Advertisement

Treatments in Respiratory Medicine

, Volume 4, Issue 1, pp 21–29 | Cite as

Rhinitis Medicamentosa

A Review of Causes and Treatment
  • Peter GrafEmail author
Review Article

Abstract

Rhinitis medicamentosa (RM) is a drug-induced, nonallergic form of rhinitis that is associated with prolonged use of topical vasoconstrictors, i.e. local decongestants. Symptoms are exacerbated by the preservative benzalkonium chloride (BKC) in the nasal preparations. Nasal stuffiness is caused by rebound swelling of the mucosa when the decongestive effect of the drug has disappeared. To alleviate this symptom, patients gradually start using larger doses of the vasoconstrictor more frequently. In many cases, the patient is unaware of the condition, thus entering a vicious circle of self-treatment. Careful questioning is required during consultation to establish diagnosis. The pathophysiology of the condition is unclear; however, vasodilatation and intravascular edema have both been implicated. Management of RM requires withdrawal of topical decongestants to allow the damaged nasal mucosa to recover, followed by treatment of the underlying nasal disease. Topical corticosteroids such as budesonide and fluticasone propionate should be used to alleviate rebound swelling of the nasal mucosa. Where possible, avoiding exposure to BKC is recommended.

Keywords

Rhinitis Fluticasone Propionate Nasal Mucosa Nasal Spray Nasal Blockage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

No sources of funding were used to assist in the preparation of this review. The author has no conflicts of interest that are directly relevant to the content of this review.

References

  1. 1.
    Lundback B. Epidemiology of rhinitis and asthma. Clin Exp Allergy 1998; 28Suppl. 2: 3–10PubMedGoogle Scholar
  2. 2.
    Lake C. Rhinitis medicamentosa. Mayo Clinic Proc 1946; 21: 367–71Google Scholar
  3. 3.
    Stephens A, Boggs P. Intranasal dexamethasone: an adjunct in the treatment of chemical rhinitis. Ann Allergy 1968; 26: 612–3PubMedGoogle Scholar
  4. 4.
    Suh SH, Chon KM, Min YG, et al. Effects of topical nasal decongestants on histology of nasal respiratory mucosa in rabbits. Acta Otolaryngol 1995; 115: 664–71PubMedCrossRefGoogle Scholar
  5. 5.
    Graf P. Rhinitis medicamentosa: aspects of pathophysiology and treatment. Allergy 1997; 52Suppl. 40: 28–34PubMedCrossRefGoogle Scholar
  6. 6.
    Dykewicz MS, Fineman S, Skoner DP, et al. Diagnosis and management of rhinitis: complete guidelines of the Joint Task Force on Practice Parameters in Allergy, Asthma and Immunology. Ann Allergy Asthma Immunol 1998; 81: 478–518PubMedCrossRefGoogle Scholar
  7. 7.
    Kully BM. The use and abuse of nasal vasoconstrictor medication. JAMA 1945; 127: 307–10CrossRefGoogle Scholar
  8. 8.
    Walker J. Rhinitis medicamentosa. J Allergy 1952; 23: 183–6PubMedCrossRefGoogle Scholar
  9. 9.
    Stride R. Nasal decongestant therapy. Br J Clin Pract 1967; 21: 541–8PubMedGoogle Scholar
  10. 10.
    Hallén H, Juto J-E. An objective method to record changes in nasal reactivity during treatment of non-allergic nasal hyperactivity. ORL J Otorhinolaryngol Relat Spec 1994; 56: 92–5PubMedCrossRefGoogle Scholar
  11. 11.
    Black M, Remsen K. Rhinitis medicamentosa. CMAJ 1980; 122: 881–4Google Scholar
  12. 12.
    Toohill R, Lehman R, Grossman T, et al. Rhinitis medicamentosa. Laryngoscope 1981; 91: 1614–21PubMedGoogle Scholar
  13. 13.
    Baldwin R. Rhinitis medicamentosa (an approach to treatment). J Med Assoc State Ala 1977; 47: 33–5Google Scholar
  14. 14.
    Fleece L, Mizes JS, Jolly PA, et al. Rhinitis medicamentosa: conceptualisation, incidence and treatment. Ala J Med Sci 1984; 21: 205–8PubMedGoogle Scholar
  15. 15.
    Feinberg A, Feinberg S. The “nose drop nose” due to oxymetazoline (Afrin) and other topical vasoconstrictors. IMJ Ill Med J 1971; 140: 50–2PubMedGoogle Scholar
  16. 16.
    Silva AL, Silva AB, Stankiewicz AB. Nasal obstruction in pregnancy. Prim Care Update Ob Gyns 1995; 2: 37–44CrossRefGoogle Scholar
  17. 17.
    Rijntjes E. Nose-drop abuse, a functional and morphological study [thesis]. Leiden: University of Leiden, 1985Google Scholar
  18. 18.
    Åkerlund A, Bende M. Sustained use of xylometazoline nose drops aggravates vasomotor rhinitis. Am J Rhinol 1991; 5: 157–60CrossRefGoogle Scholar
  19. 19.
    Graf P, Juto J-E. Sustained use of xylometazoline nasal spray shortens the decongestive response and induces rebound swelling. Rhinology 1995; 33: 14–7PubMedGoogle Scholar
  20. 20.
    Snow S, Logan T, Hollender M. Nasal spray “addiction” and psychosis. Br J Psychiatry 1980; 136: 297–9PubMedCrossRefGoogle Scholar
  21. 21.
    Elwany S, Abdel-Salaam S. Treatment of rhinitis medicamentosa with fluticasone propionate: an experimental study. Eur Arch Otorhinolaryngol 2001; 258: 116–9PubMedCrossRefGoogle Scholar
  22. 22.
    Talaat M, Belal A, Aziz T, et al. Rhinitis medicamentosa: electron microscopic study. J Laryngol Otol 1981; 95(2): 125–31PubMedCrossRefGoogle Scholar
  23. 23.
    Elwany SS, Stephanos WM. Rhinitis medicamentosa: an experimental histopathological and histochemical study. ORL J Otorhinolaryngol Relat Spec 1983; 45: 187–94PubMedCrossRefGoogle Scholar
  24. 24.
    Graf PM, Hallén H. Changes in nasal reactivity in patients with rhinitis medicamentosa after treatment with fluticasone propionate and placebo nasal spray. ORL J Otorhinolaryngol Relat Spec 1998; 60: 334–8PubMedCrossRefGoogle Scholar
  25. 25.
    Hall L, Jackson R. Effects of alpha and beta adrenergic agonists on nasal blood flow. Ann Otol Rhinol Laryngol 1968; 77: 1120–31PubMedGoogle Scholar
  26. 26.
    McGrath A. Vascular adrenergic receptors. In: Canoutte P, Leusen I, editors. Vasodilatation. New York: Raven Press, 1981: 97–106Google Scholar
  27. 27.
    Starke K. α-Adrenoreceptor subclassification. Rev Physiol Biochem Pharmacol 1981; 88: 199–236PubMedCrossRefGoogle Scholar
  28. 28.
    Bende M, Andersson KE, Johansson CJ, et al. Dose-response relationship of a topical nasal decongestant: phenylpropanolamine. Acta Otolaryngol 1984; 98: 543–7PubMedCrossRefGoogle Scholar
  29. 29.
    Glick R, Hoying J, Cerullo L, et al. Phenylpropanolamine: an over-the-counter drug causing central nervous system vasculitis and intracerebral hemorrhage: case report and review. Neurosurgery 1987; 20: 969–74PubMedCrossRefGoogle Scholar
  30. 30.
    Lake CR, Zaloga G, Bray J, et al. Transient hypertension after two phenylpropanolamine diet aids and the effects of caffeine: a placebo-controlled follow-up study. Am J Med 1989; 86: 427–32PubMedCrossRefGoogle Scholar
  31. 31.
    Lacroix J. Adrenergic and non-adrenergic mechanisms in sympathetic vascular control of the nasal mucosa. Acta Physiol Scand Suppl 1989; 581: 1–63PubMedGoogle Scholar
  32. 32.
    Petruson B, Hansson HA. Function and structure of the nasal mucosa after 6 weeks’ use of nose-drops. Acta Otolaryngol 1982; 94: 563–9PubMedCrossRefGoogle Scholar
  33. 33.
    Graf P, Juto J-E. Decongestion effect and rebound swelling of the nasal mucosa during four-week use of oxymetazoline. ORL J Otorhinolaryngol Relat Spec 1994; 56: 131–4Google Scholar
  34. 34.
    Graf P, Hallén H. Effect on the nasal mucosa of long-term treatment with oxymetazoline, benzalkonium chloride, and placebo nasal sprays. Laryngoscope 1996; 106: 605–9PubMedCrossRefGoogle Scholar
  35. 35.
    Graf P, Enerdal J, Hallén H. Ten days’ use of oxymetazoline nasal spray with or without benzalkonium chloride in patients with vasomotor rhinitis. Arch Otolaryngol Head Neck Surg 1999; 125: 1128–32PubMedGoogle Scholar
  36. 36.
    Morris S, Eccles R, Martez SJ, et al. An evaluation of nasal response following different treatment regimes of oxymetazoline with reference to rebound congestion. Am J Rhinol 1997; 11: 109–15PubMedCrossRefGoogle Scholar
  37. 37.
    Graf P, Hallén H, Juto J-E. Four-week use of oxymetazoline nasal spray (Nezeril®) once daily at night induces rebound swelling and nasal hyperreactivity. Acta Otolaryngol 1995; 115: 71–5PubMedCrossRefGoogle Scholar
  38. 38.
    Hallén H, Graf P. Benzalkonium chloride in nasal decongestive sprays has a long-lasting adverse effect on the nasal mucosa of healthy volunteers. Clin Exp Allergy 1995; 25(5): 401–5PubMedCrossRefGoogle Scholar
  39. 39.
    Yoo JK, Seikaly H, Calhoun KH. Extended use of topical nasal decongestants. Laryngoscope 1997; 107: 40–3PubMedCrossRefGoogle Scholar
  40. 40.
    Apoteksbolaget. Swedish drug statistics. Svensk läkemedelsstatistik 1991, 172–4Google Scholar
  41. 41.
    Kumlien J. Rhinitis medicamentosa, a resurrected disease? [letter]. Läkartidningen 1991; 88: 4117PubMedGoogle Scholar
  42. 42.
    van de Donk HJM, Muller-Plantema IP, Zuidema J, et al. The effects of preservatives on the ciliary heat frequency of the chicken embryo trachea. Rhinology 1980; 18: 119–33PubMedGoogle Scholar
  43. 43.
    American Academy of Pediatrics Committee on Drugs. “Inactive” ingredients in pharmaceutical products: update. Pediatrics 1997; 99: 268–78CrossRefGoogle Scholar
  44. 44.
    Bernstein IL. Is the use of benzalkonium chloride as a preservative for nasal formulations a safety concern? A cautionary note based on compromised mucociliary transport. J Allergy Clin Immunol 2000; 105: 39–44PubMedCrossRefGoogle Scholar
  45. 45.
    Richards R, Cavill R. Electron microscopic study of benzalkonium chloride and edeate disodium on the cell envelope of Pseudomonas aeruginosa. J Pharm Sci 1976; 65: 76–80PubMedCrossRefGoogle Scholar
  46. 46.
    Håkansson B, Forsgren A, Tegner H, et al. Inhibitory effects of nasal drop components on granulocyte Chemotaxis. Pharmacol Toxicol 1989; 64: 321–3PubMedCrossRefGoogle Scholar
  47. 47.
    Håkansson B, Linder C, Ohlsson K, et al. The inhibition of granulocyte phagocytosis by various components of nasal drops. Pharmacol Toxicol 1989; 65: 89–91PubMedCrossRefGoogle Scholar
  48. 48.
    van de Donk HJM, Zuidema J, Merkus FW. The effects of nasal drops on the ciliary beat frequency of chicken embryo tracheas. Rhinology 1981; 19: 215–30PubMedGoogle Scholar
  49. 49.
    van de Donk HJM, van den Heuvel AG, Zuidema J, et al. The effects of nasal drips and their additives on human nasal mucociliary clearance. Rhinology 1982; 20: 127–37PubMedGoogle Scholar
  50. 50.
    Stanley PJ, Griffin WM, Wilson R, et al. Effect of betamethasone and betamethasone with neomycin nasal drops on human nasal mucociliary clearance and ciliary beat frequency. Thorax 1985; 40: 607–12PubMedCrossRefGoogle Scholar
  51. 51.
    Batts AH, Marriott C, Martin GP, et al. The effect of some preservatives used in nasal preparations on mucociliary clearance. J Pharm Pharmacol 1989; 41: 156–9PubMedCrossRefGoogle Scholar
  52. 52.
    Joki S, Saano V, Nuutinen J, et al. Effects of some preservative agents on rat and guinea pig tracheal and human nasal ciliary beat frequency. Am J Rhinol 1996; 10: 181–6CrossRefGoogle Scholar
  53. 53.
    Hofmann T, Wolf G, Koidl B. Effect of topical corticosteroids and topical antihistamines on ciliary epithelium of human nasal mucosa in vitro. HNO 1998; 46: 146–51PubMedCrossRefGoogle Scholar
  54. 54.
    Bjerknes R, Steinsvag SK. Inhibition of human neutrophil actin polymerization, phagocytosis and oxidative burst by components of decongestive nose drops. Pharmacol Toxicol 1993; 73: 41–5PubMedCrossRefGoogle Scholar
  55. 55.
    Steinsvåg SK, Bjerknes R, Berg ØH. The effect of topical nasal steroids on human respiratory mucosa and human granulocytes in vitro. Acta Otolaryngol 1996; 116: 868–75PubMedCrossRefGoogle Scholar
  56. 56.
    Bonciocat C. The action of benzalkonium chloride on the activation of contraction in frog skeletal muscle. Physiologie 1975; 12: 215–20PubMedGoogle Scholar
  57. 57.
    Tonjum AM. Permeability of rabbit corneal epithelium to horseradish peroxidase after the influence of benzalkonium chloride. Acta Ophthalmol 1975; 53: 335–47Google Scholar
  58. 58.
    Berg OH, Lie K, Steinsvag SK. The effects of topical nasal steroids on rat respiratory mucosa in vivo, with special reference to benzalkonium chloride. Allergy 1997; 52: 627–32PubMedCrossRefGoogle Scholar
  59. 59.
    Kuboyama Y, Suzuki K, Hara T. Nasal lesions induced by intranasal administration of benzalkonium chloride in rats. J Toxicol Sci 1997; 22: 153–60PubMedCrossRefGoogle Scholar
  60. 60.
    Miszkiel K, Beasley R, Holgate ST. The influence of ipratropium bromide and sodium cromoglycate on benzalkonium chloride-induced bronchoconstriction in asthma. Br J Clin Pharmacol 1988; 26: 295–301PubMedCrossRefGoogle Scholar
  61. 61.
    Miszkiel K, Beasley R, Rafferty P, et al. The contribution of histamine release to bronchoconstriction provoked by inhaled benzalkonium chloride in asthma. Br J Clin Pharmacol 1988; 25: 157–63PubMedCrossRefGoogle Scholar
  62. 62.
    Beasley R, Fishwick D, Miles JF, et al. Preservatives in nebulizer solutions: risks without benefit. Pharmacotherapy 1998; 18: 130–9PubMedGoogle Scholar
  63. 63.
    Fraki J, Kalimo K, Tuohimaa P, et al. Contact allergy to various components of topical preparations for treatment of external otitis. Acta Otolaryngol 1985; 100: 414–8PubMedCrossRefGoogle Scholar
  64. 64.
    Klein GF, Sepp N, Fritsch P. Allergic reactions to benzalkonium chloride? Do the use test! Contact Dermatitis 1991; 25: 269–70PubMedCrossRefGoogle Scholar
  65. 65.
    de Jong C, Stolwijk T, Kuppens E, et al. Topical timolol with and without benzalkonium chloride: epithelial permeability and autofluorescence of the cornea in glaucoma. Graefes Arch Clin Exp Ophthalmol 1994; 232: 221–4PubMedCrossRefGoogle Scholar
  66. 66.
    McMahon C, Darby Y, Ryan R, et al. Immediate and short-term effects of benzalkonium chloride on the human nasal mucosa in vivo. Clin Otolaryngol 1997; 22: 318–22PubMedCrossRefGoogle Scholar
  67. 67.
    Ainge G, Bowles JAK, McCormick SG, et al. Lack of deleterious effects of corticosteroid sprays containing BKC on nasal ciliated epithelium: in vivo results in laboratory animals. Drug Invest 1994; 8: 127–33CrossRefGoogle Scholar
  68. 68.
    Braat JP, Ainge G, Bowles JA, et al. The lack of effect of benzalkonium chloride on the cilia of the nasal mucosa in patients with perennial allergic rhinitis: a combined functional, light scanning and transmission electron microscopy study. Clin Exp Allergy 1995; 25: 957–65PubMedCrossRefGoogle Scholar
  69. 69.
    Graf P. Benzalkonium chloride as a preservative in nasal solutions: re-examining the data. Respir Med 2001; 95: 728–33PubMedCrossRefGoogle Scholar
  70. 70.
    Graf P. Adverse effects of benzalkonium chloride on the nasal mucosa: allergic rhinitis and rhinitis medicamentosa. Clin Ther 1999; 21: 1749–55PubMedCrossRefGoogle Scholar
  71. 71.
    Wolfe G, Loidolt D, Saria A, et al. Anderungen des nasalen Volumsstromes nach lokaler Application des Neuropeptides Subtanz-P und von Capsacin. Laryngorhinootologie 1987; 66: 412–5CrossRefGoogle Scholar
  72. 72.
    Graf P, Hallén H, Juto J-E. Benzalkonium chloride in a decongestant nasal spray aggravates rhinitis medicamentosa in healthy volunteers. Clin Exp Allergy 1995; 25: 395–400PubMedCrossRefGoogle Scholar
  73. 73.
    Mayer P. A prolonged acting topical nasal decongestant for various rhinitides. IMJ Ill Med J 1966; 129: 230–2PubMedGoogle Scholar
  74. 74.
    Young JR. A new decongestant in otolaryngology. Eye Ear Nose Throat Mon 1967; 46: 51–3PubMedGoogle Scholar
  75. 75.
    von Knothe J, Rietshek M. Vergleichende Untersuchungen zum therapeutischen Effect overschiedener Antirhinitika. Dtsche Gesundheitsw 1976; 31: 569–73Google Scholar
  76. 76.
    Graf P, Hallén H, Juto J-E. The pathophysiology and treatment of rhinitis medicamentosa. Clin Otolaryngol 1995; 20: 224–9PubMedCrossRefGoogle Scholar
  77. 77.
    Ferguson BJ, Bensimhon D. What’s causing your patient’s rhinosinusitis? J Respir Dis 1997; 18: 321–34Google Scholar
  78. 78.
    Naclerio RM. Optimizing treatment options. Clin Exp Allergy 1998; 28Suppl. 6: 54–9PubMedCrossRefGoogle Scholar
  79. 79.
    van Cauwenberge P, Bachert C, Passalacqua G, et al. Consensus statement on the treatment of allergic rhinitis: European Academy of Allergology and Clinical Immunology. Allergy 2000; 55: 116–34PubMedCrossRefGoogle Scholar
  80. 80.
    Bousquet J, van Cauwenberge P, Khaltaev N. Allergic rhinitis and its impact on asthma (ARIA), in collaboration with the World Health Organization (WHO). J Allergy Clin Immunol 2001; 108: S147–336PubMedCrossRefGoogle Scholar
  81. 81.
    Lindqvist N, Balle VH, Karma P, et al. Long-term safety and efficacy of budesonide nasal aerosol in perennial rhinitis: a 12-month multicentre study. Allergy 1986; 41: 179–86PubMedCrossRefGoogle Scholar
  82. 82.
    Pipkorn U, Pukander J, Suonpää J, et al. Long-term safety of budesonide nasal aerosol: a 5.5-year follow-up study. Clin Allergy 1988; 18: 253–9PubMedCrossRefGoogle Scholar
  83. 83.
    Lindqvist N, Holmberg K, Pipkorn U. Intranasally administered budesonide, a glucocorticoid, does not exert its clinical effect through vasoconstriction. Clin Otolaryngol 1988; 14: 519–23CrossRefGoogle Scholar
  84. 84.
    Ferguson BJ, Paramaesvaran S, Rubinstein E. A study of the effect of nasal steroid sprays in perennial allergic rhinitis patients with rhinitis medicamentosa. Otolaryngol Head Neck Surg 2001; 125: 253–60PubMedGoogle Scholar
  85. 85.
    Graf PM, Hallén H. One year follow-up of patients with rhinitis medicamentosa after vasoconstrictor withdrawal. Am J Rhinol 1997; 11: 67–72PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2005

Authors and Affiliations

  1. 1.Karolinska University Hospital, SolnaStockholmSweden

Personalised recommendations