein in the moderately halophilic bacterium Chromohalobacter sp. Appl Environ Microbiol 2004; 70 (8): 4424–31

  162. 162.

    Masi M, Pages JM, Villard C, et al. The eef ABC multidrug efflux pump operon is repressed by H-NS in Enterobacter aerogenes. J Bacteriol 2005; 187 (11): 3894–7

  163. 163.

    Masi M, Saint N, Molle G, et al. The Enterobacter aerogenes outer membrane efflux proteins TolC and EefC have different channel properties. Biochim Biophys Acta 2007; 1768 (10): 2559–67

  164. 164.

    Perez A, Canle D, Latasa C, et al. Cloning, nucleotide sequencing, and analysis of the AcrAB-TolC efflux pump of Enterobacter cloacae and determination of its involvement in antibiotic resistance in a clinical isolate. Antimicrob Agents Chemother 2007; 51 (9): 3247–53

  165. 165.

    Burse A, Weingart H, Ullrich MS. The phytoalexin-inducible multidrug efflux pump AcrAB contributes to virulence in the fire blight pathogen, Erwinia amylovora. Mol Plant Microbe Interact 2004; 17 (1): 43–54

  166. 166.

    Hansen LH, Johannesen E, Burmolle M, et al. Plasmid-encoded multidrug efflux pump conferring resistance to olaquindox in Escherichia coli. Antimicrob Agents Chemother 2004; 48 (9): 3332–7

  167. 167.

    Hansen LH, Sorensen SJ, Jorgensen HS, et al. The prevalence of the OqxAB multidrug efflux pump amongst olaquindox-resistant Escherichia coli in pigs. Microb Drug Resist 2005; 11 (4): 378–82

  168. 168.

    Hansen LH, Jensen LB, Sorensen HI, et al. Substrate specificity of the OqxAB multidrug resistance pump in Escherichia coli and selected enteric bacteria. J Antimicrob Chemother 2007; 60 (1): 145–7

  169. 169.

    Kaczmarek FS, Gootz TD, Dib-Hajj F, et al. Genetic and molecular characterization of β-lactamase-negative ampicillin-resistant Haemophilus influenzae with unusually high resistance to ampicillin. Antimicrob Agents Chemother 2004; 48 (5): 1630–9

  170. 170.

    Cerquetti M, Giufre M, Cardines R, et al. First characterization of heterogeneous resistance to imipenem in invasive nontypeable Haemophilus influenzae isolates. Antimicrob Agents Chemother 2007; 51 (9): 3155–61

  171. 171.

    Stahler FN, Odenbreit S, Haas R, et al. The novel Helicobacter pylori CznABC metal efflux pump is required for cadmium, zinc, and nickel resistance, urease modulation, and gastric colonization. Infect Immun 2006; 74 (7): 3845–52

  172. 172.

    Bina JE, Alm RA, Uria-Nickelsen M, et al. Helicobacter pylori uptake and efflux: basis for intrinsic susceptibility to antibiotics in vitro. Antimicrob Agents Chemother 2000; 44 (2): 248–54

  173. 173.

    Liu ZQ, Zheng PY, Yang PC. Efflux pump gene hefA of Helicobacter pylori plays an important role in multidrug resistance. World J Gastroenterol 2008; 14 (33): 5217–22

  174. 174.

    Kutschke A, de Jonge BL. Compound efflux in Helicobacter pylori. Antimicrob Agents Chemother 2005; 49 (7): 3009–10

  175. 175.

    Schneiders T, Amyes SG, Levy SB. Role of AcrR and RamA in fluoroquinolone resistance in clinical Klebsiella pneumoniae isolates from Singapore. Antimicrob Agents Chemother 2003; 47 (9): 2831–7

  176. 176.

    Ruzin A, Visalli MA, Keeney D, et al. Influence of transcriptional activator RamA on expression of multidrug efflux pump AcrAB and tigecycline susceptibility in Klebsiella pneumoniae. Antimicrob Agents Chemother 2005; 49 (3): 1017–22

  177. 177.

    Mazzariol A, Zuliani J, Cornaglia G, et al. AcrAB efflux system: expression and contribution to fluoroquinolone resistance in Klebsiella spp. Antimicrob Agents Chemother 2002; 46 (12): 3984–6

  178. 178.

    Coudeyras S, Nakusi L, Charbonnel N, et al. A tripartite efflux pump involved in gastrointestinal colonization by Klebsiella pneumoniae confers a tolerance response to inorganic acid. Infect Immun 2008; 76 (10): 4633–41

  179. 179.

    Ruzin A, Keeney D, Bradford PA. AcrAB efflux pump plays a role in decreased susceptibility to tigecycline in Morganella morganii. Antimicrob Agents Chemother 2005; 49 (2): 791–3

  180. 180.

    Pasca MR, Guglierame P, De Rossi E, et al. mmpL7 gene of Mycobacterium tuberculosis is responsible for isoniazid efflux in Mycobacterium smegmatis. Antimicrob Agents Chemother 2005; 49 (11): 4775–7

  181. 181.

    Lee EH, Hill SA, Napier R, et al. Integration host factor is required for FarAB-repression of the farAB-encoded efflux pump of Neisseria gonorrhoeae. Mol Microbiol 2006; 60 (6): 1381–400

  182. 182.

    Hatfaludi T, Al-Hasani K, Dunstone M, et al. Characterization of TolC efflux pump proteins from Pasteurella multocida. Antimicrob Agents Chemother 2008; 52 (11): 4166–71

  183. 183.

    Visalli MA, Murphy E, Projan SJ, et al. AcrAB multidrug efflux pump is associated with reduced levels of susceptibility to tigecycline (GAR-936) in Proteus mirabilis. Antimicrob Agents Chemother 2003; 47 (2): 665–9

  184. 184.

    Li X-Z, Nikaido H, Poole K. Role of MexA-MexB-OprM in antibiotic efflux in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1995; 39 (9): 1948–53

  185. 185.

    Daigle DM, Cao L, Fraud S, et al. Protein modulator of multidrug efflux gene expression in Pseudomonas aeruginosa. J Bacteriol 2007; 189 (15): 5441–51

  186. 186.

    Cao L, Srikumar R, Poole K. MexAB-OprM hyperexpression in NalC-type multidrug-resistant Pseudomonas aeruginosa: identification and characterization of the nalC gene encoding a repressor of PA3720-PA3719. Mol Microbiol 2004; 53 (5): 1423–36

  187. 187.

    Sobel ML, Hocquet D, Cao L, et al. Mutations in PA3574 (nalD) lead to increased MexAB-OprM expression and multidrug resistance in laboratory and clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2005; 49 (5): 1782–6

  188. 188.

    Mima T, Sekiya H, Mizushima T, et al. Gene cloning and properties of the RND-type multidrug efflux pumps MexPQ-OpmE and MexMN-OprM from Pseudomonas aeruginosa. Microbiol Immunol 2005; 49 (11): 999–1002

  189. 189.

    Li Y, Mima T, Komori Y, et al. A new member of the tripartite multidrug efflux pumps, MexVW-OprM, in Pseudomonas aeruginosa. J Antimicrob Chemother 2003; 52 (4): 572–5

  190. 190.

    Hearn EM, Dennis JJ, Gray MR, et al. Identification and characterization of the emh ABC efflux system for polycyclic aromatic hydrocarbons in Pseudomonas fluorescens cLP6a. J Bacteriol 2003; 185(21):6233–40

  191. 191.

    Hearn EM, Gray MR, Foght JM. Mutations in the central cavity and periplasmic domain affect efflux activity of the resistance-nodulation-division pump EmhB from Pseudomonas fluorescens cLP6a. J Bacteriol 2006; 188 (1): 115–23

  192. 192.

    Jude F, Arpin C, Brachet-Castang C, et al. TbtABM, a multidrug efflux pump associated with tributyltin resistance in Pseudomonas stutzeri. FEMS Microbiol Lett 2004; 232 (1): 7–14

  193. 193.

    Stoitsova SO, Braun Y, Ullrich MS, et al. Characterization of the RND-type multidrug efflux pump MexAB-OprM of the plant pathogen Pseudomonas syringae. Appl Environ Microbiol 2008; 74 (11): 3387–93

  194. 194.

    Kang H, Gross DC. Characterization of a resistance-nodulation-cell division transporter system associated with the syr-syp genomic island of Pseudomonas syringae pv. syringae. Appl Environ Microbiol 2005; 71 (9): 5056–65

  195. 195.

    Brown DG, Swanson JK, Allen C. Two host-induced Ralstonia solanacearum genes, acrA and dinF, encode multidrug efflux pumps and contribute to bacterial wilt virulence. Appl Environ Microbiol 2007; 73 (9): 2777–86

  196. 196.

    Nishino K, Latifi T, Groisman EA. Virulence and drug resistance roles of multidrug efflux systems of Salmonella enterica serovar Typhimurium. Mol Microbiol 2006; 59 (1): 126–41

  197. 197.

    Kumar A, Worobec EA. Cloning sequencing, and characterization of the SdeAB multidrug efflux pump of Serratia marcescens. Antimicrob Agents Chemother 2005; 49 (4): 1495–1

  198. 198.

    Begic S, Worobec EA. The role of the Serratia marcescens SdeAB multidrug efflux pump and TolC homologue in fluoroquinolone resistance studied via gene-knockout mutagenesis. Microbiology 2008; 154 (Pt 2): 454–61

  199. 199.

    Begic S, Worobec EA. Characterization of the Serratia marcescens SdeCDE multidrug efflux pump studied via gene knockout mutagenesis. Can J Microbiol 2008; 54 (5): 411–6

  200. 200.

    Chen J, Kuroda T, Huda MN, et al. An RND-type multidrug efflux pump SdeXY from Serratia marcescens. J Antimicrob Chemother 2003; 52 (2): 176-9

  201. 201.

    Gristwood T, Fineran PC, Everson L, et al. PigZ, a TetR/AcrR family repressor, modulates secondary metabolism via the expression of a putative four-component resistance-nodulation-cell-division efflux pump, ZrpADBC, in Serratia sp. ATCC 39006. Mol Microbiol 2008; 69 (2): 418–35

  202. 202.

    Crossman LC, Gould VC, Dow JM, et al. The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants. Genome Biol 2008; 9 (4): R74

  203. 203.

    Bina JE, Provenzano D, Wang C, et al. Characterization of the Vibrio cholerae vexAB and vexCD efflux systems. Arch Microbiol 2006; 186 (3): 171–81

  204. 204.

    Cerda FA, Ringelberg CS, Taylor RK. The bile response repressor, BreR, regulates expression of the Vibrio cholerae breAB efflux system operon. J Bacteriol 2008; 190 (22): 7441–52

  205. 205.

    Rahman MM, Matsuo T, Ogawa W, et al. Molecular cloning and characterization of all RND-type efflux transporters in Vibrio cholerae non-O1. Microbiol Immunol 2007; 51 (11): 1061–70

  206. 206.

    Matsuo T, Hayashi K, Morita Y, et al. VmeAB, an RND-type multidrug efflux transporter in Vibrio parahaemolyticus. Microbiology 2007; 153 (Pt 12): 4129–37

  207. 207.

    Gebreyes W, Srinivasan V, Rajamohan G, et al. Novel secondary active transporters conferring antimicrobial resistance in Acinetobacter baumannii with broad substrate specificity [abstract no. C1-1048]. 48th ICAAC/IDSA 46th Annual Meeting; 2008 Oct 25–28;Washington, DC

  208. 208.

    Ohki R, Tateno K. Increased stability of bmr3 mRNA results in a multidrug-resistant phenotype in Bacillus subtilis. J Bacteriol 2004; 186 (21): 7450–5

  209. 209.

    Ohki R, Murata M. bmr3, a third multidrug transporter gene of Bacillus subtilis. J Bacteriol 1997; 179 (4): 1423–7

  210. 210.

    Murata M, Ohno S, Kumano M, et al. Multidrug resistant phenotype of Bacillus subtilis spontaneous mutants isolated in the presence of puromycin and lincomycin. Can J Microbiol 2003; 49 (2): 71–7

  211. 211.

    Yoshida K, Ohki YH, Murata M, et al. Bacillus subtilis LmrA is a repressor of the lmrAB and yxaGH operons: identification of its binding site and functional analysis of lmrB and yxaGH. J Bacteriol 2004; 186 (17): 5640–8

  212. 212.

    Kim J-Y, Inaoka T, Hirooka K, et al. Identification and characterization of a novel multidrug resistance operon mdtRP (yusOP) of Bacillus subtilis. J Bacteriol 2009; 191 (10): 3273–81

  213. 213.

    Kadlec K, Kehrenberg C, Schwarz S. Efflux-mediated resistance to florfenicol and/or chloramphenicol in Bordetella bronchiseptica: identification of a novel chloramphenicol exporter. J Antimicrob Chemother 2007; 59 (2): 191–6

  214. 214.

    Lebel S, Bouttier S, Lambert T. The cme gene of Clostridium difficile confers multidrug resistance in Enterococcus faecalis. FEMS Microbiol Lett 2004; 238 (1): 93–100

  215. 215.

    Kazimierczak KA, Rincon MT, Patterson AJ, et al. A new tetracycline efflux gene, tet(40), is located in tandem with tet(O/32/O) in a human gut firmicute bacterium and in metagenomic library clones. Antimicrob Agents Chemother 2008; 52 (11): 4001–9

  216. 216.

    Park YJ, Yu JK, Kim SI, et al. Accumulation of plasmid-mediated fluoroquinolone resistance genes, qepA and qnrS1, in enterobacter aerogenes co-producing RmtB and class A β-lactamase LAP-1. Ann Clin Lab Sci 2009; 39(1): 55–9

  217. 217.

    Nishioka T, Ogawa W, Kuroda T, et al. Gene cloning and characterization of EfmA, a multidrug efflux pump, from Enterococcus faecium. Biol Pharm Bull 2009; 32 (3): 483–8

  218. 218.

    Liu J, Keelan P, Bennett PM, et al. Characterization of a novel macrolide efflux gene, mef(B), found linked to sul3 in porcine Escherichia coli. J Antimicrob Chemother 2009; 63 (3): 423–6

  219. 219.

    Cattoir V, Poirel L, Nordmann P. Plasmid-mediated quinolone resistance pump QepA2 in an Escherichia coli isolate from France. Antimicrob Agents Chemother 2008; 52 (10): 3801–4

  220. 220.

    Baudry PJ, Nichol K, DeCorby M, et al. Mechanisms of resistance and mobility among multidrug-resistant CTXM-producing Escherichia coli from Canadian intensive care units: the 1st report of QepA in North America. Diagn Microbiol Infect Dis 2009; 63 (3): 319–26

  221. 221.

    Morrison S, Ward A, Hoyle CJ, et al. Cloning, expression, purification and properties of a putative multidrug resistance efflux protein from Helicobacter pylori. Int J Antimicrob Agents 2003; 22 (3): 242–9

  222. 222.

    Ogawa W, Koterasawa M, Kuroda T, et al. KmrA multidrug efflux pump from Klebsiella pneumoniae. Biol Pharm Bull 2006; 29 (3): 550–3

  223. 223.

    Romanova NA, Wolffs PF, Brovko LY, et al. Role of efflux pumps in adaptation and resistance of Listeria monocytogenes to benzalkonium chloride. Appl Environ Microbiol 2006; 72 (5): 3498–503

  224. 224.

    Godreuil S, Galimand M, Gerbaud G, et al. Efflux pump Lde is associated with fluoroquinolone resistance in Listeria monocytogenes. Antimicrob Agents Chemother 2003; 47 (2): 704–8

  225. 225.

    Lismond A, Tulkens PM, Mingeot-Leclercq MP, et al. Cooperation between prokaryotic (Lde) and eukaryotic (MRP) efflux transporters in J774 macrophages infected with Listeria monocytogenes: studies with ciprofloxacin and moxifloxacin. Antimicrob Agents Chemother 2008; 52 (9): 3040–6

  226. 226.

    Huillet E, Velge P, Vallaeys T, et al. LadR, a new PadR-related transcriptional regulator from Listeria monocytogenes, negatively regulates the expression of the multidrug efflux pump MdrL. FEMS Microbiol Lett 2006; 254 (1): 87–94

  227. 227.

    Crimmins GT, Herskovits AA, Rehder K, et al. Listeria monocytogenes multidrug resistance transporters activate a cytosolic surveillance pathway of innate immunity. Proc Natl Acad Sci U S A 2008; 105 (29): 10191–6

  228. 228.

    Li X-Z, Zhang L, Nikaido H. Efflux pump-mediated intrinsic drug resistance in Mycobacterium smegmatis. Antimicrob Agents Chemother 2004; 48 (7): 2415–23

  229. 229.

    Buroni S, Manina G, Guglierame P, et al. LfrR is a repressor that regulates expression of the efflux pump LfrA in Mycobacterium smegmatis. Antimicrob Agents Chemother 2006; 50 (12): 4044–52

  230. 230.

    Gil F, Ipinza F, Fuentes J, et al. The ompW (porin) gene mediates methyl viologen (paraquat) efflux in Salmonella enterica serovar Typhimurium. Res Microbiol 2007; 158 (6): 529–36

  231. 231.

    Shahcheraghi F, Minato Y, Chen J, et al. Molecular cloning and characterization of a multidrug efflux pump, SmfY, from Serratia marcescens. Biol Pharm Bull 2007; 30 (4): 798–800

  232. 232.

    Huang J, O’Toole PW, Shen W, et al. Novel chromosomally encoded multidrug efflux transporter MdeA in Staphylococcus aureus. Antimicrob Agents Chemother 2004; 48 (3): 909–17

  233. 233.

    Yamada Y, Shiota S, Mizushima T, et al. Functional gene cloning and characterization of MdeA, a multidrug efflux pump from Staphylococcus aureus. Biol Pharm Bull 2006; 29 (4): 801–4

  234. 234.

    Truong-Bolduc QC, Strahilevitz J, Hooper DC. NorC, a new efflux pump regulated by MgrA of Staphylococcus aureus. Antimicrob Agents Chemother 2006; 50 (3): 1104–7

  235. 235.

    Truong-Bolduc QC, Dunman PM, Strahilevitz J, et al. MgrA is a multiple regulator of two new efflux pumps in Staphylococcus aureus. J Bacteriol 2005; 187 (7): 2395–405

  236. 236.

    Truong-Bolduc QC, Hooper DC. The transcriptional regulators NorG and MgrA modulate resistance to both quinolones and b-lactams in Staphylococcus aureus. J Bacteriol 2007; 189 (8): 2996–3005

  237. 237.

    Ding Y, Onodera Y, Lee JC, et al. NorB, an efflux pump in Staphylococcus aureus MW2, contributes to bacterial fitness in abscesses. J Bacteriol 2008; 190 (21): 7123–9

  238. 238.

    Overton TW, Justino MC, Li Y, et al. Widespread distribution in pathogenic bacteria of di-iron proteins that repair oxidative and nitrosative damage to iron-sulfur centers. J Bacteriol 2008; 190 (6): 2004–13

  239. 239.

    Yamada Y, Hideka K, Shiota S, et al. Gene cloning and characterization of SdrM, a chromosomally-encoded multidrug efflux pump, from Staphylococcus aureus. Biol Pharm Bull 2006; 29 (3): 554–6

  240. 240.

    Kehrenberg C, Schwarz S. fexA, a novel Staphylococcus lentus gene encoding resistance to florfenicol and chloramphenicol. Antimicrob Agents Chemother 2004; 48 (2): 615–8

  241. 241.

    Cai Y, Kong F, Gilbert GL. Three new macrolide efflux (mef) gene variants in Streptococcus agalactiae. J Clin Microbiol 2007; 45 (8): 2754–5

  242. 242.

    Brown MG, Mitchell EH, Balkwill DL. Tet 42, a novel tetracycline resistance determinant isolated from deep terrestrial subsurface bacteria. Antimicrob Agents Chemother 2008; 52 (12): 4518–21

  243. 243.

    Escudero JA, San Millan A, Hidalgo L, et al. Identification and characterisation of SmrA, a novel fluoroquinolone efflux pump in Streptococcus suis [abstract no. C1-1945]. 48th ICAAC/IDSA 46th Annual Meeting; 2008 Oct 25–28; Washington, DC

  244. 244.

    Woolley RC, Vediyappan G, Anderson M, et al. Characterization of the Vibrio cholerae vceCAB multiple-drug resistance efflux operon in Escherichia coli. J Bacteriol 2005; 187 (15): 5500–3

  245. 245.

    Bostock JM, Huang G, Hashimi SM, et al. A DHA14 drug efflux gene from Xanthomonas albilineans confers high-level albicidin antibiotic resistance in Escherichia coli. J Appl Microbiol 2006; 101 (1): 151–60

  246. 246.

    Su XZ, Chen J, Mizushima T, et al. AbeM, an H+-coupled Acinetobacter baumannii multidrug efflux pump belonging to the MATE family of transporters. Antimicrob Agents Chemother 2005; 49 (10): 4362–4

  247. 247.

    Braibant M, Guilloteau L, Zygmunt MS. Functional characterization of Brucella melitensis NorMI, an efflux pump belonging to the multidrug and toxic compound extrusion family. Antimicrob Agents Chemother 2002; 46 (9): 3050–3

  248. 248.

    Dridi L, Tankovic J, Petit JC. CdeA of Clostridium difficile, a new multidrug efflux transporter of the MATE family. Microb Drug Resist 2004; 10 (3): 191–6

  249. 249.

    Burse A, Weingart H, Ullrich MS. NorM, an Erwinia amylovora multidrug efflux pump involved in in vitro competition with other epiphytic bacteria. Appl Environ Microbiol 2004; 70 (2): 693–703

  250. 250.

    Xu XJ, Su XZ, Morita Y, et al. Molecular cloning and characterization of the HmrM multidrug efflux pump from Haemophilus influenzae Rd. Microbiol Immunol 2003; 47 (12): 937–43

  251. 251.

    Rouquette-Loughlin C, Dunham SA, Kuhn M, et al. The NorM efflux pump of Neisseria gonorrhoeae and Neisseria meningitidis recognizes antimicrobial cationic compounds. J Bacteriol 2003; 185 (3): 1101–6

  252. 252.

    He GX, Kuroda T, Mima T, et al. An H+-coupled multidrug efflux pump, PmpM, a member of the MATE family of transporters, from Pseudomonas aeruginosa. J Bacteriol 2004; 186 (1): 262–5

  253. 253.

    Kaatz GW, McAleese F, Seo SM. Multidrug resistance in Staphylococcus aureus due to overexpression of a novel multidrug and toxin extrusion (MATE) transport protein. Antimicrob Agents Chemother 2005; 49 (5): 1857–64

  254. 254.

    McAleese F, Petersen P, Ruzin A, et al. A novel MATE family efflux pump contributes to the reduced susceptibility of laboratory-derived Staphylococcus aureus mutants to tigecycline. Antimicrob Agents Chemother 2005; 49 (5): 1865–71

  255. 255.

    Kaatz GW, DeMarco CE, Seo SM. MepR, a repressor of the Staphylococcus aureus MATE family multidrug efflux pumpMepA, is a substrate-responsive regulatory protein. Antimicrob Agents Chemother 2006; 50 (4): 1276–8

  256. 256.

    Singh AK, Haldar R, Mandal D, et al. Analysis of the topology of Vibrio cholerae NorM and identification of amino acid residues involved in norfloxacin resistance. Antimicrob Agents Chemother 2006; 50 (11): 3717–23

  257. 257.

    Begum A, Rahman MM, Ogawa W, et al. Gene cloning and characterization of four MATE family multidrug efflux pumps from Vibrio cholerae non-O1. Microbiol Immunol 2005; 49 (11): 949–57

  258. 258.

    Huda MN, Chen J, Morita Y, et al. Gene cloning and characterization of VcrM, a Na+-coupled multidrug efflux pump, from Vibrio cholerae non-O1. Microbiol Immunol 2003; 47 (6): 419–27

  259. 259.

    Chen J, Morita Y, Huda MN, et al. VmrA, a member of a novel class of Na+-coupled multidrug efflux pumps from Vibrio parahaemolyticus. J Bacteriol 2002; 184 (2): 572–6

  260. 260.

    Higashi K, Ishigure H, Demizu R, et al. Identification of a spermidine excretion protein complex (MdtJI) in Escherichia coli. J Bacteriol 2008; 190 (3): 872–8

  261. 261.

    Minato Y, Shahcheraghi F, Ogawa W, et al. Functional gene cloning and characterization of the SsmE multidrug efflux pump from Serratia marcescens. Biol Pharm Bull 2008; 31 (3): 516–9

  262. 262.

    Narui K, Noguchi N, Wakasugi K, et al. Cloning and characterization of a novel chromosomal drug efflux gene in Staphylococcus aureus. Biol Pharm Bull 2002; 25 (12): 1533–6

  263. 263.

    Bernard R, Joseph P, Guiseppi A, et al. YtsCD and YwoA, two independent systems that confer bacitracin resistance to Bacillus subtilis. FEMS Microbiol Lett 2003; 228 (1): 93–7

  264. 264.

    Steinfels E, Orelle C, Fantino JR, et al. Characterization of YvcC (BmrA), a multidrug ABC transporter constitutively expressed in Bacillus subtilis. Biochemistry 2004; 43 (23): 7491–502

  265. 265.

    Margolles A, Florez AB, Moreno JA, et al. Two membrane proteins from Bifidobacterium breve UCC2003 constitute an ABC-type multidrug transporter. Microbiology 2006; 152 (Pt 12): 3497–505

  266. 266.

    Lee EW, Huda MN, Kuroda T, et al. EfrAB, an ABC multidrug efflux pump in Enterococcus faecalis. Antimicrob Agents Chemother 2003; 47(12): 3733–8

  267. 267.

    Singh KV, Malathum K, Murray BE. Disruption of an Enterococcus faecium species-specific gene, a homologue of acquired macrolide resistance genes of staphylococci, is associated with an increase in macrolide susceptibility. Antimicrob Agents Chemother 2001; 45 (1): 263–6

  268. 268.

    Reynolds E, Cove JH. Enhanced resistance to erythromycin is conferred by the enterococcal msrC determinant in Staphylococcus aureus. J Antimicrob Chemother 2005; 55 (2): 260–4

  269. 269.

    Delgado MA, Vincent PA, Farias RN, et al. YojI of Escherichia coli functions as a microcin J25 efflux pump. J Bacteriol 2005; 187 (10): 3465–70

  270. 270.

    Socias SB, Vincent PA, Salomon RA. The leucine-responsive regulatory protein, Lrp, modulates microcin J25 intrinsic resistance in Escherichia coli by regulating expression of the YojI microcin exporter. J Bacteriol 2009; 191 (4): 1343–8

  271. 271.

    Lubelski J, de Jong A, van Merkerk R, et al. LmrCD is a major multidrug resistance transporter in Lactococcus lactis. Mol Microbiol 2006; 61 (3): 771–81

  272. 272.

    Lubelski J, Mazurkiewicz P, van Merkerk R, et al. ydaG and ydbA of Lactococcus lactis encode a heterodimeric ATP-binding cassette-type multidrug transporter. J Biol Chem 2004; 279 (33): 34449–55

  273. 273.

    Zaidi AH, Bakkes PJ, Lubelski J, et al. The ABC-type multidrug resistance transporter LmrCD is responsible for an extrusion-based mechanism of bile acid resistance in Lactococcus lactis. J Bacteriol 2008; 190 (22): 7357–66

  274. 274.

    Agustiandari H, Lubelski J, van den Berg van Saparoea HB, et al. LmrR is a transcriptional repressor of expression of the multidrug ABC transporter LmrCD in Lactococcus lactis. J Bacteriol 2008; 190 (2): 759–63

  275. 275.

    Danilchanka O, Mailaender C, Niederweis M. Identification of a novel multidrug efflux pump of Mycobacterium tuberculosis. Antimicrob Agents Chemother 2008; 52 (7): 2503–11

  276. 276.

    Siddiqi N, Das R, Pathak N, et al. Mycobacterium tuberculosis isolate with a distinct genomic identity overexpresses a Tap-like efflux pump. Infection 2004; 32 (2): 109–11

  277. 277.

    Pasca MR, Guglierame P, Arcesi F, et al. Rv2686c-Rv2687c-Rv2688c, an ABC fluoroquinolone efflux pump in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2004; 48 (8): 3175–8

  278. 278.

    Rouquette-Loughlin CE, Balthazar JT, Shafer WM. Characterization of the MacA-MacB efflux system in Neisseria gonorrhoeae. J Antimicrob Chemother 2005; 56 (5): 856–60

  279. 279.

    Bourdineaud JP, Nehme B, Tesse S, et al. A bacterial gene homologous to ABC transporters protect Oenococcus oeni from ethanol and other stress factors in wine. Int J Food Microbiol 2004; 92 (1): 1–14

  280. 280.

    Achard-Joris M, van den Berg van Saparoea HB, Driessen AJ, et al. Heterologously expressed bacterial and human multidrug resistance proteins confer cadmium resistance to Escherichia coli. Biochemistry 2005; 44 (15): 5916–22

  281. 281.

    Matsuo T, Chen J, Minato Y, et al. SmdAB, a heterodimeric ABC-Type multidrug efflux pump, in Serratia marcescens. J Bacteriol 2008; 190 (2): 648–54

  282. 282.

    Schrader-Fischer G, Berger-Bachi B. The AbcA transporter of Staphylococcus aureus affects cell autolysis. Antimicrob Agents Chemother 2001; 45 (2): 407–12

  283. 283.

    Marrer E, Satoh AT, Johnson MM, et al. Global transcriptome analysis of the responses of a fluoroquinolone-resistant Streptococcus pneumoniae mutant and its parent to ciprofloxacin. Antimicrob Agents Chemother 2006; 50 (1): 269–78

  284. 284.

    Marrer E, Schad K, Satoh AT, et al. Involvement of the putative ATP-dependent efflux proteins PatA and PatB in fluoroquinolone resistance of a multidrug-resistant mutant of Streptococcus pneumoniae. Antimicrob Agents Chemother 2006; 50 (2): 685–93

  285. 285.

    Garvey MI, Piddock LJ. The efflux pump inhibitor reserpine selectsmultidrug-resistant Streptococcus pneumoniae strains that overexpress the ABC transporters PatA and PatB. Antimicrob Agents Chemother 2008; 52 (5): 1677–85

  286. 286.

    Avrain L, Garvey M, Mesaros N, et al. Selection of quinolone resistance in Streptococcus pneumoniae exposed in vitro to subinhibitory drug concentrations. J Antimicrob Chemother 2007; 60 (5): 965–72

  287. 287.

    Robertson GT, Doyle TB, Lynch AS. Use of an efflux-deficient Streptococcus pneumoniae strain panel to identify ABC-class multidrug transporters involved in intrinsic resistance to antimicrobial agents. Antimicrob Agents Chemother 2005; 49 (11): 4781–3

  288. 288.

    Becker P, Hakenbeck R, Henrich B. An ABC transporter of Streptococcus pneumoniae involved in susceptibility to vancoresmycin and bacitracin. Antimicrob Agents Chemother 2009; 53 (5): 2034–41

  289. 289.

    Huda N, Lee EW, Chen J, et al. Molecular cloning and characterization of an ABC multidrug efflux pump, VcaM, in non-O1 Vibrio cholerae. Antimicrob Agents Chemother 2003; 47 (8): 2413–7

  290. 290.

    Garrity GM. Bergey’s manual of systematic bacteriology. 2nd ed. Appendix 2: taxonomic outline of the archaea and bacteria. New York: Springer, 2005

  291. 291.

    Kallman O, Fendukly F, Karlsson I, et al. Contribution of efflux to cefuroxime resistance in clinical isolates of Escherichia coli. Scand J Infect Dis 2003; 35 (8): 464–70

  292. 292.

    Lautenbach E, Metlay JP, Weiner MG, et al. Gastrointestinal tract colonization with fluoroquinolone-resistant Escherichia coli in hospitalized patients: changes over time in risk factors for resistance. Infect Control Hosp Epidemiol 2009; 30 (1): 18–24

  293. 293.

    Stubbings W, Bostock J, Ingham E, et al. Deletion of the multiple-drug efflux pump AcrAB in Escherichia coli prolongs the postantibiotic effect. Antimicrob Agents Chemother 2005; 49 (3): 1206–8

  294. 294.

    Hirata T, Saito A, Nishino K, et al. Effects of efflux transporter genes on susceptibility of Escherichia coli to tigecycline (GAR-936). Antimicrob Agents Chemother 2004; 48 (6): 2179–84

  295. 295.

    Keeney D, Ruzin A, McAleese F, et al. MarA-mediated overexpression of the AcrAB efflux pump results in decreased susceptibility to tigecycline in Escherichia coli. J Antimicrob Chemother 2008; 61 (1): 46–53

  296. 296.

    Gotoh N, Murata T, Ozaki T, et al. Intrinsic resistance of Escherichia coli to mureidomycin A and C due to expression of the multidrug efflux system AcrAB-TolC: comparison with the efflux systems of mureidomycin-susceptible Pseudomonas aeruginosa. J Infect Chemother 2003; 9 (1): 101–3

  297. 297.

    Oppegard LM, Hamann BL, Streck KR, et al. In vivo and in vitro patterns of the activity of simocyclinone D8, an angucyclinone antibiotic from Streptomyces antibioticus. Antimicrob Agents Chemother 2009; 53 (5): 2110–9

  298. 298.

    Wu B, Xia C, Du X, et al. Influence of anti-FloR antibody on florfenicol accumulation in florfenicol-resistant Escherichia coli and enzyme-linked immunosorbent assay for detection of florfenicol-resistant E. coli isolates. J Clin Microbiol 2006; 44 (2): 378–82

  299. 299.

    Yamane K, Wachino J, Suzuki S, et al. Plasmid-mediated qepA gene among Escherichia coli clinical isolates from Japan. Antimicrob Agents Chemother 2008; 52 (4): 1564–6

  300. 300.

    Ma J, Zeng Z, Chen Z, et al. High prevalence of plasmid-mediated quinolone resistance determinants Qnr, AAC(6′)-Ib-cr and qepA among ceftiofur-resistant Enterobacteriaceae isolates from companion and food-producing animals. Antimicrob Agents Chemother 2008; 53 (2): 519–24

  301. 301.

    Liu JH, Deng YT, Zeng ZL, et al. Coprevalence of plasmid-mediated quinolone resistance determinants QepA, Qnr, and AAC(60)-Ib-cr among 16S rRNA methylase RmtB-producing Escherichia coli isolates from pigs. Antimicrob Agents Chemother 2008; 52 (8): 2992–3

  302. 302.

    Quinn T, O’Mahony R, Baird AW, et al. Multi-drug resistance in Salmonella enterica: efflux mechanisms and their relationships with the development of chromosomal resistance gene clusters. Curr Drug Targets 2006; 7 (7): 849–60

  303. 303.

    Piddock LJ, White DG, Gensberg K, et al. Evidence for an efflux pump mediating multiple antibiotic resistance in Salmonella enterica serovar Typhimurium. Antimicrob Agents Chemother 2000; 44 (11): 3118–21

  304. 304.

    Randall LP, Cooles SW, Sayers AR, et al. Association between cyclohexane resistance in Salmonella of different serovars and increased resistance to multiple antibiotics, disinfectants and dyes. J Med Microbiol 2001; 50 (10): 919–24

  305. 305.

    Chen S, Cui S, McDermott PF, et al. Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica serovar Typhimurium to fluoroquinolones and other antimicrobials. Antimicrob Agents Chemother 2007; 51 (2): 535–42

  306. 306.

    Ricci V, Tzakas P, Buckley A, et al. Ciprofloxacin-resistant Salmonella enterica serovar Typhimurium strains are difficult to select in the absence of AcrB and TolC. Antimicrob Agents Chemother 2006; 50 (1): 38–42

  307. 307.

    Olliver A, Valle M, Chaslus-Dancla E, et al. Overexpression of the multidrug efflux operon acrEF by insertional activation with IS1 or IS10 elements in Salmonella enterica serovar typhimurium DT204 acrB mutants selected with fluoroquinolones. Antimicrob Agents Chemother 2005; 49 (1): 289–301

  308. 308.

    Nishino K, Nikaido E, Yamaguchi A. Regulation of multidrug efflux systems involved in multidrug and metal resistance of Salmonella enterica serovar Typhimurium. J Bacteriol 2007; 189 (24): 9066–75

  309. 309.

    Braoudaki M, Hilton AC. Mechanisms of resistance in Salmonella enterica adapted to erythromycin, benzalkonium chloride and triclosan. Int J Antimicrob Agents 2005; 25 (1): 31–7

  310. 310.

    Murata T, Tseng W, Guina T, et al. PhoPQ-mediated regulation produces a more robust permeability barrier in the outer membrane of Salmonella enterica serovar Typhimurium. J Bacteriol 2007; 189 (20): 7213–22

  311. 311.

    Baucheron S, Mouline C, Praud K, et al. TolC but not AcrB is essential for multidrug-resistant Salmonella enterica serotype Typhimurium colonization of chicks. J Antimicrob Chemother 2005; 55 (5): 707–12

  312. 312.

    Buckley AM, Webber MA, Cooles S, et al. The AcrABTolC efflux system of serovar Typhimurium plays a role in pathogenesis. Cell Microbiol 2006; 8 (5): 847–56

  313. 313.

    Webber MA, Bailey AM, Blair JM, et al. The global consequence of disruption of the AcrAB-TolC efflux pump in Salmonella enterica includes reduced expression of SPI-1 and other attributes required to infect the host. J Bacteriol 2009; 191 (13): 4276–85

  314. 314.

    Gayet S, Chollet R, Molle G, et al. Modification of outer membrane protein profile and evidence suggesting an active drug pump in Enterobacter aerogenes clinical strains. Antimicrob Agents Chemother 2003; 47 (5): 1555–9

  315. 315.

    Chollet R, Chevalier J, Bryskier A, et al. The AcrAB-TolC pump is involved in macrolide resistance but not in telithromycin efflux in Enterobacter aerogenes and Escherichia coli. Antimicrob Agents Chemother 2004; 48 (9): 3621–4

  316. 316.

    Bornet C, Chollet R, Mallea M, et al. Imipenem and expression of multidrug efflux pump in Enterobacter aerogenes. Biochem Biophys Res Commun 2003; 301 (4): 985–90

  317. 317.

    Ghisalberti D, Masi M, Pages JM, et al. Chloramphenicol and expression of multidrug efflux pump in Enterobacter aerogenes. Biochem Biophys Res Commun 2005; 328 (4): 1113–8

  318. 318.

    Keeney D, Ruzin A, Bradford PA. RamA, a transcriptional regulator, and AcrAB, an RND-type efflux pump, are associated with decreased susceptibility to tigecycline in Enterobacter cloacae. Microb Drug Resist 2007; 13 (1): 1–6

  319. 319.

    Chollet R, Chevalier J, Bollet C, et al. RamA is an alternate activator of the multidrug resistance cascade in Enterobacter aerogenes. Antimicrob Agents Chemother 2004; 48 (7): 2518–23

  320. 320.

    Ghisalberti D, Mahamoud A, Chevalier J, et al. Chloroquinolines block antibiotic efflux pumps in antibioticresistant Enterobacter aerogenes isolates. Int J Antimicrob Agents 2006; 27 (6): 565–9

  321. 321.

    Masi M, Pages J-M, Pradel E. Production of the cryptic EefABC efflux pump in Enterobacter aerogenes chloramphenicol- resistant mutants. J Antimicrob Chemother 2006; 57 (6): 1223–6

  322. 322.

    Szabo D, Silveira F, Hujer AM, et al. Outer membrane protein changes and efflux pump expression together may confer resistance to ertapenem in Enterobacter cloacae. Antimicrob Agents Chemother 2006; 50 (8): 2833–5

  323. 323.

    Davin-Regli A, Chollet R, Bredin J, et al. Enterobacter gergoviae and the prevalence of efflux in parabens resistance. J Antimicrob Chemother 2006; 57 (4): 757–60

  324. 324.

    Pages JM, Lavigne JP, Leflon-Guibout V, et al. Efflux pump, the masked side of b-lactam resistance in Klebsiella pneumoniae clinical isolates. PLoS ONE 2009; 4 (3): e4817

  325. 325.

    Chevalier J, Bredin J, Mahamoud A, et al. Inhibitors of antibiotic efflux in resistant Enterobacter aerogenes and Klebsiella pneumoniae strains. Antimicrob Agents Chemother 2004; 48 (3): 1043–6

  326. 326.

    Ogawa W, Li DW, Yu P, et al. Multidrug resistance in Klebsiella pneumoniae MGH78578 and cloning of genes responsible for the resistance. Biol Pharm Bull 2005; 28 (8): 1505–8

  327. 327.

    Rodriguez-Martinez JM, Pichardo C, Garcia I, et al. Activity of ciprofloxacin and levofloxacin in experimental pneumonia caused by Klebsiella pneumoniae deficient in porins, expressing active efflux and producing QnrA1. Clin Microbiol Infect 2008; 14 (7): 691–7

  328. 328.

    Fenosa A, Fuste E, Ruiz L, et al. Role of TolC in Klebsiella oxytoca resistance to antibiotics. J Antimicrob Chemother 2009; 63 (4): 668–74

  329. 329.

    Stock I, Grueger T, Wiedemann B. Natural antibiotic susceptibility of strains of Serratia marcescens and the S. liquefaciens complex: S. liquefaciens sensu stricto, S. proteamaculans and S. grimesii. Int J Antimicrob Agents 2003; 22 (1): 35–47

  330. 330.

    Kumar A, Worobec EA. HasF, a TolC-homolog of Serratia marcescens, is involved in energy-dependent efflux. Can J Microbiol 2005; 51 (6): 497–500

  331. 331.

    Begic S, Worobec EA. Fluoroquinolone resistance of Serratia marcescens: sucrose, salicylate, temperature, and pH induction of phenotypic resistance. Can J Microbiol 2007; 53 (11): 1239–45

  332. 332.

    Thompson SA, Maani EV, Lindell AH, et al. Novel tetracycline resistance determinant isolated from an environmental strain of Serratia marcescens. Appl Environ Microbiol 2007; 73 (7): 2199–206

  333. 333.

    Borges-Walmsley MI, Du D, McKeegan KS, et al. VceR regulates the vceCAB drug efflux pump operon of Vibrio cholerae by alternating between mutually exclusive conformations that bind either drugs or promoter DNA. J Mol Biol 2005; 349 (2): 387–400

  334. 334.

    Alatoom AA, Aburto R, Hamood AN, et al. VceR negatively regulates the vceCAB MDR efflux operon and positively regulates its own synthesis in Vibrio cholerae 569B. Can J Microbiol 2007; 53 (7): 888–900

  335. 335.

    Gupta AK, Chauhan DS, Srivastava K, et al. Estimation of efflux mediated multi-drug resistance and its correlation with expression levels of two major efflux pumps in mycobacteria. J Commun Dis 2006; 38 (3): 246–54

  336. 336.

    Srinivasan VB, Virk RK, Kaundal A, et al. Mechanism of drug resistance in clonally related clinical isolates of Vibrio fluvialis isolated in Kolkata, India. Antimicrob Agents Chemother 2006; 50 (7): 2428–32

  337. 337.

    Balotescu C, Israil A, Radu R, et al. Aspects of constitutive and acquired antibioresistance in Aeromonas hydrophila strains isolated from water sources. Roum Arch Microbiol Immunol 2003; 62 (3-4): 179–89

  338. 338.

    Reith ME, Singh RK, Curtis B, et al. The genome of Aeromonas salmonicida subsp. salmonicida A449: insights into the evolution of a fish pathogen. BMC Genomics 2008; 9: 427

  339. 339.

    Seshadri R, Joseph SW, Chopra AK, et al. Genome sequence of Aeromonas hydrophila ATCC 7966T: jack of all trades. J Bacteriol 2006; 188 (23): 8272–82

  340. 340.

    Rangrez AY, Kulkarni G, Dhotre D, et al. Prevalence of RND type multidrug efflux pump in the genus Aeromonas. Icfai J Biotech 2008; 2 (1): 72–80

  341. 341.

    Marshall B, Morrissey S, Flynn P, et al. A new tetracyclineresistance determinant, class E, isolated from Enterobacteriaceae. Gene 1986; 50 (1-3): 111–7

  342. 342.

    Agersø Y, Bruun MS, Dalsgaard I, et al. The tetracycline resistance gene tet(E) is frequently occurring and present on large horizontally transferable plasmids in Aeromonas spp. from fish farms. Aquaculture 2007; 266 (1-4): 47–52

  343. 343.

    Giraud E, Blanc G, Bouju-Albert A, et al. Mechanisms of quinolone resistance and clonal relationship among Aeromonas salmonicida strains isolated from reared fish with furunculosis. J Med Microbiol 2004; 53 (Pt 9): 895–901

  344. 344.

    Sugawara E, Nestorovich EM, Bezrukov SM, et al. Pseudomonas aeruginosa porin OprF exists in two different conformations. J Biol Chem 2006; 281 (24): 16220–9

  345. 345.

    Deplano A, Denis O, Poirel L, et al. Molecular characterization of an epidemic clone of panantibiotic-resistant Pseudomonas aeruginosa. J Clin Microbiol 2005; 43 (3): 1198–204

  346. 346.

    Kriengkauykiat J, Porter E, Lomovskaya O, et al. Use of an efflux pump inhibitor to determine the prevalence of efflux pump-mediated fluoroquinolone resistance and multidrug resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2005; 49 (2): 565–70

  347. 347.

    Pournaras S, Maniati M, Spanakis N, et al. Spread of efflux pump-overexpressing, non-metallo-b-lactamase-producing, meropenem-resistant but ceftazidime-susceptible Pseudomonas aeruginosa in a region with bla VIM endemicity. J Antimicrob Chemother 2005; 56(4):761–4

  348. 348.

    Dumas JL, van Delden C, Perron K, et al. Analysis of antibiotic resistance gene expression in Pseudomonas aeruginosa by quantitative real-time-PCR. FEMS Microbiol Lett 2006; 254 (2): 217–25

  349. 349.

    Quale J, Bratu S, Gupta J, et al. Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 2006; 50 (5): 1633–41

  350. 350.

    Driscoll JA, Brody SL, Kollef MH. The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs 2007; 67 (3):351–68

  351. 351.

    Burgess DS. Use of pharmacokinetics and pharmacodynamics to optimize antimicrobial treatment of Pseudomonas aeruginosa infections. Clin Infect Dis 2005; 40 Suppl. 2: S99–104

  352. 352.

    Rossolini GM, Mantengoli E. Treatment and control of severe infections caused by multiresistant Pseudomonas aeruginosa. Clin Microbiol Infect 2005; 11 Suppl. 4: 17–32

  353. 353.

    Boutoille D, Jacqueline C, Le Mabecque V, et al. In vivo impact of the MexAB-OprM efflux system on β-lactam efficacy in an experimental model of Pseudomonas aeruginosa infection. Int J Antimicrob Agents 2009; 33 (5): 417–20

  354. 354.

    Mesaros N, Glupczynski Y, Avrain L, et al. A combined phenotypic and genotypic method for the detection of Mex efflux pumps in Pseudomonas aeruginosa. J Antimicrob Chemother 2007; 59 (3): 378–86

  355. 355.

    Hocquet D, Berthelot P, Roussel-Delvallez M, et al. Pseudomonas aeruginosa may accumulate drug resistance mechanisms without losing its ability to cause bloodstream infections. Antimicrob Agents Chemother 2007; 51 (10): 3531–6

  356. 356.

    Llanes C, Hocquet D, Vogne C, et al. Clinical strains of Pseudomonas aeruginosa overproducing MexAB-OprM and MexXY efflux pumps simultaneously. Antimicrob Agents Chemother 2004; 48 (5): 1797–802

  357. 357.

    Strateva T, Ouzounova-Raykova V, Markova B, et al. Problematic clinical isolates of Pseudomonas aeruginosa from the university hospitals in Sofia, Bulgaria: current status of antimicrobial resistance and prevailing resistance mechanisms. J Med Microbiol 2007; 56 (Pt 7): 956–63

  358. 358.

    Livermore DM, Mushtaq S, Warner M. Selectivity of ertapenem for Pseudomonas aeruginosa mutants crossresistant to other carbapenems. J Antimicrob Chemother 2005; 55 (3): 306–11

  359. 359.

    Mikuniya T, Kato Y, Kariyama R, et al. Synergistic effect of fosfomycin and fluoroquinolones against Pseudomonas aeruginosa growing in a biofilm. Acta Med Okayama 2005; 59 (5): 209–16

  360. 360.

    Longbottom CJ, Carson CF, Hammer KA, et al. Tolerance of Pseudomonas aeruginosa to Melaleuca alternifolia (tea tree) oil is associated with the outer membrane and energy-dependent cellular processes. J Antimicrob Chemother 2004; 54 (2): 386–92

  361. 361.

    Hocquet D, Vogne C, El Garch F, et al. MexXY-OprM efflux pump is necessary for a adaptive resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Chemother 2003; 47 (4): 1371–5

  362. 362.

    Sobel ML, McKay GA, Poole K. Contribution of the MexXY multidrug transporter to aminoglycoside resistance in Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 2003; 47 (10): 3202–7

  363. 363.

    Islam S, Jalal S, Wretlind B. Expression of the MexXY efflux pump in amikacin-resistant isolates of Pseudomonas aeruginosa. Clin Microbiol Infect 2004; 10 (10): 877–83

  364. 364.

    Vogne C, Aires JR, Bailly C, et al. Role of the multidrug efflux system MexXY in the emergence of moderate resistance to aminoglycosides among Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Antimicrob Agents Chemother 2004; 48 (5): 1676–80

  365. 365.

    Wolter DJ, Smith-Moland E, Goering RV, et al. Multidrug resistance associated with mexXY expression in clinical isolates of Pseudomonas aeruginosa from a Texas hospital. Diagn Microbiol Infect Dis 2004; 50 (1): 43–50

  366. 366.

    Llanes C, Neuwirth C, El Garch F, et al. Genetic analysis of a multiresistant strain of Pseudomonas aeruginosa producing PER-1 b-lactamase. Clin Microbiol Infect 2006; 12 (3): 270–8

  367. 367.

    Hocquet D, Nordmann P, El Garch F, et al. Involvement of the MexXY-OprM efflux system in emergence of cefepime resistance in clinical strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2006; 50 (4): 1347–51

  368. 368.

    Vettoretti L, Plesiat P, Muller C, et al. Efflux unbalance in cystic fibrosis isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2009; 53 (5): 1987–97

  369. 369.

    El’Garch F, Jeannot K, Hocquet D, et al. Cumulative effects of several nonenzymatic mechanisms on the resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Chemother 2007; 51 (3): 1016–21

  370. 370.

    Jo JT, Brinkman FS, Hancock RE. Aminoglycoside efflux in Pseudomonas aeruginosa: involvement of novel outer membrane proteins. Antimicrob Agents Chemother 2003; 47 (3): 1101–11

  371. 371.

    Dupont P, Hocquet D, Jeannot K, et al.. Bacteriostatic and bactericidal activities of eight fluoroquinolones against MexAB-OprM-overproducing clinical strains of Pseudomonas aeruginosa. J Antimicrob Chemother 2005; 55 (4): 518–22

  372. 372.

    Griffith DC, Corcoran E, Lofland D, et al. Pharmacodynamics of levofloxacin against Pseudomonas aeruginosa with reduced susceptibility due to different efflux pumps: do elevated MICs always predict reduced in vivo efficacy? Antimicrob Agents Chemother 2006; 50 (5): 1628–32

  373. 373.

    Martha B, Croisier D, Durand D, et al. In-vivo impact of the MexXY efflux system on aminoglycoside efficacy in an experimental model of Pseudomonas aeruginosa pneumonia treated with tobramycin. Clin Microbiol Infect 2006; 12 (5): 426–32

  374. 374.

    Ong CT, Tessier PR, Li C, et al. Comparative in vivo efficacy of meropenem, imipenem, and cefepime against Pseudomonas aeruginosa expressing MexA-MexB-OprM efflux pumps. Diagn Microbiol Infect Dis 2007; 57 (2): 153–61

  375. 375.

    Lister PD, Wolter DJ, Wickman PA, et al. Levofloxacin/ imipenem prevents the emergence of high-level resistance among Pseudomonas aeruginosa strains already lacking susceptibility to one or both drugs. J Antimicrob Chemother 2006; 57 (5): 999–1003