Applied Bioinformatics

, Volume 4, Issue 4, pp 217–225

Los Alamos Hepatitis C Immunology Database

  • Karina Yusim
  • Russell Richardson
  • Ning Tao
  • Anita Dalwani
  • Ashish Agrawal
  • James Szinger
  • Robert Funkhouser
  • Bette Korber
  • Carla Kuiken
Database Report

Abstract

The Los Alamos Hepatitis C Virus (HCV) Sequence Database (http://hcv.lanl.gov or http://hcv-db.org) was officially launched in September 2003. The sister HCV Immunology Database was made public in September 2004. The HCV Immunology Database is based on the Human Immunodeficiency Virus (HIV) Immunology Database. The HCV Immunology Database contains a curated inventory of immunological epitopes in HCV and their interaction with the immune system, with associated retrieval and analysis tools. This article describes in detail the types of data and services that the new database offers, the tools provided and the database framework. The data and some of the HCV database tools are available for download for non-commercial use.

References

  1. 1.
    World Health Organization. Hepatitis C. Fact sheet no. 164 [online]. October 2000. Available from URL: http://www.who.int/mediacentre/factsheets/fsl64/en/print.html [Accessed 2005 Nov 3]
  2. 2.
    Alter MJ, Margolis HS, Krawczynski K, et al. The natural history of community-acquired hepatitis C in the United States. The Sentinel Counties Chronic non-A, non-B Hepatitis Study Team. N Engl J Med 1992; 327: 1899–905PubMedCrossRefGoogle Scholar
  3. 3.
    Hoofnagle JH. Hepatitis C: the clinical spectrum of disease. Hepatology 1997; 26: 15S–20SPubMedCrossRefGoogle Scholar
  4. 4.
    Krahn M, Wong JB, Heathcote J, et al. Estimating the prognosis of hepatitis C patients infected by transfusion in Canada between 1986 and 1990. Med Decis Making 2004; 24: 20–9PubMedCrossRefGoogle Scholar
  5. 5.
    Grakoui A, Hanson HL, Rice CM. Bad time for Bonzo? Experimental models of hepatitis C virus infection, replication, and pathogenesis. Hepatology 2001; 33: 489–95PubMedCrossRefGoogle Scholar
  6. 6.
    Lanford RE, Bigger C. Advances in model systems for hepatitis C virus research. Virology 2002; 293: 1–9PubMedCrossRefGoogle Scholar
  7. 7.
    Pawlotsky JM. Mechanisms of antiviral treatment efficacy and failure in chronic hepatitis C. Antiviral Res 2003; 59: 1–11PubMedCrossRefGoogle Scholar
  8. 8.
    Fleckenstein J. Chronic hepatitis C in African Americans and other minority groups. Curr Gastroenterol Rep 2004; 6: 66–70PubMedCrossRefGoogle Scholar
  9. 9.
    Choo QL, Kuo G, Weiner AJ, et al. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 1989; 244: 359–62PubMedCrossRefGoogle Scholar
  10. 10.
    Alter HJ, Purcell RH, Shih JW, et al. Detection of antibody to hepatitis C virus in prospectively followed transfusion recipients with acute and chronic non-A, non-B hepatitis. N Engl J Med 1989; 321: 1494–500PubMedCrossRefGoogle Scholar
  11. 11.
    Farci P, Alter HJ, Wong DC, et al. Prevention of hepatitis C virus infection in chimpanzees after antibody-mediated in vitro neutralization. Proc Natl Acad Sci U S A 1994; 91: 7792–6PubMedCrossRefGoogle Scholar
  12. 12.
    Zibert A, Schreier E, Roggendorf M. Antibodies in human sera specific to hypervariable region 1 of hepatitis C virus can block viral attachment. Virology 1995; 208: 653–61PubMedCrossRefGoogle Scholar
  13. 13.
    Ishii K, Rosa D, Watanabe Y, et al. High titers of antibodies inhibiting the binding of envelope to human cells correlate with natural resolution of chronic hepatitis C. Hepatology 1998; 28: 1117–20PubMedCrossRefGoogle Scholar
  14. 14.
    Pavio N, Lai MM. The hepatitis C virus persistence: how to evade the immune system? J Biosci 2003; 28: 287–304PubMedCrossRefGoogle Scholar
  15. 15.
    Cerny A, Chisari FV. Pathogenesis of chronic hepatitis C: immunological features of hepatic injury and viral persistence. Hepatology 1999; 30: 595–601PubMedCrossRefGoogle Scholar
  16. 16.
    Cooper S, Erickson AL, Adams EJ, et al. Analysis of a successful immune response against hepatitis C virus. Immunity 1999; 10: 439–49PubMedCrossRefGoogle Scholar
  17. 17.
    Cucchiarini M, Kammer AR, Grabscheid B, et al. Vigorous peripheral blood cytotoxic T cell response during the acute phase of hepatitis C virus infection. Cell Immunol 2000; 203: 111–23PubMedCrossRefGoogle Scholar
  18. 18.
    Darling JM, Wright TL. Immune responses in hepatitis C: is virus or host the problem? Curr Opin Infect Dis 2004; 17: 193–8PubMedCrossRefGoogle Scholar
  19. 19.
    Erickson AL, Kimura Y, Igarashi S, et al. The outcome of hepatitis C virus infection is predicted by escape mutations in epitopes targeted by cytotoxic T lymphocytes. Immunity 2001; 15: 883–95PubMedCrossRefGoogle Scholar
  20. 20.
    Gruner NH, Gerlach TJ, Jung MC, et al. Association of hepatitis C virus-specific CD8+ T cells with viral clearance in acute hepatitis C. J Infect Dis 2000; 181: 1528–36PubMedCrossRefGoogle Scholar
  21. 21.
    Lechner F, Wong DK, Dunbar PR, et al. Analysis of successful immune responses in persons infected with hepatitis C virus. J Exp Med 2000; 191: 1499–512PubMedCrossRefGoogle Scholar
  22. 22.
    Ward S, Lauer G, Isba R, et al. Cellular immune responses against hepatitis C virus: the evidence base 2002. Clin Exp Immunol 2002; 128: 195–203PubMedCrossRefGoogle Scholar
  23. 23.
    Gerlach JT, Diepolder HM, Jung MC, et al. Recurrence of hepatitis C virus after loss of virus-specific CD4(+) T-cell response in acute hepatitis C. Gastroenterology 1999; 117: 933–41PubMedCrossRefGoogle Scholar
  24. 24.
    Farci P, Purcell RH. Clinical significance of hepatitis C virus genotypes and quasispecies. Semin Liver Dis 2000; 20: 103–26PubMedGoogle Scholar
  25. 25.
    Gaschen B, Taylor J, Yusim K, et al. Diversity considerations in HIV-1 vaccine selection. Science 2002; 296: 2354–60PubMedCrossRefGoogle Scholar
  26. 26.
    Kuiken C, Yusim K, Boykin L, et al. The Los Alamos hepatitis C sequence database. Bioinformatics 2005 Feb 1; 21(3): 379–84PubMedCrossRefGoogle Scholar
  27. 27.
    Korber B, Brander C, Haynes B, et al. HIV molecular immunology 2002. Los Alamos (NM): Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, 2003Google Scholar
  28. 28.
    Rolsky D, Williams K. Embedding Perl in HTML with Mason. Sebastopol (CA): O’Reilly & Associates Inc., 2003Google Scholar
  29. 29.
    Wall L, Christiansen T, Orwant J. Programming Perl. Sebastopol (CA): O’Reilly & Associates Inc., 2000Google Scholar
  30. 30.
    Stajich JE, Block D, Boulez K, et al. The Bioperl toolkit: Perl modules for the life sciences. Genome Res 2002; 12: 1611–8PubMedCrossRefGoogle Scholar
  31. 31.
    Yusim K, Kesmir C, Gaschen B, et al. Clustering patterns of cytotoxic T-lymphocyte epitopes in human immunodeficiency virus type 1 (HIV-1) proteins reveal imprints of immune evasion on HIV-1 global variation. J Virol 2002; 76: 8757–68PubMedCrossRefGoogle Scholar
  32. 32.
    Los Alamos National Laboratory. Hepatitis C Virus (HCV) Immunology Database [online]. Available from URL: http://hcv.lanl.gov or http://hcv-db.org [Accessed 2005 Nov 3]
  33. 33.
    Calef C, Thakalapally R, Lang D, et al. PeptGen: designing peptides for immunological studies and application to HIV consensus sequences. In: Korber BT, Brander C, Haynes B, et al., editors. HIV molecular immunology 2000. Los Alamos (NM): Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, 2000: 163–7Google Scholar
  34. 34.
    Thakalapally R, Kibbe W, Lang D, et al. MotifScan: a web-based tool to find HLA anchor residues in proteins or peptides. In: Korber B, Brander C, Haynes B, et al., editors. HIV molecular immunology database 2000. Los Alamos (NM): Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, 2000: 1–101–102. Report no.: LA-UR 02-2877Google Scholar
  35. 35.
    Yusim K, Szinger J, Honeyborne I, et al. Enhanced MotifScan: a tool to scan for HLA anchor residues in proteins, HIV molecular immunology 2003. Los Alamos (NM): Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, 2004: 25–36Google Scholar
  36. 36.
    Calef C, Thakalapally R, Kaslow R, et al. ELF: an analysis tool for HIV-1 peptides and HLA types. In: Korber B, Brander C, Haynes B, et al., editors. HIV molecular immunology 2001. Los Alamos (NM): Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, 2001:I–21–25. Report no.: LA-UR 02-2877Google Scholar
  37. 37.
    Sarobe P, Jauregui JI, Lasarte JJ, et al. Production of interleukin-2 in response to synthetic peptides from hepatitis C virus E1 protein in patients with chronic hepatitis C: relationship with the response to interferon treatment. J Hepatol 1996; 25: 1–9PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2005

Authors and Affiliations

  • Karina Yusim
    • 1
  • Russell Richardson
    • 1
  • Ning Tao
    • 1
  • Anita Dalwani
    • 1
  • Ashish Agrawal
    • 1
  • James Szinger
    • 1
  • Robert Funkhouser
    • 1
  • Bette Korber
    • 1
  • Carla Kuiken
    • 1
  1. 1.Theoretical Biology and BiophysicsLos Alamos National LaboratoryLos AlamosUSA
  2. 2.HCV DatabaseLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations