High Blood Pressure & Cardiovascular Prevention

, Volume 15, Issue 4, pp 245–253

Angiotensin II Blockade and Total Cardiovascular Risk

Beyond Blood Pressure Reduction
  • Francesco Cipollone
  • Sara Di Fabio
  • Marco Bucci
  • Giancarlo Cicolini
  • Andrea Mezzetti
Review Article

Abstract

Hypertension is one of the world’s largest public health problems and it is both a disease and a risk factor for cardiovascular disease (CVD). The heart, the endothelium and the kidneys are the target organs of hypertension. Recently, several antihypertensive drugs have been introduced to the market; therefore, the choice is mainly determined by the patients’ features. In particular, ACE inhibitors and angiotensin II type 1 receptor antagonists (angiotensin receptor blockers [ARBs]) demonstrate a larger reduction in cardiovascular risk than other antihypertensive treatments because of the existence of blood pressure-independent effects. In fact, the angiotensin II pathway plays a major role in metabolic, haemodynamic and endothelial homeostasis. For these reasons, ACE inhibitors and ARBs have primary indications in patients with obesity, hypercholesterolaemia and diabetes mellitus because of their favourable metabolic properties. Furthermore, several large trials have demonstrated that they have favourable effects also in patients with left ventricular dysfunction or systolic heart failure, as well as other forms of heart disease. Drugs affecting the angiotensin II pathway may reduce endothelial dysfunction through several mechanisms including reduction of vascular permeability and oxidative stress. Another important effect of these drugs is neuroprotection. This is an important effect because in the near future, due to an aging population, an important goal for optimal antihypertensive treatment will be the prevention of cognitive decline. ACE inhibitors and ARBs are very important drugs in the modern management of the total cardiovascular risk in hypertensive patients.

Key words

hypertension cardiovascular disease angiotensin-converting enzyme inhibitors angiotensin II type 1 receptor blockers 

References

  1. 1.
    World Health Organization. Quantifying selected major risks to health. In: The world health report 2002: reducing risks, promoting healthy life. Geneva: WHO, 2002 [online]. Available from URL: www.who.int/whr/2002/chapter4/en/print.html [Accessed 2008 Nov 4]
  2. 2.
    Staffileno BA. Treating hypertension with cardioprotective therapies: the role of ACE inhibitors, ARBs, and beta-blockers. J Cardiovasc Nurs 2005 Sep-Oct; 20(5): 354–64CrossRefPubMedGoogle Scholar
  3. 3.
    Leenen FH. Blood pressure lowering, not vascular mechanism of action, is the primary determinant of clinical outcome. Can J Cardiol 2004 Aug; 20Suppl. B: 77B–82BPubMedGoogle Scholar
  4. 4.
    Blood Pressure Lowering Treatment Trialists’ Collaboration. Blood pressure-dependent and independent effects of agents that inhibit the renin-angiotensin system. J Hypertens 2007; 25: 951–8CrossRefGoogle Scholar
  5. 5.
    Sleight P. No HOPE without proof: do ARBs meet the standard for cardiovascular protection? Medscape J Med 2008; 10Suppl.: 96Google Scholar
  6. 6.
    Yusuf S, Sleight P, Pogue J, et al. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 2000; 342: 145–53CrossRefPubMedGoogle Scholar
  7. 7.
    Weir MR. Risk-based classification of hypertension and the role of combination therapy. J Clin Hypertens (Greenwich) 2008 Jan; 10(1 Suppl. 1): 4–12CrossRefGoogle Scholar
  8. 8.
    Sharma AM. Is there a rationale for angiotensin blockade in the management of obesity hypertension? Hypertension 2004 Jul; 44(1): 12–9CrossRefPubMedGoogle Scholar
  9. 9.
    Sharma AM, Engeli S. The role of renin-angiotensin system blockade in the management of hypertension associated with the cardiometabolic syndrome. J Cardiometab Syndr 2006 winter; 1(1): 29–35CrossRefPubMedGoogle Scholar
  10. 10.
    Segura J, Ruilope LM. Obesity, essential hypertension and renin-angiotensin system. Public Health Nutr 2007 Oct; 10(10A): 1151–5CrossRefPubMedGoogle Scholar
  11. 11.
    Kannel WB. Risk stratification in hypertension: new insights from the Framingham Study. Am J Hypertens 2000; 13: 3S–10SCrossRefPubMedGoogle Scholar
  12. 12.
    Ginsberg HN, Stalenhoef AF. The metabolic syndrome: targeting dyslipidaemia to reduce coronary risk. J Cardiovasc Risk 2003; 10: 121–8CrossRefPubMedGoogle Scholar
  13. 13.
    Libby P, Theroux P. Pathophysiology of coronary artery disease. Circulation 2005; 111: 3481–8CrossRefPubMedGoogle Scholar
  14. 14.
    Ferrario CM, Smith R, Levy P, et al. The hypertension-lipid connection: insights into the relation between angiotensin II and cholesterol in atherogenesis. Am J Med Sci 2002; 323: 17–24CrossRefPubMedGoogle Scholar
  15. 15.
    Diet F, Pratt RE, Berry GJ, et al. Increased accumulation of tissue ACE in human atherosclerotic coronary artery disease. Circulation 1996; 94: 2756–67CrossRefPubMedGoogle Scholar
  16. 16.
    Fukuhara M, Geary RL, Diz DI, et al. Angiotensin-converting enzyme expression in human carotid artery atherosclerosis. Hypertension 2000; 35: 353–9CrossRefPubMedGoogle Scholar
  17. 17.
    Makaritsis KP, Gavras H, Du Y, et al. 1-Adrenergic plus angiotensin receptor blockade reduces atherosclerosis in apolipoprotein E-deficient mice. Hypertension 1998; 32: 1044–8CrossRefPubMedGoogle Scholar
  18. 18.
    Schuh JR, Blehm DJ, Friedrich GE, et al. Differential effects of renin-angiotensin system blockade on atherogenesis in cholesterol-fed rabbits. J Clin Invest 1993; 91: 1453–8CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Nickenig G, Sachinidis A, Michaelsen F, et al. Upregulation of vascular angiotensin II receptor gene expression by low-density lipoprotein in vascular smooth muscle cells. Circulation 1997; 95v: 473–8CrossRefPubMedGoogle Scholar
  20. 20.
    Li D, Saldeen T, Romeo F, et al. Oxidized LDL upregulates angiotensin II type 1 receptor expression in cultured human coronary artery endothelial cells: the potential role of transcription factor NF-kappaB. Circulation 2000; 102: 1970–6CrossRefPubMedGoogle Scholar
  21. 21.
    Nickenig G, Harrison DG. The AT1-type angiotensin receptor in oxidative stress and atherogenesis, part II: AT1 receptor regulation. Circulation 2002; 105: 530–6CrossRefPubMedGoogle Scholar
  22. 22.
    Daugherty A, Rateri DL, Lu H, et al. Hypercholesterolemia stimulates angiotensin peptide synthesis and contributes to atherosclerosis through the AT1A receptor. Circulation 2004; 110: 3849–57CrossRefPubMedGoogle Scholar
  23. 23.
    Morawietz H. Beyond blood pressure: endothelial protection against hypercholesterolemia by angiotensin II type-1 receptor blockade. Hypertension 2005; 45: 185–6CrossRefPubMedGoogle Scholar
  24. 24.
    Morawietz H, Erbs S, Holtz J, et al. Endothelial protection, AT1 blockade and cholesterol-dependent oxidative stress. Circulation 2006; 114: I–296–I–301CrossRefGoogle Scholar
  25. 25.
    Cai H, Griendling KK, Harrison DG. The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases. Trends Pharmacol Sci 2003; 24: 471–8CrossRefPubMedGoogle Scholar
  26. 26.
    Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 2000; 87: 840–4CrossRefPubMedGoogle Scholar
  27. 27.
    Morawietz H, Rueckschloss U, Niemann B, et al. Angiotensin II induces LOX-1, the human endothelial receptor for oxidized low-density lipoprotein. Circulation 1999; 100: 899–902CrossRefPubMedGoogle Scholar
  28. 28.
    Li DY, Zhang YC, Philips MI, et al. Upregulation of endothelial receptor for oxidized low-density lipoprotein (LOX-1) in cultured human coronary artery endothelial cells by angiotensin II type 1 receptor activation. Circ Res 1999; 84: 1043–9CrossRefPubMedGoogle Scholar
  29. 29.
    Scheen AJ. Prevention of type 2 diabetes mellitus through inhibition of the renin-angiotensin system. Drugs 2004; 64(22): 2537–65CrossRefPubMedGoogle Scholar
  30. 30.
    Benndorf RA, Rudolph T, Appel D, et al. Telmisartan improves insulin sensitivity in non-diabetic patients with essential hypertension. Metabolism 2006 Sep; 55(9): 1159–64CrossRefPubMedGoogle Scholar
  31. 31.
    Mori Y, Itoh Y, Tajima N. Telmisartan improves lipid metabolism and adiponectin production but does not affect glycemic control in hypertensive patients with type 2 diabetes. Adv Ther 2007 Jan-Feb; 24(1): 146–53CrossRefPubMedGoogle Scholar
  32. 32.
    Usui I, Fujisaka S, Yamazaki K, et al. Telmisartan reduced blood pressure and HOMA-IR with increasing plasma leptin level in hypertensive and type 2 diabetic patients. Diabetes Res Clin Pract 2007 Aug; 77(2): 210–4CrossRefPubMedGoogle Scholar
  33. 33.
    Derosa G, Fogari E, D’Angelo A, et al. Metabolic effects of telmisartan and irbesartan in type 2 diabetic patients with metabolic syndrome treated with rosiglitazone. J Clin Pharm Ther 2007 Jun; 32(3): 261–8CrossRefPubMedGoogle Scholar
  34. 34.
    Galle J, Schwedhelm E, Pinnetti S, et al. on behalf of the VIVALDI investigators. Antiproteinuric effects of angiotensin receptor blockers: telmisartan versus valsartan in hypertensive patients with type 2 diabetes mellitus and overt nephropathy. Nephrol Dial Transplant 2008; 23(10): 3174–83CrossRefPubMedGoogle Scholar
  35. 35.
    Murray CJL, Lopez AD, editors. The global burden of disease: a comprehensive assessment of mortality and disability from diseases, injuries and risk factors in 1990 and projected to 2020. Boston (MA): Harvard School of Public Health, 1996Google Scholar
  36. 36.
    Prisant LM. Management of hypertension in patients with cardiac disease: use of renin-angiotensin blocking agents. Am J Med 2008 Aug; 121(8 Suppl.): S8–15CrossRefPubMedGoogle Scholar
  37. 37.
    The CONSENSUS Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure: results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N Engl J Med 1987; 316: 1429–35CrossRefGoogle Scholar
  38. 38.
    McMurray JJ, Ostergren J, Swedberg K, et al. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function taking angiotensin-converting-enzyme inhibitors: the CHARM-Added trial. Lancet 2003; 362: 767–71CrossRefPubMedGoogle Scholar
  39. 39.
    Yusuf S, Pfeffer MA, Swedberg K, et al. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection function: the CHARM-Preserved trial. Lancet 2003; 362: 777–81CrossRefPubMedGoogle Scholar
  40. 40.
    Ertl G, Hu K. Anti-ischemic potential of drugs related to the renin-angiotensin system. J Cardiovasc Pharmacol 2001 Apr; 37Suppl. 1: S11–20CrossRefPubMedGoogle Scholar
  41. 41.
    Hammoud RA, Vaccari CS, Nagamia SH, et al. Regulation of the renin-angiotensin system in coronary atherosclerosis: a review of the literature. Vasc Health Risk Manag 2007 Dec; 3(6): 937–45PubMedPubMedCentralGoogle Scholar
  42. 42.
    Fox KM. European trial On reduction of cardiac events with Perindopril in stable coronary Artery disease Investigators. Efficacy of perindopril in reduction of cardiovascular events among patients with stable coronary artery disease: randomised, double-blind, placebo-controlled, multicentre trial (the EUROPA study). Lancet 2003; 362: 782–8CrossRefPubMedGoogle Scholar
  43. 43.
    Okin PM, Devereux RB, Jern S, et al. Regression of electrocardiographic left ventricular hypertrophy by losartan versus atenolol: the Losartan Intervention for Endpoint reduction in Hypertension (LIFE) study. Circulation 2003; 108: 684–90CrossRefPubMedGoogle Scholar
  44. 44.
    Schrader J, Lüders S, Kulschewski A. Morbidity and mortality after stroke, eprosartan compared with nitrendipine for secondary prevention. Stroke 2005; 36: 1218–24CrossRefPubMedGoogle Scholar
  45. 45.
    Yusuf S, Sleight P, Anderson C, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med 2008; 358: 1547–59CrossRefPubMedGoogle Scholar
  46. 46.
    Pfeffer MA, McMurray JJV, Velazquez EJ, et al. Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both. N Engl J Med 2003; 349: 1893–906CrossRefPubMedGoogle Scholar
  47. 47.
    de Denus S, Zakrzewski-Jakubiak M, Dube MP, et al. Effects of AGTR1 A1166C gene polymorphism in patients with heart failure treated with candesartan. Ann Pharmacother 2008 Jul; 42(7): 925–32CrossRefPubMedGoogle Scholar
  48. 48.
    Biegelsen ES, Loscalzo J. Endothelial function and atherosclerosis. Coron Artery Dis 1999; 10: 241–56CrossRefPubMedGoogle Scholar
  49. 49.
    De Meyer GR, Herman AG. Vascular and endothelial dysfunction. Prog Cardiovasc Dis 1997; 39: 325–42CrossRefPubMedGoogle Scholar
  50. 50.
    Negro R. Endothelial effects of antihypertensive treatment: focus on irbesartan. Vasc Health Risk Manag 2008 Feb; 4(1): 89–101CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Boger RH, Bode-Boger SM, Tsao PS, et al. An endogenous inhibitor of nitric oxide synthase regulates endothelial adhesiveness for monocytes. J Am Coll Cardiol 2000; 36: 2287–95CrossRefPubMedGoogle Scholar
  52. 52.
    De Caterina R, Libby P, Peng HB, et al. Nitric oxide decreases cytokine-induced endothelial activation. J Clin Invest 1995; 96: 60–8CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Kubes P, Suzuki M, Granger DN. Nitric oxide: an endogenous modulator of leucocyte adhesion. Proc Natl Acad Sci USA 1991; 88: 4651–5CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Radomski MW, Palmer RMJ, Moncada S. Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet 1987; II: 1057–68CrossRefGoogle Scholar
  55. 55.
    Panza JA, Casino PR, Badar DM, et al. Effect of increased availability of endothelium-derived nitric oxide precursor on endothelium-dependent vascular relaxation in normal subjects and in patients with essential hypertension. Circulation 1993; 87: 1475–81CrossRefPubMedGoogle Scholar
  56. 56.
    Campbell DJ. Circulating and tissue angiotensin systems. J Clin Invest 1987; 79: 1–6CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Tamarat R, Silvestre JS, Durie M, et al. Angiotensin II angiogenic effect in vivo involves vascular endothelial growth factor and inflammation-related pathways. Lab Invest 2002; 82: 747–56CrossRefPubMedGoogle Scholar
  58. 58.
    Piqueras L, Kubes P, Alvarez A, et al. Angiotensin II induces leukocyte-endothelial cell interactions in vivo via AT(1) and AT(2) receptor-mediated P-selectin upregulation. Circulation 2000; 102: 2118–23CrossRefPubMedGoogle Scholar
  59. 59.
    Pueyo ME, Gonzalez W, Nicoletti A, et al. Angiotensin II stimulates endothelial vascular cell adhesion molecule-1 via nuclear factor-kappaB activation induced by intracellular oxidative stress. Arterioscler Thromb Vasc Biol 2000; 20: 645–51CrossRefPubMedGoogle Scholar
  60. 60.
    Pastore L, Tessitore A, Martinetti S, et al. Angiotensin II stimulates intracellular adhesion molecole-1 (ICAM-1) expression by human vascular endothelial cells and increases soluble ICAM-1 release in vivo. Circulation 1999; 100: 1646–52CrossRefPubMedGoogle Scholar
  61. 61.
    Persson F, Rossing P, Hovind P, et al. Irbesartan treatment reduces biomarkers of inflammatory activity in patients with type 2 diabetes and microalbuminuria: an IRMA 2 substudy. Diabetes 2006; 55: 3550–5CrossRefPubMedGoogle Scholar
  62. 62.
    Candido R, Allen TJ, Lassila M, et al. Irbesartan but not amlodipine suppresses diabetes-associated atherosclerosis. Circulation 2004; 109: 1536–42CrossRefPubMedGoogle Scholar
  63. 63.
    Bragulat E, Larousse M, Coca A, et al. Effect of long-term irbesartan treatment on endothelium-dependent vasodilation in essential hypertensive patients. Br J Biomed Sci 2003; 60: 191–6CrossRefPubMedGoogle Scholar
  64. 64.
    Makris TK, Stavroulakis GA, Krespi PG, et al. Fibrinolytic/hemostatic variables in arterial hypertension: response to treatment with irbesartan or atenolol. Am J Hypertens 2000; 13: 783–8CrossRefPubMedGoogle Scholar
  65. 65.
    Yao EH, Fukuda N, Matsumoto T. Losartan improves the impaired function of endothelial progenitor cells in hypertension via an antioxidant effect. Hypertens Res 2007 Nov; 30(11): 1119–28CrossRefPubMedGoogle Scholar
  66. 66.
    Stumpe KO, Agabiti-Rosei E, Zielinski T, et al. Original research: carotid intima-media thickness and plaque volume changes following 2-year angiotensin II-receptor blockade. The Multicentre Olmesartan atherosclerosis Regression Evaluation (MORE) study. Ther Adv Cardiovasc Dis 2007; 1: 97–106CrossRefPubMedGoogle Scholar
  67. 67.
    Peralta CA, Kurella M, Lo JC, et al. The metabolic syndrome and chronic kidney disease. Curr Opin Nephrol Hypertens 2006; 15: 361–5CrossRefPubMedGoogle Scholar
  68. 68.
    Segura J, Campo C, Gil P, et al. Development of chronic kidney disease and cardiovascular prognosis in essential hypertensive patients. J Am Soc Nephrol 2004; 15: 1616–22CrossRefPubMedGoogle Scholar
  69. 69.
    Dzau V, Braunwald E. Resolved and unresolved issues in the prevention and treatment of coronary artery disease: a workshop consensus statement. Am Heart J 1991; 121: 1244–63CrossRefPubMedGoogle Scholar
  70. 70.
    Dzau V. The cardiovascular continuum and renin-angiotensin-aldosterone system blockade. J Hypertens 2005; 23Suppl. 1: S9–S17CrossRefGoogle Scholar
  71. 71.
    Levey AS, Coresh J, Balk E, et al. National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann Intern Med 2003; 139: 137–47CrossRefPubMedGoogle Scholar
  72. 72.
    Becker GJ, Hewitson TD. The role of tubulointerstitial injury in chronic renal failure. Curr Opin Nephrol Hypertens 2000; 9: 133–8CrossRefPubMedGoogle Scholar
  73. 73.
    Ghiadoni L, Cupisti A, Huang Y, et al. Endothelial dysfunction and oxidative stress in chronic renal failure. J Nephrol 2004; 17: 512–9PubMedGoogle Scholar
  74. 74.
    Osto E, Coppolino G, Volpe M, et al. Restoring the dysfunctional endothelium. Curr Pharm Des 2007; 13: 1053–68CrossRefPubMedGoogle Scholar
  75. 75.
    Bernadet-Monrozies P, Rostaing L, Kamar N, et al. The effect of angiotensin-converting enzyme inhibitors on the progression of chronic renal failure. Presse Med 2002 Nov 9; 31(36): 1714–20PubMedGoogle Scholar
  76. 76.
    Vogt L, Kocks MJ, Laverman GD, et al. Renoprotection by blockade of the renin-angiotensin-aldosterone system in diabetic and non-diabetic chronic kidney disease: specific involvement of intra-renal angiotensin-converting enzyme activity in therapy resistance? Minerva Med 2004 Oct; 95 (5): 395–409Google Scholar
  77. 77.
    De Leeuw PW, Thijs L, Birkenhager WH, et al. Prognostic significance of renal function in elderly patients with isolated systolic hypertension: results from the Syst-Eur trial. J Am Soc Nephrol 2002; 13: 2213–22CrossRefPubMedGoogle Scholar
  78. 78.
    Palmer BF. Management of hypertension in patients with chronic kidney disease and diabetes mellitus. Am J Med 2008 Aug; 121(8 Suppl.): S16–22CrossRefPubMedGoogle Scholar
  79. 79.
    Wilms H, Rosenstiel P, Unger T, et al. Neuroprotection with angiotensin receptor antagonists: a review of the evidence and potential mechanisms. Am J Cardiovasc Drugs 2005; 5(4): 245–53CrossRefPubMedGoogle Scholar
  80. 80.
    Rosenstiel P, Gallinat S, Arlt A, et al. Angiotensin AT2 receptor ligands: do they have potential as future treatments for neurological disease? CNS Drugs 2002; 16(3): 145–53CrossRefPubMedGoogle Scholar

Copyright information

© Adis Data Information BV 2008

Authors and Affiliations

  • Francesco Cipollone
    • 1
  • Sara Di Fabio
    • 1
  • Marco Bucci
    • 1
  • Giancarlo Cicolini
    • 1
  • Andrea Mezzetti
    • 1
  1. 1.Italian Society for the Study of Atherosclerosis Abruzzo SectionCentro di Riferimento Regionale per l’Aterosclerosi, l’Ipertensione Arteriosa e le Dislipidemie, Policlinico Clinicizzato “Santissima Annunziata”ChietiItaly

Personalised recommendations