, Volume 70, Issue 12, pp 1545–1577

Glatiramer Acetate

A Review of its Use in Relapsing-Remitting Multiple Sclerosis and in Delaying the Onset of Clinically Definite Multiple Sclerosis
Adis Drug Evaluation


Glatiramer acetate is a synthetic analogue of the multiple sclerosis (MS)-associated antigen, myelin basic protein. It is indicated in the EU, US and many other countries to reduce the frequency of relapses in patients with relapsing-remitting MS (RRMS), and for the treatment of patients who have experienced a well defined first clinical episode and are at high risk of developing clinically definite MS or have features of MS on MRI.

The efficacy of glatiramer acetate in patients with RRMS has been shown in two randomized, double-blind, multicentre phase III trials. In one trial, glatiramer acetate was associated with a significantly lower mean relapse rate than placebo after 24 months’ treatment (primary endpoint). In an ongoing open-label extension to this trial, glatiramer acetate was associated with a sustained reduction in the relapse rate at the 6-, 8- and 15-year follow-ups. In the other trial, the mean cumulative number of gadolinium-enhancing lesions on T1-weighted MRI images was significantly lower in glatiramer acetate versus placebo recipients after 9 months’ treatment (primary endpoint).

Glatiramer acetate also had generally similar efficacy to subcutaneous interferon (IFN)-β-1a or IFNβ-1b in two large randomized, open-label, multicentre phase III trials conducted over 96 weeks or ≥2 years. These data were supported by those from a smaller randomized, open-label phase IV trial that utilized a unique imaging protocol to evaluate the efficacy of glatiramer acetate versus that of IFNβ-1b over ≥2 years. In these trials, there was no significant difference between glatiramer acetate and IFNβ recipients in any of the clinical endpoints at study end (e.g. time to first relapse [primary endpoint of the REGARD trial] or risk of relapse [primary endpoint of the BEYOND trial]). Moreover, there was no significant difference between glatiramer acetate and IFNβ-1b recipients in the median number of combined active lesions per patient per monthly MRI scan during the first 12 months of treatment (primary endpoint of the BECOME trial). In general, there was no significant between-group difference in the majority of other MRI-assessed endpoints in any of the trials.

The efficacy of glatiramer acetate in patients with clinically isolated syndrome (CIS) was established in a randomized, double-blind, double-dummy, multicentre phase III trial (the PreCISe trial). In this study, glatiramer acetate was associated with a significantly longer time to conversion to clinically definite MS than placebo (primary endpoint).

Glatiramer acetate was generally well tolerated in clinical trials, with most adverse events being mild to moderate in severity. Injection site-related reactions and immediate post-injection systemic reactions were the most frequently observed adverse events associated with glatiramer acetate in clinical studies.

In conclusion, glatiramer acetate is a valuable first-line option in the treatment of RRMS, as well as being an option in the treatment of CIS.


  1. 1.
    Behan PO, Chaudhuri A, Roep BO. The pathogenesis of multiple sclerosis revisited. J R Coll Physicians Edinb 2002; 32: 244–65Google Scholar
  2. 2.
    World Health Organization. Neurological disorders: a public health approach [online]. Available from URL: http://www.who.int/mental_health/neurology/chapter_3_a_neuro_disorders_public_h_challenges.pdf [Accessed 2010 Jan 26]
  3. 3.
    Milo R, Kahana E. Multiple sclerosis: geoepidemiology, genetics and the environment. Autoimmun Rev 2010 Mar; 9(5): A387–94CrossRefPubMedGoogle Scholar
  4. 4.
    Ryan M, Deno S, Zwibel HL. Review of the clinical debate regarding interventions for multiple sclerosis. J Manag Care Pharm 2009; 15 (Suppl. S-b): S1–17Google Scholar
  5. 5.
    Comi G, Martinelli V, Rodegher M, et al. Effect of glatiramer acetate on conversion to clinically definite multiple sclerosis in patients with clinically isolated syndrome (PreCISe study): a randomised, double-blind, placebo-controlled trial. Lancet 2009 Oct 31; 374(9700): 1503–11CrossRefPubMedGoogle Scholar
  6. 6.
    Tintoré M. New options for early treatment of multiple sclerosis. J Neurol Sci 2009 Feb 1; 277 Suppl. 1: S9–11CrossRefPubMedGoogle Scholar
  7. 7.
    Miller JR. The importance of early diagnosis of multiple sclerosis. J Manage Care Pharm 2004 Jun; 10 (3 Suppl. 2): S4–11Google Scholar
  8. 8.
    Chaudhuri A, Behan PO. Treatment of multiple sclerosis: beyond the NICE guidelines. QJM 2005 May; 98(5): 373–8CrossRefPubMedGoogle Scholar
  9. 9.
    Teva Pharmaceutical Ltd. Copaxone — the leading multiple sclerosis therapy [online]. Available from URL: http://www.tevapharm.com/copaxone/ [Accessed 2010 May 26]
  10. 10.
    Teva Pharmaceuticals Ltd. Copaxone® (glatiramer acetate) solution for subcutaneous injection: US prescribing information highlights [online]. Available from URL: http://www.accessdata.fda.gov/drugsatfda_docs/label/2009/020622s057lbl.pdf [Accessed 2009 Nov 23]
  11. 11.
    Teva Pharmaceuticals Ltd. Copaxone® 20 mg/mL, solution for injection, pre-filled syringe: UK prescribing information [online]. Available from URL: http://emc.medicines.org.uk/medicine/17516/SPC/Copaxone+20mg+ml%2c+Solution+For+Injection%2c+Pre-Filled+Syringe/ [Accessed 2009 Nov 23]
  12. 12.
    Weber MS, Hohlfeld R, Zamvil SS. Mechanism of action of glatiramer acetate in treatment of multiple sclerosis. Neurother 2007 Oct; 4(4): 647–53CrossRefGoogle Scholar
  13. 13.
    Blanchette F, Neuhaus O. Glatiramer acetate: evidence for a dual mechanism of action. J Neurol 2008 Mar; 255 Suppl. 1: 26–36CrossRefPubMedGoogle Scholar
  14. 14.
    Simpson D, Noble S, Perry C. Glatiramer acetate: a review of its use in relapsing-remitting multiple sclerosis. CNS Drugs 2002; 16(12): 825–50CrossRefPubMedGoogle Scholar
  15. 15.
    Arnon R, Aharoni R. Neurogenesis and neuroprotection in the CNS: fundamental elements in the effect of glatiramer acetate on treatment of autoimmune neurological disorders. Mol Neurobiol 2007; 36 245–53CrossRefPubMedGoogle Scholar
  16. 16.
    Blanchette F. Clinical significance of glatiramer acetate antibodies. Mult Scler 2007 May; 13 Suppl. 1: S28–35CrossRefGoogle Scholar
  17. 17.
    Farina C, Weber MS, Meinl E, et al. Glatiramer acetate in multiple sclerosis: update on potential mechanisms of action. Lancet Neurol 2005 Sep; 4(9): 567–75CrossRefPubMedGoogle Scholar
  18. 18.
    Neuhaus O, Farina C, Yassouridis A, et al. Multiple sclerosis: comparison of copolymer-1-reactive T cell lines from treated and untreated subjects reveals cytokine shift from T helper 1 to T helper 2 cells. Proc Natl Acad Sci USA 2000 Jun 20; 97(13): 7452–7CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chen M, Gran B, Costello K, et al. Glatiramer acetate induces a Th2-biased response and crossreactivity with myelin basic protein in patients with MS. Mult Scler 2001 Aug; 7(4): 209–19CrossRefPubMedGoogle Scholar
  20. 20.
    Chen M, Conway K, Johnson KP, et al. Sustained immunological effects of glatiramer acetate in patients with multiple sclerosis treated for over 6 years. J Neurol Sci 2002 Sep 15; 201(1-2): 71–7CrossRefPubMedGoogle Scholar
  21. 21.
    Duda PW, Schmied MC, Cook SL, et al. Glatiramer acetate (Copaxone®) induces degenerate, Th2-polarized immune responses in patients with multiple sclerosis. J Clin Invest 2000 Apr; 105(7): 967–76CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Valenzuela RM, Kaufman MD, Russo PC, et al. Predictive biomarkers of clinical responses to glatiramer acetate therapy in multiple sclerosis [abstract no. P09.097]. Neurology 2009 Mar 17; 72 Suppl. 3: A469Google Scholar
  23. 23.
    Valenzuela RM, Rus H, Ito K, et al. Modulation of IL-18 and caspase-1 expression correlates with the clinical response to glatiramer acetate in multiple sclerosis [abstract no. P03.180]. Neurology 2006 Mar 14; 66 Suppl. 2: A75Google Scholar
  24. 24.
    Miller A, Shapiro S, Gershtein R, et al. Treatment of multiple sclerosis with copolymer-1 (Copaxone®): implicating mechanisms of Th1 to Th2/Th3 immune-deviation. J Neuroimmunol 1998 Dec; 92 (1-2): 113–21CrossRefPubMedGoogle Scholar
  25. 25.
    Sellebjerg F, Krakauer M, Hesse D, et al. T cell activation and Th2 cytokine secretion correlate with disease activity in multiple sclerosis patients treated with glatiramer acetate [abstract no. P09.104]. Neurology 2009 Mar 17; 72 Suppl. 3: A471Google Scholar
  26. 26.
    Hestvik ALK, Skorstad G, Price DA, et al. Multiple sclerosis: glatiramer acetate induces anti-inflammatory T cells in the cerebrospinal fluid. Mult Scler 2008 Jul; 14(6): 749–58CrossRefPubMedGoogle Scholar
  27. 27.
    Valenzuela RM, Balashov K, Ito K, et al. Time course and functional capacity of glatiramer acetate-induced regulatory T-cells in multiple sclerosis patients [abstract no. P233]. 23rd Congress of the European Committee for the Treatment and Research in Multiple Sclerosis and the 12th Annual Conference of Rehabilitation in MS; 2007 Oct 11–14; PragueGoogle Scholar
  28. 28.
    Chiarini M, Sottini A, Ghidini C, et al. Renewal of the T-cell compartment in multiple sclerosis patients treated with glatiramer acetate. Mult Scler 2010 Feb; 16(2): 218–27CrossRefPubMedGoogle Scholar
  29. 29.
    Burger D, Molnarfi N, Weber MS, et al. Glatiramer acetate increases IL-1 receptor antagonist but decreases T cell-induced IL-1beta in human monocytes and multiple sclerosis. Proc Natl Acad Sci U S A 2009 Mar 17; 106(11): 4355–9CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Li Q, Milo R, Panitch H, et al. Glatiramer acetate blocks the activation of THP-1 cells by interferon-g. Eur J Pharmacol 1998; 342: 303–10CrossRefPubMedGoogle Scholar
  31. 31.
    Kim HJ, Ifergan I, Antel JP, et al. Type 2 monocyte and microglia differentiation mediated by glatiramer acetate therapy in patients with multiple sclerosis. J Immunol 2004 Jun 1; 172(11): 7144–53CrossRefPubMedGoogle Scholar
  32. 32.
    Weber MS, Starck M, Wagenpfeil S, et al. Multiple sclerosis: glatiramer acetate inhibits monocyte reactivity in vitro and in vivo. Brain 2004 Jun; 127 Pt 6: 1370–8CrossRefGoogle Scholar
  33. 33.
    Vieira PL, Heystek HC, Wormmeester J, et al. Glatiramer acetate (copolymer-1, Copaxone®) promotes Th2 cell development and increased IL-10 production through modulation of dendritic cells. J Immunol 2003 May 1; 170(9): 4483–8CrossRefPubMedGoogle Scholar
  34. 34.
    Sanna A, Fois ML, Arru G, et al. Glatiramer acetate reduces lymphocyte proliferation and enhances IL-5 and IL-13 production through modulation of monocyte-derived dendritic cells in multiple sclerosis. Clin Exp Immunol 2006 Feb; 143(2): 357–62CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Jung S, Siglienti I, Grauer O, et al. Induction of IL-10 in rat peritoneal macrophages and dendritic cells by glatiramer acetate. J Neuroimmunol 2004 Mar; 148(1-2): 63–73CrossRefPubMedGoogle Scholar
  36. 36.
    Hussien Y, Sanna A, Söderström M, et al. Glatiramer acetate and IFN-b act on dendritic cells in multiple sclerosis. J Neuroimmunol 2001 Dec; 121(1-2): 102–10CrossRefPubMedGoogle Scholar
  37. 37.
    Stasiolek M, Bayas A, Kruse N, et al. Impaired maturation and altered regulatory function of plasmacytoid dendritic cells in multiple sclerosis. Brain 2006 May; 129(5): 1293–305CrossRefPubMedGoogle Scholar
  38. 38.
    Chabot S, Yong FP, Le DM, et al. Cytokine production in T lymphocyte-microglia interaction is attenuated by glatiramer acetate: a mechanism for therapeutic efficacy in multiple sclerosis. Mult Scler 2002 Aug; 8(4): 299–306CrossRefPubMedGoogle Scholar
  39. 39.
    Valenzuela RM, Sicsic C, Brenner T, et al. Correlation of glatiramer acetate (GA) antibodies and cytokine shifts with clinical response to GA in multiple sclerosis [abstract no. P01.053]. Neurology 2007 Mar 20; 68 Suppl. 1: A20CrossRefGoogle Scholar
  40. 40.
    Mikol DD, Barkhof F, Chang P, et al. Comparison of subcutaneous interferon beta-1a with glatiramer acetate in patients with relapsing multiple sclerosis (the REbif vs Glatiramer Acetate in Relapsing MS Disease [REGARD] study): a multicentre, randomised, parallel, open-label trial. Lancet Neurol 2008 Oct; 7(10): 903–14CrossRefPubMedGoogle Scholar
  41. 41.
    Aharoni R, Kayhan B, Eilam R, et al. Glatiramer acetate-specific T cells in the brain express T helper 2/3 cytokines and brain-derived neurotrophic factor in situ. Proc Natl Acad Sci U S A 2003 Nov 25; 100(24): 14157–62CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Aharoni R, Eilam R, Domev H. The immunomodulator glatiramer acetate augments the expression of neurotrophic factors in brains of experimental autoimmune encephalomyelitis mice. Proc Natl Acad Sci U S A 2005 Dec 27; 102(52): 19045–50CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Aharoni R, Aizman E, Fuchs O, et al. Transplanted myogenic progenitor cells express neuronal markers in the CNS and ameliorate disease in experimental autoimmune encepha-lomyelitis. J Neuroimmunol 2009 Oct; 215(1-2): 73–83CrossRefPubMedGoogle Scholar
  44. 44.
    Sarchielli P, Zaffaroni M, Floridi A, et al. Production of brain-derived neurotrophic factor by mononuclear cells of patients with multiple sclerosis treated with glatiramer acetate, interferon-b 1a, and high doses of immuno-globulins. Mult Scler 2007 Apr; 13(3): 313–31CrossRefPubMedGoogle Scholar
  45. 45.
    Blanco Y, Moral EA, Costa M, et al. Effect of glatiramer acetate (Copaxone®) on the immunophenotypic and cytokine profile and BDNF production in multiple sclerosis: a longitudinal study. Neurosci Lett 2006 Oct 6; 406(3): 270–5CrossRefPubMedGoogle Scholar
  46. 46.
    Azoulay D, Vachapova V, Shihman B, et al. Lower brain-derived neurotrophic factor in serum of relapsing remitting MS: reversal by glatiramer acetate. J Neuroimmunol 2005 Oct; 167(1-2): 215–8CrossRefPubMedGoogle Scholar
  47. 47.
    Gilgun-Sherki Y, Panet H, Holdengreber V, et al. Axonal damage is reduced following glatiramer acetate treatment in C57/bl mice with chronic-induced experimental autoimmune encephalomyelitis. Neurosci Res 2003 Oct; 47(2): 201–7CrossRefPubMedGoogle Scholar
  48. 48.
    Aharoni R, Arnon R, Eilam R. Neurogenesis and neuroprotection induced by peripheral immunomodulatory treatment of experimental autoimmune encephalomyelitis. J Neurosci 2005 Sep 7; 25(36): 8217–28CrossRefPubMedGoogle Scholar
  49. 49.
    Aharoni R, Herschkovitz A, Eilam R, et al. Demyelination arrest and remyelination induced by glatiramer acetate treatment of experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 2008 Aug 12; 105(32): 11358–63CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Maier K, Kuhnert AV, Taheri N, et al. Effects of glatiramer acetate and interferon-b on neurodegeneration in a model of multiple sclerosis: a comparative study. Am J Pathol 2006 Oct; 169(4): 1353–64CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Skihar V, Silva C, Chojnacki A, et al. Promoting oligo-dendrogenesis and myelin repair using the multiple sclerosis medication glatiramer acetate. Proc Natl Acad Sci U S A 2009 Oct 20; 106(42): 17992–7CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Filippi M, Rovaris M, Rocca MA, et al. Glatiramer acetate reduces the proportion of new MS lesions evolving into “black holes”. Neurology 2001 Aug 28; 57(4): 731–3CrossRefPubMedGoogle Scholar
  53. 53.
    Arnold DL, Narayanan S, Antel S. Treatment with glatiramer acetate protects axons in patients with clinically isolated syndromes: evidence from the PreCISe trial [abstract no. 17]. Mult Scler 2008 Sep; 14 Suppl. 1: S10Google Scholar
  54. 54.
    Khan O, Shen Y, Caon C, et al. Axonal metabolic recovery and potential neuroprotective effect of glatiramer acetate in relapsing-remitting multiple sclerosis. Mult Scler 2005 Dec; 11(6): 646–51CrossRefPubMedGoogle Scholar
  55. 55.
    Khan O, Shen Y, Bao F, et al. Long-term study of brain 1H-MRS study in multiple sclerosis: effect of glatiramer acetate therapy on axonal metabolic function and feasibility of long-term 1H-MRS monitoring in multiple sclerosis. J Neuroimaging 2008; 18: 314–9CrossRefPubMedGoogle Scholar
  56. 56.
    Perumal JS, Hreha S, Shen Y, et al. Six-year prospective multi-voxel brain MRS study of two cohorts in RRMS to examine the effect of glatiramer acetate on neuronal/axonal metabolic injury [abstract no. P03.083]. Neurology 2009 Mar 17; 72 Suppl. 3: A143Google Scholar
  57. 57.
    Rieckmann P, Kallmann BA, Maeurer M, et al. The Val66Met BDNF polymorphism in multiple sclerosis: potential biomarker for treatment response to glatiramer acetate [abstract no. P07.126]. Neurology 2008 Mar 11; 70 Suppl. 1: A374Google Scholar
  58. 58.
    Johnson KP, Brooks BR, Cohen JA, et al. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multi-center, double-blind, placebo-controlled trial. Neurology 1995 Jul 1; 45(7): 1268–76CrossRefPubMedGoogle Scholar
  59. 59.
    Ure DR, Rodriguez M. Polyreactive antibodies to glatiramer acetate promote myelin repair in murine model of demyelinating disease. FASEB J 2002 Aug; 16(10): 1260–2PubMedGoogle Scholar
  60. 60.
    Brenner T, Arnon R, Sela M, et al. Humoral and cellular immune responses to copolymer 1 in multiple sclerosis patients treated with Copaxone®. J Neuroimmunol 2001 Apr; 115(1-2): 152–60CrossRefPubMedGoogle Scholar
  61. 61.
    Karussis D, Teitelbaum D, Sicsic C, et al. Long-term treatment of multiple sclerosis with glatiramer acetate: natural history of the subtypes of anti-glatiramer acetate antibodies and their correlation with clinical efficacy. J Neuroimmunol 2010 Mar 30; 220(1-2): 125–30CrossRefPubMedGoogle Scholar
  62. 62.
    Comi G, Filippi M, Wolinsky JS, et al. European/Canadian multicenter, double-blind, randomized, placebo-controlled study of the effects of glatiramer acetate on magnetic resonance imaging-measured disease activity and burden in patients with relapsing multiple sclerosis. Ann Neurol 2001 Mar; 49(3): 290–7CrossRefPubMedGoogle Scholar
  63. 63.
    Achiron A, Feldman A, Gurevich M. Molecular profiling of glatiramer acetate early treatment effects in multiple sclerosis. Dis Markers 2009; 27: 63–73CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Lobel E, Riven-Kreitman R, Amselem A, et al. Copolymer-1. Drugs Future 1996 Feb; 21(2): 131–4CrossRefGoogle Scholar
  65. 65.
    Neuhaus O, Kieseier BC, Hartung H-P. Pharmacokinetics and pharmacodynamics of the interferon-betas, glatiramer acetate, and mitoxantrone in multiple sclerosis. J Neurol Sci 2007 Aug 15; 259(1-2): 27–37CrossRefPubMedGoogle Scholar
  66. 66.
    Ziemssen T, Neuhaus O, Hohlfeld R. Risk-benefit assessment of glatiramer acetate in multiple sclerosis. Drug Saf 2001; 24(13): 979–90CrossRefPubMedGoogle Scholar
  67. 67.
    Center for Drug Evaluation and Research. Clinical pharmacology and biopharmaceutics review: glatiramer acetate [online]. Available from URL: http://www.accessdata.fda.gov/drugsatfda_docs/nda/2001/020622_S015_COPAXONE_INJECTION_AP.pdf [Accessed 2010 Mar 29]
  68. 68.
    O’Connor P, Filippi M, Arnason B, et al. 250 mg or 500 mg interferon beta-1b versus 20 mg glatiramer acetate in relapsing-remitting multiple sclerosis: a prospective, randomised, multicentre study. Lancet Neurol 2009 Oct; 8(10): 889–97CrossRefPubMedGoogle Scholar
  69. 69.
    Cadavid D, Wolansky LJ, Skurnick J, et al. Efficacy of treatment of MS with IFNbeta-1b or glatiramer acetate by monthly brain MRI in the BECOME study. Neurology 2009 Jun 9; 72(23): 1976–83. Plus supplementary material available from http://www.neurology.org [Accessed 2010 Feb 19]
  70. 70.
    Jongen PJH, Carton H, Sanders EACM, et al. FOCUS study: fatigue and quality of life in relapsing-remitting multiple sclerosis patients using glatiramer acetate improved at 6 and 12 months of treatment [abstract no. P234]. 23rd Congress of the European Committee for the Treatment and Research in Multiple Sclerosis and the 12th Annual Conference of Rehabilitation in MS; 2007 Oct 11–14; PragueGoogle Scholar
  71. 71.
    Ziemssen T, Hoffman J, Apfel R, et al. Effects of glatiramer acetate on fatigue and days of absence from work in first-time treated relapsing-remitting multiple sclerosis. Health Qual Life Outcomes 2008; 6: 67CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Zwibel HL. Glatiramer acetate in treatment-naive and prior interferon-b-1b-treated multiple sclerosis patients. Acta Neurol Scand 2006 Jun; 113(6): 378–86CrossRefPubMedGoogle Scholar
  73. 73.
    Miller A, Spada V, Beerkircher D, et al. Long-term (up to 22 years), open-label, compassionate-use study of glatiramer acetate in relapsing-remitting multiple sclerosis. Mult Scler 2008 May; 14(4): 494–9CrossRefPubMedGoogle Scholar
  74. 74.
    Ge Y, Grossman RI, Udupa JK, et al. Glatiramer acetate (Copaxone®) treatment in relapsing-remitting MS: quantitative MR assessment. Neurology 2000 Feb 22; 54(4): 813–7CrossRefPubMedGoogle Scholar
  75. 75.
    Johnson KP, Brooks BR, Cohen JA, et al. Extended use of glatiramer acetate (Copaxone®) is well tolerated and maintains its clinical effect on multiple sclerosis relapse rate and degree of disability. Neurology 1998 Mar 1; 50(3): 701–8CrossRefPubMedGoogle Scholar
  76. 76.
    Johnson KP, Brooks BR, Ford CC, et al. Glatiramer acetate (Copaxone®): comparison of continuous versus delayed therapy in a six-year organized multiple sclerosis trial. Mult Scler 2003 Dec; 9(6): 585–91CrossRefPubMedGoogle Scholar
  77. 77.
    Johnson KP, Ford CC, Lisak RP, et al. Neurologic consequence of delaying glatiramer acetate therapy for multiple sclerosis: 8-year data. Acta Neurol Scand 2005 Jan; 111(1): 42–7CrossRefPubMedGoogle Scholar
  78. 78.
    Ford CC, Johnson KP, Lisak RP, et al. A prospective open-label study of glatiramer acetate: over a decade of continuous use in multiple sclerosis patients. Mult Scler 2006 Jun; 12(3): 309–20CrossRefPubMedGoogle Scholar
  79. 79.
    Ford C, Goodman AD, Johnson K, et al. Continuous long-term immunomodulatory therapy in relapsing multiple sclerosis: results from the 15-year analysis of the US prospective open-label study of glatiramer acetate. Mult Scler 2010 Mar; 16(3): 342–50CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Schwid SR, Goodman AD, Weinstein A, et al. Cognitive function in relapsing multiple sclerosis: minimal changes in a 10-year clinical trial. J Neurol Sci 2007 Apr 15; 255(1-2): 57–63CrossRefPubMedGoogle Scholar
  81. 81.
    Goodin DS, Frohman EM, Garmany GP, et al. Disease modifying therapies in multiple sclerosis: subcommittee of the American Academy of Neurology and the MS Council for Clinical Practice Guidelines. Neurology 2002 Jan 22; 58(2): 169–78CrossRefPubMedGoogle Scholar
  82. 82.
    Wolinsky JS, Comi G, Filippi M, et al. Copaxones®’s effect on MRI-monitored disease in relasping MS is reproducible and sustained. Neurology 2002 Oct 22; 59(8): 1284–6CrossRefPubMedGoogle Scholar
  83. 83.
    Rovaris M, Comi G, Rocca MA, et al. Short-term brain volume change in relapsing-remitting multiple sclerosis: effect of glatiramer acetate and implications. Brain 2001 Sep; 124(9): 1803–12CrossRefPubMedGoogle Scholar
  84. 84.
    Cadavid D, Cheriyan J, Skurnick J, et al. New acute and chronic black holes in multiple sclerosis patients randomized to interferon beta-1b or glatiramer acetate. J Neurol Neurosurg Psychiatry 2009; 80: 1337–43CrossRefPubMedGoogle Scholar
  85. 85.
    Bell C, Graham J, Earnshaw S, et al. Cost-effectiveness of four immunomodulatory therapies for relapsing-remitting multiple sclerosis: a Markov model based on long-term clinical data. J Manage Care Pharm 2007 Apr; 13(3): 245–61Google Scholar
  86. 86.
    Tappenden P, McCabe C, Chilcott J, et al. Cost-effectiveness of disease-modifying therapies in the management of multiple sclerosis for the Medicare population. Value Health 2009 Jul 31; 12(5): 657–65CrossRefPubMedGoogle Scholar
  87. 87.
    Tappenden P, Chilcott JB, Eggington S, et al. Methods for expected value of information analysis in complex health economic models: developments on the health economics of interferon-b and glatiramer acetate for multiple sclerosis. Health Technol Assess 2004 Jun; 8(27): 1–78CrossRefGoogle Scholar
  88. 88.
    Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 1983 Nov 1; 33(11): 1444–52CrossRefPubMedGoogle Scholar
  89. 89.
    Pardo G, Boutwell C, Conner J, et al. Effect of oral anti-histamine on local injection site reactions with self-administered glatiramer acetate. J Neurosci Nurs 2010 Feb; 42(1): 40–6CrossRefPubMedGoogle Scholar
  90. 90.
    Bornstein MB, Miller A, Slagle S, et al. A pilot trial of Cop 1 in exacerbating-remitting multiple sclerosis. N Engl J Med 1987 Aug 13; 317(7): 408–14CrossRefPubMedGoogle Scholar
  91. 91.
    Merck Serono Europe Limited. Rebif® (interferon beta-1a) for subcutaneous injection: EU summary of product characteristics [online]. Available from URL: http://www.ema.europa.eu/humandocs/PDFs/EPAR/Rebif/emea-combined-h136en.pdf [Accessed 2010 Jan 27]
  92. 92.
    Serono Inc. Rebif® (interferon beta-1a) for subcutaneous injection: US prescribing information [online]. Available from URL: http://www.accessdata.fda.gov/drugsatfda_docs/label/2005/103780s5062lbl.pdf [Accessed 2010 Jan 27]
  93. 93.
    Bayer HealthCare Pharmaceuticals Inc. Betaseron® (interferon beta-1b) for subcutaneous injection: US prescribing information [online]. Available from URL: http://www.betaseron.com/prescribing_info.jsp [Accessed 2010 Jan 27]
  94. 94.
    Bayer Schering Pharma AG. Betaferon® (interferon beta-1b) for subcutaneous injection: EU summary of product characteristics [online]. Available from URL: http://www.ema.europa.eu/humandocs/PDFs/EPAR/Betaferon/emea-combined-h081en.pdf [Accessed 2010 Jan 27]
  95. 95.
    Biogen Idec Limited. Avonex® (interferon beta-1a) for intramuscular injection: EU summary of product characteristics [online]. Available from URL: http://www.ema.europa.eu/humandocs/PDFs/EPAR/avonex/H-102-PI-en.pdf [Accessed 2010 Jan 27]
  96. 96.
    Biogen Idec Inc. Avonex® (interferon beta-1a) for intramuscular injection: US prescibing information [online]. Available from URL: http://www.accessdata.fda.gov/drugsatfda_docs/label/2007/103628s5115lbl.pdf [Accessed 2010 Jan 27]
  97. 97.
    Association of British Neurologists. Revised (2009) guidelines for prescribing in multiple sclerosis [online]. Available from URL: http://www.theabn.org/abn/userfiles/file/ABN_MS_Guidelines_2009_Final.pdf [Accessed 2010 Feb 1]
  98. 98.
    National Institute for Clinical Excellence. Multiple sclerosis: management of multiple sclerosis in primary and secondary care [online]. Available from URL: http://www.nice.org.uk/nicemedia/pdf/cg008guidance.pdf [Accessed 2010 Jan 29]
  99. 99.
    Multiple Sclerosis Therapy Consensus Group. Escalating immunotherapy of multiple sclerosis: new aspects and practical application. J Neurol 2004 Nov; 251(11): 1329–39CrossRefGoogle Scholar
  100. 100.
    Compston A, Coles A. Multiple sclerosis. Lancet 2008 Oct 25; 372(9648): 1502–17CrossRefPubMedGoogle Scholar
  101. 101.
    EMD Sorono Inc. Novantrone® (mitoxantrone) for injection: US prescribing information [online]. Available from URL: http://www.accessdata.fda.gov/drugsatfda_docs/label/2009/019297s030s031lbl.pdf [Accessed 2010 Feb 1]
  102. 102.
    Elan Pharma International Ltd. Tysabri® (natalizumab) 300 mg for injection: EU summary of product charactersitics [online]. Available from URL: http://www.ema.europa.eu/humandocs/PDFs/EPAR/tysabri/emea-combined-h603en.pdf [Accessed 2010 Feb 1]
  103. 103.
    Elan Pharmaceuticals Inc. Tysabri® (natalizumab) injection for intravenous use: highlights of US prescribing information [online]. Available from URL: http://www.accessdata.fda.gov/drugsatfda_docs/label/2008/125104s0067lbl.pdf [Accessed 2010 Feb 1]
  104. 104.
    National Institute for Clinical Excellence. Natalizumab for the treatment of adults with highly active relapsing-remitting multiple sclerosis [online]. Available from URL: http://www.nice.org.uk/nicemedia/pdf/TA127Niceguidance.pdf [Accessed 2010 Feb 1]
  105. 105.
    Bertolotto A. Implications of neutralising antibodies on therapeutic efficacy. J Neurol Sci 2009 Feb 1; 277 Suppl. 1: S29–32CrossRefPubMedGoogle Scholar
  106. 106.
    Marriott JJ, Miyasaki JN, Gronseth G, et al. Evidence report: the efficacy and safety of mitoxantrone (Novantrone) in the treatment of multiple sclerosis: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 2010 May 4; 74(18): 1463–70CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Rammohan KW, Shoemaker J. Emerging multiple sclerosis oral therapies. Neurology 2010; 74 Suppl. 1: S47–53CrossRefPubMedGoogle Scholar
  108. 108.
    Carroll WM. Oral therapy for multiple sclerosis-sea change or incremental step? N Engl J Med 2010 Feb 4; 362(5): 456–8CrossRefPubMedGoogle Scholar
  109. 109.
    Giovannoni G, Comi G, Cook S, et al. A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N Engl J Med 2010 Feb 4; 362(5): 416–26CrossRefPubMedGoogle Scholar
  110. 110.
    Kappos L, Radue E-W, O’Connor P, et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med 2010 Feb 4; 362(5): 387–401CrossRefPubMedGoogle Scholar
  111. 111.
    Cohen JA, Barkhof F, Comi G, et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med 2010 Feb 4; 362(5): 402–15CrossRefPubMedGoogle Scholar
  112. 112.
    Multiple Sclerosis Resource Centre. Cladribine (Mylinax) [online]. Available from URL: http://www.msrc.co.uk/index.cfm?fuseaction=show&pageid=1629 [Accessed 2010 Feb 5]
  113. 113.
    Multiple Sclerosis Resource Centre. FTY720 (Fingolimod) [online]. Available from URL: http://www.msrc.co.uk/index.cfm?fuseaction=show&pageid=1309 [Accessed 2010 Feb 5]
  114. 114.
    EMD Serono. EMD Serono receives refuse to file letter from FDA on cladribine tablets new drug application [online]. Available from URL: http://www.emdserono.com/cmg.emdserono_us/en/images/20091130_Cladribine_FDA_Press%20Release%20English%20Final_US_tcm115_47509.pdf?Version= [Accessed 2010 Mar 26]
  115. 115.
    Comi G, Pulizzi A, Rovaris M, et al. Effect of laquinimod on MRI-monitored disease activity in patients with relapsing-remitting multiple sclerosis: a multicentre, randomised, double-blind, placebo-controlled phase IIb study. Lancet 2008; 371: 2085–92CrossRefPubMedGoogle Scholar
  116. 116.
    Sormani MP, Bonzano L, Roccatagliata L, et al. Magnetic resonance imaging as a potential surrogate for relapses in multiple sclerosis: a meta-analytic approach. Ann Neurol 2009; 65(3): 268–75CrossRefPubMedGoogle Scholar
  117. 117.
    Petkau J, Reingold SC, Held U, et al. Magnetic resonance imaging as a surrogate outcome for multiple sclerosis relapses. Mult Scler 2008 Jul; 14(6): 770–8CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Daumer M, Neuhaus A, Morrissey S, et al. MRI as an outcome in multiple sclerosis clinical trials. Neurology 2009; 72: 705–11CrossRefPubMedGoogle Scholar
  119. 119.
    Barkhof F, Filippi M. MRI-the perfect surrogate marker for multiple sclerosis? [letter]. Nat Rev Neurol 2009 Apr; 5(4): 182–3CrossRefPubMedGoogle Scholar
  120. 120.
    Goodman AD, Rossman H, Bar-Or A, et al. GLANCE: results of a phase 2, randomized, double-blind, placebo-controlled study. Neurology 2009 Mar 3; 72(9): 806–12CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Kobelt G, Berg J, Atherly D, et al. Costs and quality of life in multiple sclerosis: a cross-sectional study in the United States. Neurology 2006 Jun 13; 66(11): 1696–702CrossRefPubMedGoogle Scholar
  122. 122.
    Thrower BW. Clinically isolated syndromes: predicting and delaying multiple sclerosis. Neurology 2007 12 Jun; 68 Suppl. 4: S12–5CrossRefPubMedGoogle Scholar
  123. 123.
    Coyle PK. Early treatment of multiple sclerosis to prevent neurologic damage. Neurology 2008 Dec 9; 71 Suppl. 3: S3–7CrossRefPubMedGoogle Scholar

Copyright information

© Adis Data Information BV 2010

Authors and Affiliations

  1. 1.Adis, a Wolters Kluwer BusinessMairangi Bay, North Shore, AucklandNew Zealand

Personalised recommendations