High Blood Pressure & Cardiovascular Prevention

, Volume 17, Issue 4, pp 191–200

Hypertension and Cerebrovascular Dysfunction

Acute and Chronic Brain Pathological Alterations
Review Article

Abstract

Hypertension is one of the main risk factors for cerebrovascular diseases. This article focuses on the pathophysiological mechanisms recruited by hypertension, altering the normal functioning of the cerebral circulation and conditioning the onset of acute and chronic brain injury. In particular, hypertension favours acute ischaemic and haemorragic events and, more insidiously, chronic neurodegenerative diseases. Indeed, vascular cells, in response to haemodynamic insults, signal to neurons and astrocytes that recruit microglia, which, when activated, secrete several proinflammatory cytokines. The various neuroinflammatory milieu involved in the different clinical manifestations of hypertension-induced cerebrovascular events, contribute in different ways to the onset and progression of brain pathology.

Keywords

hypertension cerebrovascular disease stroke dementia inflammation 

References

  1. 1.
    Messerli FH, Williams B, Ritz E. Essential hypertension. Lancet 2007; 370: 591–603PubMedCrossRefGoogle Scholar
  2. 2.
    Dahlof B. Prevention of stroke in patients with hypertension. Am J Cardiol 2007; 100: 17J–24JPubMedCrossRefGoogle Scholar
  3. 3.
    Palmer AJ, Bulpitt CJ, Fletcher AE, et al. Relation between blood pressure and stroke mortality. Hypertension 1992; 20: 601–5PubMedCrossRefGoogle Scholar
  4. 4.
    Kelley BJ, Petersen RC. Alzheimer’s disease and mild cognitive impairment. Neurol Clin 2007; 25: 577–609PubMedCrossRefGoogle Scholar
  5. 5.
    Lammie GA. Hypertensive cerebral small vessel disease and stroke. Brain Pathol 2002; 12: 358–70PubMedGoogle Scholar
  6. 6.
    Baumbach GL, Heistad DD. Cerebral circulation in chronic arterial hypertension. Hypertension 1988; 12: 89–95PubMedCrossRefGoogle Scholar
  7. 7.
    Heistad DD, Baumbach GL. Cerebral vascular changes during chronic hypertension: good guys and bad guys. J Hypertens Suppl 1992; 10: S71–5PubMedCrossRefGoogle Scholar
  8. 8.
    Jennings JR, Muldoon MF, Ryan C, et al. Reduced cerebral blood flow response and compensation among patients with untreated hypertension. Neurology 2005; 64: 1358–65PubMedCrossRefGoogle Scholar
  9. 9.
    Matsushita K, Kuriyama Y, Nagatsuka K, et al. Periventricular white matter lucency and cerebral blood flow autoregulation in hypertensive patients. Hypertension 1994; 23: 565–8PubMedCrossRefGoogle Scholar
  10. 10.
    Park L, Anrather J, Girouard H, et al. Nox2-derived reactive oxygen species mediate neurovascular dysregulation in the aging mouse brain. J Cereb Blood Flow Metab 2007; 27: 1908–18PubMedCrossRefGoogle Scholar
  11. 11.
    Kazama K, Wang G, Frys K, et al. AngiotensinII attenuates functional hyperemia in the mouse somatosensory cortex. Am J Physiol Heart Circ Physiol 2003; 285: H1890–9PubMedGoogle Scholar
  12. 12.
    Didion SP, Faraci FM. Effects of NADH and NADPH on superoxide levels and cerebral vascular tone. Am J Physiol Heart Circ Physiol 2002; 82: H688–95Google Scholar
  13. 13.
    Yang ST, Mayhan WG, Faraci FM, et al. Endothelium-dependent responses of cerebral blood vessels during chronic hypertension. Hypertension 1991; 17: 612–8PubMedCrossRefGoogle Scholar
  14. 14.
    Immink RV, Van den Born BJ, van Montfrans GA, et al. Impaired cerebral autoregulation in patients with malignant hypertension. Circulation 2004; 110: 2241–5PubMedCrossRefGoogle Scholar
  15. 15.
    De Reuck J. The human periventricular arterial blood supply and the anatomy of cerebral infarctions. Eur Neurol 1971; 5: 321–34PubMedCrossRefGoogle Scholar
  16. 16.
    Chui HC. Subcortical ischemic vascular dementia. Neurol Clin 2007; 25: 717–40PubMedCrossRefGoogle Scholar
  17. 17.
    Staessen JA, Richart T, Birkenhager WH. Less atherosclerosis and lower blood pressure for a meaningful life perspective with more brain. Hypertension 2007; 49: 389–400PubMedCrossRefGoogle Scholar
  18. 18.
    Donnan GA, Fisher M, Macleod M, et al. Stroke. Lancet 2008; 371(9624): 1612–23PubMedCrossRefGoogle Scholar
  19. 19.
    Zhang H, Thijs L, Staessen JA. Blood pressure lowering for primary and secondary prevention of stroke. Hypertension 2006; 48(2): 187–95PubMedCrossRefGoogle Scholar
  20. 20.
    Bamford J, Sandercock P, Dennis M, et al. Classification and natural history of clinically identifiable subtypes of cerebral infarction. Lancet 1991; 337(8756): 1521–6PubMedCrossRefGoogle Scholar
  21. 21.
    Lees KR, Zivin JA, Ashwood T, et al. Stroke-Acute Ischemic NXY Treatment (SAINT I) Trial Investigators. NXY-059 for acute ischemic stroke. N Engl J Med 2006; 354(6): 588–600PubMedCrossRefGoogle Scholar
  22. 22.
    Sehba FA, Bederson JB. Mechanisms of acute brain injury after subarachnoid hemorrhage. Neurol Res 2006; 28: 381–98PubMedCrossRefGoogle Scholar
  23. 23.
    Vecchione C, Frati A, Di Pardo A, et al. Tumor necrosis factor-alpha mediates hemolysis-induced vasoconstriction and the cerebral vasospasm evoked by subarachnoid hemorrhage. Hypertension 2009; 54: 150–6PubMedCrossRefGoogle Scholar
  24. 24.
    Stanimirovic D, Satoh K. Inflammatory mediators of cerebral endothelium: a role in ischemic brain inflammation. Brain Pathol 2000; 10: 113–26PubMedCrossRefGoogle Scholar
  25. 25.
    Iadecola C, Alexander M. Cerebral ischemia and inflammation. Curr Opin Neurol 2001; 14: 89–94PubMedCrossRefGoogle Scholar
  26. 26.
    Liesz A, Suri-Payer E. Regulatory T cells are key cerebroprotective immuno-modulators in acute experimental stroke. Nat Med 2009; 15(2): 192–9PubMedCrossRefGoogle Scholar
  27. 27.
    Skoog I, Lernfelt B, Landahl S, et al. 15-year longitudinal study of blood pressure and dementia. Lancet 1996; 347(9009): 1141–5PubMedCrossRefGoogle Scholar
  28. 28.
    Seshadri S, Beiser A, Kelly-Hayes M, et al. The lifetime risk of stroke: estimates from the Framingham Study. Stroke 2006; 37(2): 345–50PubMedCrossRefGoogle Scholar
  29. 29.
    Skoog I, Gustafson D. Update on hypertension and Alzheimer’s disease. Neurol Res 2006; 28: 605–11PubMedCrossRefGoogle Scholar
  30. 30.
    Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002; 297: 353–6PubMedCrossRefGoogle Scholar
  31. 31.
    Glenner GG. Amyloid deposits and amyloidosis: the β-fibrilloses (first of two parts). N Engl J Med 1980; 302: 1283–92PubMedCrossRefGoogle Scholar
  32. 32.
    Glenner GG. Amyloid deposits and amyloidosis: the β-fibrilloses (second of two parts). N Engl J Med 1980; 302: 1333–43PubMedCrossRefGoogle Scholar
  33. 33.
    Mandybur TI. Cerebral amyloid angiopathy: the vascular pathology and complications. J Neuropathol Exp Neurol 1986; 45: 79–90PubMedCrossRefGoogle Scholar
  34. 34.
    Ghiso J, Frangione B. Cerebral amyloidosis, amyloid angiopathy, and their relationship to stroke and dementia. J Alzheimers Dis 2001; 3: 65–73PubMedGoogle Scholar
  35. 35.
    Revesz T. Sporadic and familial cerebral amyloid angiopathies. Brain Pathol 2002; 12: 343–57PubMedCrossRefGoogle Scholar
  36. 36.
    Hutton M. Missense and splice site mutations in tau associated with FTDP-17: multiple pathogenic mechanisms. Neurology 2001; 56: S21–5PubMedCrossRefGoogle Scholar
  37. 37.
    Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 2008; 57: 178–201PubMedCrossRefGoogle Scholar
  38. 38.
    De la Torre JC. Alzheimer disease as a vascular disorder: nosological evidence. Stroke 2003; 33: 1152–62CrossRefGoogle Scholar
  39. 39.
    De la Torre JC. How do heart disease and stroke become risk factors for Alzheimer’s disease? Neurol Res 2006; 28: 637–44PubMedCrossRefGoogle Scholar
  40. 40.
    Marin DB. The relationship between apolipoprotein E, dementia, and vascular illness. Atherosclerosis 1998; 140: 173–80PubMedCrossRefGoogle Scholar
  41. 41.
    Gentile MT, Poulet R, Di Pardo A, et al. Beta-amyloid deposition in brain is enhanced in mouse models of arterial hypertension. Neurobiol Aging 2009; 30: 222–8PubMedCrossRefGoogle Scholar
  42. 42.
    Wyss-Coray T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med 2006; 12: 1005–15PubMedGoogle Scholar
  43. 43.
    Yong VW, Rivest S. Taking advance of the systemic immune system to cure brain disease. Neuron 2009; 64: 55–60PubMedCrossRefGoogle Scholar
  44. 44.
    Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005; 308: 1314–8PubMedCrossRefGoogle Scholar
  45. 45.
    Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 2007; 10: 1387–94PubMedCrossRefGoogle Scholar
  46. 46.
    Colton CA, Mott RT, Sharpe H, et al. Expression profiles for macrophage alternative activation genes in AD and in mouse models of AD. J Neuroinflammation 2006; 3: 27PubMedCrossRefGoogle Scholar
  47. 47.
    Mantovani A, Sica A, Sozzani S, et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004; 25: 677–86PubMedCrossRefGoogle Scholar
  48. 48.
    McGeer PL, McGeer E, Rogers J, et al. Anti-inflammatory drugs in Alzheimer’s disease. Lancet 1990; 335: 1037PubMedCrossRefGoogle Scholar
  49. 49.
    Hoozemans JJ, O’Banion MK. The role of COX-1 and COX-2 in Alzheimer’s disease pathology and the therapeutic potentials of non-steroidal anti-inflammatory drugs. Curr Drug Targets CNS Neurol Disord 2005; 4(3): 307–15PubMedCrossRefGoogle Scholar
  50. 50.
    Perry VH, Cunningham C, Holmes C. Systemic infections and inflammation affect chronic neurodegeneration. Nat Rev Immunol 2007; 7: 161–7PubMedCrossRefGoogle Scholar
  51. 51.
    Carnevale D, Mascio G, Ajmone-Cat MA, et al. Role of neuroinflammation in hypertension-induced brain amyloid pathology. Neurobiol Aging. Epub 2010 Oct 18Google Scholar

Copyright information

© Adis Data Information BV 2010

Authors and Affiliations

  1. 1.Department of AngiocardioneurologyIRCCS NeuromedPozzilli, IserniaItaly
  2. 2.Department of Molecular Medicine, “Sapienza”University of RomeRomeItaly

Personalised recommendations