Advertisement

Clinical Pharmacokinetics

, Volume 48, Issue 8, pp 517–528 | Cite as

Pharmacokinetic and Pharmacodynamic Parameters of Antimicrobials

Potential for Providing Dosing Regimens that Are Less Vulnerable to Resistance
  • Chiara AdembriEmail author
  • Andrea Novelli
Review Article

Abstract

Whereas infections caused by multidrug-resistant micro-organisms are increasing worldwide, there are few new molecules, especially ones that are active against Gram-negative strains. There are extensive data showing that the administration of antimicrobials according to pharmacokinetic/pharmacodynamic parameters improves the possibility of a positive clinical outcome, particularly in severely ill patients. Evidence is growing that when pharmacokinetic/pharmacodynamic parameters are used to target not only clinical cure but also eradication, the spread of resistance will also be contained. The present paper summarizes the most relevant papers published in this field and provides some suggestions for dosing regimens that can be adopted in the clinical setting to limit the spread of resistance.

Keywords

Minimum Inhibitory Concentration Levofloxacin Linezolid Meropenem Moxifloxacin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank Mary Forrest for editing the English of this manuscript and Dr Marco Miranda for compiling the references. No funding has been used in the preparation of this manuscript. The authors have no conflicts of interest that are directly relevant to the content of this review.

References

  1. 1.
    Fish DN, Ohlinger MJ. Antimicrobial resistance: factors and outcomes. Crit Care Clin 2006; 22(2): 291–311PubMedCrossRefGoogle Scholar
  2. 2.
    Fridkin SK, Gaynes RP. Antimicrobial resistance in intensive care units. Clin Chest Med 1999; 20(2): 303–16PubMedCrossRefGoogle Scholar
  3. 3.
    Singh N, Yu VL. Rational empiric antibiotic prescription in the ICU. Chest 2000; 117(5): 1496–9PubMedCrossRefGoogle Scholar
  4. 4.
    National Nosocomial Infections Surveillance (NNIS) System report, data summary from January 1992 through June 2003, issued August 2003. Am J Infect Control 2003; 31(8): 481–98CrossRefGoogle Scholar
  5. 5.
    Huskins WC. Interventions to prevent transmission of antimicrobial-resistant bacteria in the intensive care unit. Curr Opin Crit Care 2007; 13(5): 572–7PubMedCrossRefGoogle Scholar
  6. 6.
    National Nosocomial Infections Surveillance System. National Nosocomial Infections Surveillance (NNIS) System report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control 2004; 32(8): 470–85CrossRefGoogle Scholar
  7. 7.
    Klevens RM, Edwards JR, Tenover FC, et al. Changes in the epidemiology of methicillin-resistant Staphylococcus aureus in intensive care units in US hospitals, 1992–2003. Clin Infect Dis 2006; 42(3): 389–91PubMedCrossRefGoogle Scholar
  8. 8.
    European Antimicrobial Resistance Surveillance System [EARSS]. EARSS annual report 2006. Bilthoven: EARSS, 2007 Oct [online]. Available from URL: http://www.rivm.nl/earss/Images/EARSS%202006%20Def_tcm61-44176.pdf [Accessed 2008 Aug 1]
  9. 9.
    Pea F, Viale P. The antimicrobial therapy puzzle: could pharmacokineticpharmacodynamic relationships be helpful in addressing the issue of appropriate pneumonia treatment in critically ill patients? Clin Infect Dis 2006; 42(12): 1764–71PubMedCrossRefGoogle Scholar
  10. 10.
    Pangault C, Le Tulzo Y, Tattevin P, et al. Down-modulation of granulocyte macrophage-colony stimulating factor receptor on monocytes during human septic shock. Crit Care Med 2006; 34(4): 1193–201PubMedCrossRefGoogle Scholar
  11. 11.
    Tam VH, Louie A, Fritsche TR, et al. Impact of drug-exposure intensity and duration of therapy on the emergence of Staphylococcus aureus resistance to a quinolone antimicrobial. J Infect Dis 2007; 195(12): 1818–27PubMedCrossRefGoogle Scholar
  12. 12.
    Drusano GL, Louie A, Deziel M, et al. The crisis of resistance: identifying drug exposures to suppress amplification of resistant mutant subpopulations. Clin Infect Dis 2006; 42(4): 525–32PubMedCrossRefGoogle Scholar
  13. 13.
    DeRyke CA, Lee SY, Kuti JL, et al. Optimising dosing strategies of antibacterials utilising pharmacodynamic principles: impact on the development of resistance. Drugs 2006; 66(1): 1–14PubMedCrossRefGoogle Scholar
  14. 14.
    Rybak MJ. Pharmacodynamics: relation to antimicrobial resistance. Am J Infect Control 2006; 34 (5 Suppl. 1): S38–45PubMedCrossRefGoogle Scholar
  15. 15.
    Olofsson SK, Cars O. Optimizing drug exposure to minimize selection of antibiotic resistance. Clin Infect Dis 2007; 45 Suppl. 2: S129–36PubMedCrossRefGoogle Scholar
  16. 16.
    Eagle H, Fleischmann R, Musselman AD. Effect of schedule of administration on the therapeutic efficacy of penicillin: importance of the aggregate time penicillin remains at effectively bactericidal levels. Am J Med 1950; 9(3): 280–99PubMedCrossRefGoogle Scholar
  17. 17.
    Ambrose PG, Bhavnani SM, Rubino CM, et al. Pharmacokineticspharmacodynamics of antimicrobial therapy: it’s not just for mice anymore. Clin Infect Dis 2007; 44(1): 79–86PubMedCrossRefGoogle Scholar
  18. 18.
    Drusano GL. Pharmacokinetics and pharmacodynamics of antimicrobials. Clin Infect Dis 2007; 45 Suppl. 1: S89–95PubMedCrossRefGoogle Scholar
  19. 19.
    Mehrotra R, De Gaudio R, Palazzo M. Antibiotic pharmacokinetic and pharmacodynamic considerations in critical illness. Intensive Care Med 2004; 30(12): 2145–56PubMedCrossRefGoogle Scholar
  20. 20.
    Garraffo R. Optimal adaptive control of pharmacodynamic effects with aminoglycoside antibiotics: a required approach for the future. Int J Biomed Comput 1994; 36(1–2): 43–57PubMedCrossRefGoogle Scholar
  21. 21.
    Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 1998; 26(1): 1–10PubMedCrossRefGoogle Scholar
  22. 22.
    Turnidge J, Paterson DL. Setting and revising antibacterial susceptibility breakpoints. Clin Microbiol Rev 2007; 20(3): 391–408PubMedCrossRefGoogle Scholar
  23. 23.
    Moise-Broder PA, Forrest A, Birmingham MC, et al. Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections. Clin Pharmacokinet 2004; 43(13): 925–42PubMedCrossRefGoogle Scholar
  24. 24.
    Bakker-Woudenberg IA, ten Kate MT, Goessens WH, et al. Effect of treatment duration on pharmacokinetic/pharmacodynamic indices correlating with therapeutic efficacy of ceftazidime in experimental Klebsiella pneumoniae lung infection. Antimicrob Agents Chemother 2006; 50(9): 2919–25PubMedCrossRefGoogle Scholar
  25. 25.
    Negri MC, Morosini MI, Loza E, et al. In vitro selective antibiotic concentrations of beta-lactams for penicillin-resistant Streptococcus pneumoniae populations. Antimicrob Agents Chemother 1994; 38(1): 122–5PubMedCrossRefGoogle Scholar
  26. 26.
    Negri MC, Lipsitch M, Blazquez J, et al. Concentration-dependent selection of small phenotypic differences in TEM beta-lactamase-mediated antibiotic resistance. Antimicrob Agents Chemother 2000; 44(9): 2485–91PubMedCrossRefGoogle Scholar
  27. 27.
    Drlica K, Zhao X. Mutant selection window hypothesis updated. Clin Infect Dis 2007; 44(5): 681–8PubMedCrossRefGoogle Scholar
  28. 28.
    Lodise Jr TP, Lomaestro B, Drusano GL. Piperacillin-tazobactam for Pseudomonas aeruginosa infection: clinical implications of an extended-infusion dosing strategy. Clin Infect Dis 2007; 44(3): 357–63PubMedCrossRefGoogle Scholar
  29. 29.
    LaPlante KL, Rybak MJ, Tsuji B, et al. Fluoroquinolone resistance in Streptococcus pneumoniae: area under the concentration-time curve/MIC ratio and resistance development with gatifloxacin, gemifloxacin, levofloxacin, and moxifloxacin. Antimicrob Agents Chemother 2007; 51(4): 1315–20PubMedCrossRefGoogle Scholar
  30. 30.
    Jumbe N, Louie A, Leary R, et al. Application of a mathematical model to prevent in vivo amplification of antibiotic-resistant bacterial populations during therapy. J Clin Invest 2003; 112(2): 275–85PubMedGoogle Scholar
  31. 31.
    Zinner SH, Lubenko IY, Gilbert D, et al. Emergence of resistant Streptococcus pneumoniae in an in vitro dynamic model that simulates moxifloxacin concentrations inside and outside the mutant selection window: related changes in susceptibility, resistance frequency and bacterial killing. J Antimicrob Chemother 2003; 52(4): 616–22PubMedCrossRefGoogle Scholar
  32. 32.
    Tam VH, Schilling AN, Neshat S, et al. Optimization of meropenem minimum concentration/MIC ratio to suppress in vitro resistance of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2005; 49(12): 4920–7PubMedCrossRefGoogle Scholar
  33. 33.
    Alou L, Gimenez MJ, Sevillano D, et al. A pharmacodynamic approach to antimicrobial activity in serum and epithelial lining fluid against in vivoselected Streptococcus pneumoniae mutants and association with clinical failure in pneumonia. J Antimicrob Chemother 2006; 58(2): 349–58PubMedCrossRefGoogle Scholar
  34. 34.
    Rose WE, Rybak MJ, Tsuji BT, et al. Correlation of vancomycin and daptomycin susceptibility in Staphylococcus aureus in reference to accessory gene regulator (AGR) polymorphism and function. J Antimicrob Chemother 2007; 59(6): 1190–3PubMedCrossRefGoogle Scholar
  35. 35.
    Andes D, Craig WA. In vivo activities of amoxicillin and amoxicillinclavulanate against Streptococcus pneumoniae: application to breakpoint determinations. Antimicrob Agents Chemother 1998; 42(9): 2375–9PubMedGoogle Scholar
  36. 36.
    Fitoussi F, Doit C, Sandin A, et al. Killing activity of cefpirome against penicillin-resistant Streptococcus pneumoniae isolates from patients with meningitis in a pharmacodynamic model simulating the cerebrospinal fluid concentration profile. Antimicrob Agents Chemother 1995; 39(11): 2560–3PubMedCrossRefGoogle Scholar
  37. 37.
    Odenholt I, Gustafsson I, Lowdin E, et al. Suboptimal antibiotic dosage as a risk factor for selection of penicillin-resistant Streptococcus pneumoniae: in vitro kinetic model. Antimicrob Agents Chemother 2003; 47(2): 518–23PubMedCrossRefGoogle Scholar
  38. 38.
    Knudsen JD, Odenholt I, Erlendsdottir H, et al. Selection of resistant Streptococcus pneumoniae during penicillin treatment in vitro and in three animal models. Antimicrob Agents Chemother 2003; 47(8): 2499–506PubMedCrossRefGoogle Scholar
  39. 39.
    Goessens WH, Mouton JW, ten Kate MT, et al. Role of ceftazidime dose regimen on the selection of resistant Enterobacter cloacae in the intestinal flora of rats treated for an experimental pulmonary infection. J Antimicrob Chemother 2007; 59(3): 507–16PubMedCrossRefGoogle Scholar
  40. 40.
    Firsov AA, Vostrov SN, Lubenko IY, et al. In vitro pharmacodynamic evaluation of the mutant selection window hypothesis using four fluoroquinolones against Staphylococcus aureus. Antimicrob Agents Chemother 2003; 47(5): 1604–13PubMedCrossRefGoogle Scholar
  41. 41.
    Olofsson SK, Geli P, Andersson DI, et al. Pharmacodynamic model to describe the concentration-dependent selection of cefotaxime-resistant Escherichia coli. Antimicrob Agents Chemother 2005; 49(12): 5081–91PubMedCrossRefGoogle Scholar
  42. 42.
    Mattie H. Antibiotic efficacy in vivo predicted by in vitro activity. Int J Antimicrob Agents 2000; 14(2): 91–8PubMedCrossRefGoogle Scholar
  43. 43.
    Benet LZ, Hoener BA. Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther 2002; 71(3): 115–21PubMedCrossRefGoogle Scholar
  44. 44.
    Forrest A, Nix DE, Ballow CH, et al. Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother 1993; 37(5): 1073–81PubMedCrossRefGoogle Scholar
  45. 45.
    Thomas JK, Forrest A, Bhavnani SM, et al. Pharmacodynamic evaluation of factors associated with the development of bacterial resistance in acutely ill patients during therapy. Antimicrob Agents Chemother 1998; 42(3): 521–7PubMedGoogle Scholar
  46. 46.
    Preston SL, Drusano GL, Berman AL, et al. Pharmacodynamics of levofloxacin: a new paradigm for early clinical trials. JAMA 1998; 279(2): 125–9PubMedCrossRefGoogle Scholar
  47. 47.
    Drusano GL, Preston SL, Fowler C, et al. Relationship between fluoroquinolone area under the curve: minimum inhibitory concentration ratio and the probability of eradication of the infecting pathogen, in patients with nosocomial pneumonia. J Infect Dis 2004; 189(9): 1590–7PubMedCrossRefGoogle Scholar
  48. 48.
    Ambrose PG, Grasela DM, Grasela TH, et al. Pharmacodynamics of fluoroquinolones against Streptococcus pneumoniae in patients with community-acquired respiratory tract infections. Antimicrob Agents Chemother 2001; 45(10): 2793–7PubMedCrossRefGoogle Scholar
  49. 49.
    Weinstein MP, Stratton CW, Hawley HB, et al. Multicenter collaborative evaluation of a standardized serum bactericidal test as a predictor of therapeutic efficacy in acute and chronic osteomyelitis. Am J Med 1987; 83(2): 218–22PubMedCrossRefGoogle Scholar
  50. 50.
    Turnidge JD. The pharmacodynamics of beta-lactams. Clin Infect Dis 1998; 27(1): 10–22PubMedCrossRefGoogle Scholar
  51. 51.
    Craig WA, Andes D. Pharmacokinetics and pharmacodynamics of antibiotics in otitis media. Pediatr Infect Dis J 1996; 15(3): 255–9PubMedCrossRefGoogle Scholar
  52. 52.
    Sadaba B, Azanza JR, Campanero MA, et al. Relationship between pharmacokinetics and pharmacodynamics of beta-lactams and outcome. Clin Microbiol Infect 2004; 10(11): 990–8PubMedCrossRefGoogle Scholar
  53. 53.
    Guillemot D, Carbon C, Balkau B, et al. Low dosage and long treatment duration of beta-lactam: risk factors for carriage of penicillin-resistant Streptococcus pneumoniae. JAMA 1998; 279(5): 365–70PubMedCrossRefGoogle Scholar
  54. 54.
    Schrag SJ, Pena C, Fernandez J, et al. Effect of short-course, high-dose amoxicillin therapy on resistant pneumococcal carriage: a randomized trial. JAMA 2001; 286(1): 49–56PubMedCrossRefGoogle Scholar
  55. 55.
    McKinnon PS, Paladino JA, Schentag JJ. Evaluation of area under the inhibitory curve (AUIC) and time above the minimum inhibitory concentration (T>MIC) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections. Int J Antimicrob Agents 2008; 31(4): 345–51PubMedCrossRefGoogle Scholar
  56. 56.
    Roos JF, Bulitta J, Lipman J, et al. Pharmacokinetic-pharmacodynamic rationale for cefepime dosing regimens in intensive care units. J Antimicrob Chemother 2006; 58(5): 987–93PubMedCrossRefGoogle Scholar
  57. 57.
    Lodise TP, Preston S, Bhargava V, et al. Pharmacodynamics of an 800-mg dose of telithromycin in patients with community-acquired pneumonia caused by extracellular pathogens. Diagn Microbiol Infect Dis 2005; 52(1): 45–52PubMedCrossRefGoogle Scholar
  58. 58.
    Kashuba AD, Nafziger AN, Drusano GL, et al. Optimizing aminoglycoside therapy for nosocomial pneumonia caused by gram-negative bacteria. Antimicrob Agents Chemother 1999; 43(3): 623–9PubMedGoogle Scholar
  59. 59.
    Zelenitsky SA, Harding GK, Sun S, et al. Treatment and outcome of Pseudomonas aeruginosa bacteraemia: an antibiotic pharmacodynamic analysis. J Antimicrob Chemother 2003; 52(4): 668–74PubMedCrossRefGoogle Scholar
  60. 60.
    Burkhardt O, Lehmann C, Madabushi R, et al. Once-daily tobramycin in cystic fibrosis: better for clinical outcome than thrice-daily tobramycin but more resistance development? J Antimicrob Chemother 2006; 58(4): 822–9PubMedCrossRefGoogle Scholar
  61. 61.
    Chastre J, Wolff M, Fagon JY, et al. Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a randomized trial. JAMA 2003; 290(19): 2588–98PubMedCrossRefGoogle Scholar
  62. 62.
    Novelli A, Adembri C, Livi P, et al. Pharmacokinetic evaluation of meropenem and imipenem in critically ill patients with sepsis. Clin Pharmacokinet 2005; 44(5): 539–49PubMedCrossRefGoogle Scholar
  63. 63.
    Tam VH, Gamez EA, Weston JS, et al. Outcomes of bacteremia due to Pseudomonas aeruginosa with reduced susceptibility to piperacillin-tazobactam: implications on the appropriateness of the resistance breakpoint. Clin Infect Dis 2008; 46(6): 862–7PubMedCrossRefGoogle Scholar
  64. 64.
    Lee SY, Fan HW, Sutherland C, et al. Antibacterial effects of moxifloxacin and levofloxacin simulating epithelial lining fluid concentrations against community-acquired methicillin-resistant Staphylococcus aureus. Drugs R D 2007; 8(2): 69–77PubMedCrossRefGoogle Scholar
  65. 65.
    Burkhardt O, Kumar V, Katterwe D, et al. Ertapenem in critically ill patients with early-onset ventilator-associated pneumonia: pharmacokinetics with special consideration of free-drug concentration. J Antimicrob Chemother 2007; 59(2): 277–84PubMedCrossRefGoogle Scholar
  66. 66.
    US National Committee for Clinical Laboratory Standards [NCCLS], Clinical Laboratory Standards Institute [CLSI]. Performance standards for antimicrobial susceptibility testing: fourteenth international supplement M100-S14. Wayne (PA): CLSI, 2004 JanGoogle Scholar
  67. 67.
    European Committee on Antimicrobial Susceptibility Testing, European Society of Clinical Microbiology and Infectious Diseases. Clinical breakpoints [online]. Available from http://www.srga.org/eucastwt/MICTAB/index.html [Accessed 2009 Jul 14]
  68. 68.
    Drusano GL, Ambrose PG, Bhavnani SM, et al. Back to the future: using aminoglycosides again and how to dose them optimally. Clin Infect Dis 2007; 45(6): 753–60PubMedCrossRefGoogle Scholar
  69. 69.
    Novelli A, Mazzei T, Fallani S, et al. Clinical pharmacokinetics and tissue penetration of netilmicin given once versus twice daily. J Chemother 1991; 3 Suppl. 4: 229–32Google Scholar
  70. 70.
    Blaser J, Simmen HP, Thurnheer U, et al. Nephrotoxicity, high frequency ototoxicity, efficacy and serum kinetics of once versus thrice daily dosing of netilmicin in patients with serious infections. J Antimicrob Chemother 1995; 36(5): 803–14PubMedCrossRefGoogle Scholar
  71. 71.
    Chambers HF. Aminoglycosides. In: Brunton LL, Lazo JS, Parker KL, editors. Goodman and Gilman’s: the pharmacological basis of therapeutics. 11th ed. New York: McGraw-Hill, 2006Google Scholar
  72. 72.
    Zaske DE, Cipolle RJ, Rotschafer JC, et al. Gentamicin pharmacokinetics in 1640 patients: method for control of serum concentrations. Antimicrob Agents Chemother 1982; 21(3): 407–11PubMedCrossRefGoogle Scholar
  73. 73.
    Hyatt JM, McKinnon PS, Zimmer GS, et al. The importance of pharmacokinetic/pharmacodynamic surrogate markers to outcome: focus on antibacterial agents. Clin Pharmacokinet 1995; 28(2): 143–60PubMedCrossRefGoogle Scholar
  74. 74.
    Mouton JW, Vinks AA. Continuous infusion of beta-lactams. Curr Opin Crit Care 2007; 13(5): 598–606PubMedCrossRefGoogle Scholar
  75. 75.
    Mouton JW, Punt N, Vinks AA. Concentration-effect relationship of ceftazidime explains why the time above the MIC is 40 percent for a static effect in vivo. Antimicrob Agents Chemother 2007; 51(9): 3449–51PubMedCrossRefGoogle Scholar
  76. 76.
    Roosendaal R, Bakker-Woudenberg IA, van den Berghe-van Raffe M, et al. Impact of the dosage schedule on the efficacy of ceftazidime, gentamicin and ciprofloxacin in Klebsiella pneumoniae pneumonia and septicemia in leukopenic rats. Eur J Clin Microbiol Infect Dis 1989; 8(10): 878–87PubMedCrossRefGoogle Scholar
  77. 77.
    Grant EM, Kuti JL, Nicolau DP, et al. Clinical efficacy and pharmacoeconomics of a continuous-infusion piperacillin-tazobactam program in a large community teaching hospital. Pharmacotherapy 2002; 22(4): 471–83PubMedCrossRefGoogle Scholar
  78. 78.
    Buerger C, Plock N, Dehghanyar P, et al. Pharmacokinetics of unbound linezolid in plasma and tissue interstitium of critically ill patients after multiple dosing using microdialysis. Antimicrob Agents Chemother 2006; 50(7): 2455–63PubMedCrossRefGoogle Scholar
  79. 79.
    MacGowan AP. Pharmacokinetic and pharmacodynamic profile of linezolid in healthy volunteers and patients with Gram-positive infections. J Antimicrob Chemother 2003; 51 Suppl. 2: ii17–25PubMedCrossRefGoogle Scholar
  80. 80.
    Adembri C, Fallani S, Cassetta MI, et al. Linezolid pharmacokinetic/ pharmacodynamic profile in critically ill septic patients: intermittent versus continuous infusion. Int J Antimicrob Agents 2008; 31(2): 122–9PubMedCrossRefGoogle Scholar
  81. 81.
    Boak LM, Li J, Rayner CR, et al. Pharmacokinetic/pharmacodynamic factors influencing emergence of resistance to linezolid in an in vitro model. Antimicrob Agents Chemother 2007; 51(4): 1287–92PubMedCrossRefGoogle Scholar
  82. 82.
    Louie A, Heine HS, Kim K, et al. Use of an in vitro pharmacodynamic model to derive a linezolid regimen that optimizes bacterial kill and prevents emergence of resistance in Bacillus anthracis. Antimicrob Agents Chemother 2008; 52(7): 2486–96PubMedCrossRefGoogle Scholar
  83. 83.
    MacKenzie FM, Struelens MJ, Towner KJ, et al. Report of the Consensus Conference on Antibiotic Resistance; Prevention and Control (ARPAC). Clin Microbiol Infect 2005; 11(11): 938–54PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2009

Authors and Affiliations

  1. 1.Critical Care Department, Section of Anesthesiology and Intensive CareUniversity of FlorenceFlorenceItaly
  2. 2.Department of Clinical and Preclinical PharmacologyUniversity of FlorenceFirenzeItaly

Personalised recommendations