Evolving Pathophysiological Perspectives in Endothelial Dysfunction

Editorial

References

  1. 1.
    Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle to acetylcholine. Nature 1980; 288: 373–6PubMedCrossRefGoogle Scholar
  2. 2.
    Cosentino F, Luscher TF. Maintenance of vascular integrity: role of nitric oxide and other bradykinin mediators. Eur Heart J 1995; 16 (K): 4–12PubMedCrossRefGoogle Scholar
  3. 3.
    Ross R. The pathogenesis of atherosclerosis: a prospective for the 1990s. Nature 1993; 362: 801–9PubMedCrossRefGoogle Scholar
  4. 4.
    De Caterina R, Libby P, Peng HB, et al. Nitric oxide decrease cytokine-induced endothelial activation: nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest 1995; 96: 60–8PubMedCrossRefGoogle Scholar
  5. 5.
    Kurose I, Wolf R, Grisham MB, et al. Microvascular response to inhibition of nitric oxide production: role of active oxidants. Circ Res 1995; 76: 30–9PubMedCrossRefGoogle Scholar
  6. 6.
    Gauthier TW, Scalia R, Murohara T, et al. Nitric oxide protects against leukocyte-endothelium interactions in the early stages of hypercholesterolemia. Arterioscler Thromb Vasc Biol 1995; 15: 1652–9PubMedCrossRefGoogle Scholar
  7. 7.
    Garg UC, Hassid A. Nitric oxide generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 1989; 83: 1774–7PubMedCrossRefGoogle Scholar
  8. 8.
    Dubey RK, Jackson EK, Luscher TF. Nitric oxide inhibits angiotensin II-induced migration of rat smooth muscle cells. J Clin Invest 1995; 96: 141–6PubMedCrossRefGoogle Scholar
  9. 9.
    Cayatte AJ, Palacino JJ, Horten K, et al. Chronic inhibition of nitric oxide production accelerates neointima formation and impairs endothelial function in hypercholesterolemic rabbits. Arterioscl Thromb 1994; 14: 753–9PubMedCrossRefGoogle Scholar
  10. 10.
    Wever RMF, Luscher TF, Cosentino F, et al. Atherosclerosis and the two faces of endothelial nitric oxide synthase. Circulation 1998; 97: 108–12PubMedCrossRefGoogle Scholar
  11. 11.
    Laasko M, Lehto S. Epidemiology of macrovascular disease in diabetes. Diab Rev 1997; 5: 294–315Google Scholar
  12. 12.
    Laasko M. Hyperglycemia and cardiovascular disease in type 2 diabetes. Diabetes 1999; 48: 937–48CrossRefGoogle Scholar
  13. 13.
    Tesfamariam B, Jakubowski JA, Cohen RA. Contraction of diabetic rabbit aorta due to endothelium-derived PGH2/TXA2. Am J Physiol 1989; 257: H13272–7Google Scholar
  14. 14.
    Mayhan W, Simmons LK, Sharpe QM. Mechanisms of impaired responses of cerebral arterioles during diabetes mellitus. Am J Physiol 1991; 260: H319–26PubMedGoogle Scholar
  15. 15.
    Tesfamariam B, Brown ML, Deykin D, et al. Elevated glucose promotes generation of endothelium-derived vasoconstrictor prostanoids in rabbit aorta. J Clin Invest 1990; 85: 929–32PubMedCrossRefGoogle Scholar
  16. 16.
    Tesfamariam B, Brown ML, Cohen RA. Elevated glucose impairs endothelium-dependent relaxation by activating protein chinase C. J Clin Invest 1991; 87: 1643–8PubMedCrossRefGoogle Scholar
  17. 17.
    Tesfamariam B, Cohen RA. Free radicals mediate endothelial cell dysfunction caused by elevated glucose. Am J Physiol 1992; 263: H321–3PubMedGoogle Scholar
  18. 18.
    Hattori Y, Kawasaki H, Abe K, et al. Superoxide dismutase recovers altered endothelium-dependent relaxation in diabetic rat aorta. Am J Physiol 1991; 261: H1086–94PubMedGoogle Scholar
  19. 19.
    Johnstone MT, Craeger SJ, Scales KM, et al. Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. Circulation 1993; 88: 2510–6PubMedCrossRefGoogle Scholar
  20. 20.
    Saenz de Tejada I, Goldstein I, Azadzoi K, et al. Impaired neurogenic and endothelium-dependent relaxation of human penile smooth muscle: the pathophysiological basis for impotence in diabetes mellitus. N Engl J Med 1989; 320: 1025–30CrossRefGoogle Scholar
  21. 21.
    McVeigh GE, Brennan GM, Johnston BJ, et al. Impaired endothelium-dependent and -independent vasodilation in patients with type 2 diabetes mellitus. Diabetologia 1992; 35: 771–6PubMedGoogle Scholar
  22. 22.
    Rees DD, Palmer RMJ, Moncada S. Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Med Sci USA 1989; 86: 3375–8CrossRefGoogle Scholar
  23. 23.
    Linder L, Kiowski W, Buhler FR, et al. Indirect evidence for the release of endothelium-derived relaxing factor in the human forearm circulation in vivo: blunted response in hypertension. Circulation 1990; 81: 1762–7PubMedCrossRefGoogle Scholar
  24. 24.
    Panza A, Quyyumi AA, Brush JH, et al. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med 1990; 323: 22–7PubMedCrossRefGoogle Scholar
  25. 25.
    Treasure CB, Manoukian SV, Klein GL, et al. Epicardial coronary artery response to acetylcholine are impaired in hypertensive patients. Circ Res 1992; 71: 776–81PubMedCrossRefGoogle Scholar
  26. 26.
    Egashira K, Suzuki S, Hirooka Y, et al. Impaired endothelium-dependent vasodilation of large epicardial and resistance coronary arteries in patients with essential hypertension. Circulation 1995; 25: 201–6Google Scholar
  27. 27.
    Li J, Zaho SP, Li XP, et al. Non-invasive detection of endothelial dysfunction in patients with essential hypertension. Int J Cardiol 1997; 61: 165–9PubMedCrossRefGoogle Scholar
  28. 28.
    Forte P, Copland M, Smith LM, et al. Basal nitric oxide synthesis in essential hypertension. Lancet 1997; 349: 837–42PubMedCrossRefGoogle Scholar
  29. 29.
    Cockroft JR, Chowienczyck PJ, Benjamin N, et al. Preserved endothelium-dependent vasodilation in patients with essential hypertension. N Engl J Med 1994; 300: 1036–40CrossRefGoogle Scholar
  30. 30.
    Brunig TA, Chang PC, Hendricks GC, et al. In vivo characterization of muscarinic receptors subtypes that mediate vasodilation in patients with essential hypertension. Hypertension 1995; 26: 70–7CrossRefGoogle Scholar
  31. 31.
    Taddei S, Virdis A, Mattei P, et al. Vasodilation to acetylcholine in primary and secondary forms of hypertension. Hypertension 1993; 21: 929–33PubMedCrossRefGoogle Scholar
  32. 32.
    Taddei S, Virdis A, Mattei P, et al. Hypertension causes premature aging of endothelial function in humans. Hypertension 1997; 29: 736–43PubMedCrossRefGoogle Scholar
  33. 33.
    Taddei S, Virdis A, Ghiadoni L, et al. Cyclooxygenase inhibition restores nitric oxide activity in essential hypertension. Hypertension 1997; 29: 274–9PubMedCrossRefGoogle Scholar
  34. 34.
    Solzbach U, Horning B, Jeserisch M, et al. Vitamin C improves endothelial dysfunction of epicardial coronary arteries in hypertensive patients. Circulation 1997; 96: 1513–9PubMedCrossRefGoogle Scholar
  35. 35.
    Taddei S, Virdis A, Mattei P, et al. Defective L-arginine-nitric oxide pathway in offspring of essential hypertensive patients. Circulation 1996; 94: 1298–303PubMedCrossRefGoogle Scholar
  36. 36.
    Zeiher AM, Drexler H, Wollschlager H, et al. Modulation of coronary vasomotor tone in humans: progressive endothelial dysfunction with different early stages of coronary atherosclerosis. Circulation 1991; 83: 391–401PubMedCrossRefGoogle Scholar
  37. 37.
    Seiler C, Hess OM, Buechi M, et al. Influence of serum cholesterol and other coronary risk factors on vasomotion on angiographically normal coronary arteries. Circulation 1993; 88: 2139–48PubMedCrossRefGoogle Scholar
  38. 38.
    Creager M, Cooke JP, Mendelsohn ME. Impaired vasodilation of forearm resistance vessels in hypercholesterolemic humans. J Clin Invest 1990; 86: 228–34PubMedCrossRefGoogle Scholar
  39. 39.
    Chowienczyk PJ, Watts GF, Cockroft JR, et al. Impaired endothelium-dependent vasodilation of forearm resistance vessels in hypercholesterolemia. Lancet 1992; 340: 1430–2PubMedCrossRefGoogle Scholar
  40. 40.
    Creager MA, Gallagher SJ, Girerd XJ, et al. L-arginine improves endothelium-dependent vasodilation in hypercholesterolemic humans. J Clin Invest 1992; 90: 1248–53PubMedCrossRefGoogle Scholar
  41. 41.
    Gilligan DM, Guetta V, Panza JA, et al. Selective loss of microvascular endothelial function in human hypercholesterolemia. Circulation 1994; 90: 35–41PubMedCrossRefGoogle Scholar
  42. 42.
    Schini-Kerth VB, Vanhoutte PM. Nitric oxide synthases in vascular cells. Exp Physiol 1995; 92: 160–8Google Scholar
  43. 43.
    Jessup W. Oxidized lipoproteins and nitric oxide. Curr Opin Lipidol 1996; 7: 274–80PubMedCrossRefGoogle Scholar
  44. 44.
    Bode-Boger SM, Boger RH, Kienke S, et al. Elevated L-arginine/dimethyL-arginine ratio contributes to enhanced systemic NO production by dietary L-arginine in hypercholesterolemic rabbits. Biochem Biophys Res Commun 1996; 219: 598–603PubMedCrossRefGoogle Scholar
  45. 45.
    Cooke JP, Tsao PS. Arginine: a new therapy for atherosclerosis. Circulation 1997; 95: 311–2PubMedCrossRefGoogle Scholar
  46. 46.
    Tsao PS, McEvoy LM, Drexler H, et al. Enhanced endothelial adhesiveness in hypercholesterolemia is attenuated by L-arginine. Circulation 1994; 89: 2176–82PubMedCrossRefGoogle Scholar
  47. 47.
    Egashira K, Hirooka Y, Kuga T, et al. Effects of L-arginine supplementation on endothelium-dependent coronary vasodilation in patients with angina pectoris and normal coronary arteriograms. Circulation 1996; 94: 130–4PubMedCrossRefGoogle Scholar
  48. 48.
    Celermajer DS, Sorensen KE, Georgakopoulos D, et al. Cigarette smoking is associated with dose-related and potentially reversible impairment of endothelium-dependent dilation in healthy young adults. Circulation 1993; 88: 2149–55PubMedCrossRefGoogle Scholar
  49. 49.
    Celermajer DS, Adams MR, Clarkson P, et al. Passive smoking and impaired endothelium-dependent arterial dilatation in healthy young adults. N Engl J Med 1996; 334: 150–4PubMedCrossRefGoogle Scholar
  50. 50.
    Zeiher AM, Drexler H, Saurbier B, et al. Endothelium-mediated coronary blood flow modulation in humans: effects of age, atherosclerosis, hypercholesterolemia, and hypertension. J Clin Invest 1993; 92: 652–62PubMedCrossRefGoogle Scholar
  51. 51.
    Celermajer DS, Sorensen KE, Spiegelhalter DJ, et al. Aging is associated with endothelial dysfunction in healthy men years before the age-related decline in women. J Am Coll Cardiol 1994; 24: 471–6PubMedCrossRefGoogle Scholar
  52. 52.
    Cosentino F, Luscher TF. Tetrahydrobiopterin and endothelial nitric oxide synthase activity. Cardiovasc Res 1999; 43: 274–8PubMedCrossRefGoogle Scholar
  53. 53.
    Beckman JS, Chen J, Ischiropoulos H, et al. Oxidative chemistry of peroxynitrite. In: Packer L, editor. Methods of enzymology. Vol. 233, pt C. Oxygen radicals in biological systems. San Diego (CA): Academic Press Inc, 1994: 229–40CrossRefGoogle Scholar
  54. 54.
    Halliwell B. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 1994; 344: 721–4PubMedCrossRefGoogle Scholar
  55. 55.
    Cosentino F, Sill JC, Katusic ZS. Role of superoxide anions in mediation of endothelium-dependent contractions. Hypertension 1993; 23: 229–35CrossRefGoogle Scholar
  56. 56.
    Kontos HA. Oxygen radicals in cerebral vascular injury. Circ Res 1985; 57: 508–16PubMedCrossRefGoogle Scholar
  57. 57.
    Mohazzab KM, Kaminski PM, Wolin MS. NADH oxidoreductase is a major source of superoxide anion in bovine artery endothelium. Am J Physiol 1994; 266: H2568–72PubMedGoogle Scholar
  58. 58.
    Cosentino F, Katusic ZS. Tetrahydrobiopterin and dysfunction of endothelial nitric oxide synthase in coronary arteries. Circulation 1995; 91: 139–44PubMedCrossRefGoogle Scholar
  59. 59.
    Vanhoutte PM. Vascular endothelium and calcium-antagonists. J Cardiovasc Pharmacol 1988; 14 Suppl. 11: 76–80Google Scholar
  60. 60.
    Himmel HM, Whorton AR, Strauss HC. Intracellular calcium, currents and stimulus-response coupling in endothelial cells. Hypertension 1993; 21: 112–7PubMedCrossRefGoogle Scholar
  61. 61.
    Kung CF, Moreau P, Takase H, et al. L-NAME hypertension alters endothelial and smooth muscle function in rat aorta: prevention by trandolapril and verapamil. Hypertension 1995; 26: 744–51PubMedCrossRefGoogle Scholar
  62. 62.
    Moreau P, Takase H, Kung CF, et al. Structure and function of the rat basilar artery during chronic nitric oxide synthase inhibition. Stroke 1995; 26: 1922–9PubMedCrossRefGoogle Scholar
  63. 63.
    Takase H, Moreau P, Kung CF, et al. Antihypertensive therapy prevents endothelial dysfunction in chronic nitric oxide deficiency: effect of verapamil and trandolapril. Hypertension 1996; 27: 25–31PubMedCrossRefGoogle Scholar
  64. 64.
    Noll G, Buhler FR, Luscher TF. Different potency of endothelium-derived relaxing factors against thromboxane, endothelin and potassium chloride in porcine intramyocardial resistance arteries. J Cardiovasc Pharmacol 1991; 18: 120–6PubMedCrossRefGoogle Scholar
  65. 65.
    Goto K, Kasuya Y, Matsuki N, et al. Endothelin activates the dihydropyridine-sensitive, voltage-dependent Ca2+ channel in vascular smooth muscle. Proc Natl Acad Sci USA 1989; 86: 3915–8PubMedCrossRefGoogle Scholar
  66. 66.
    Kiowski W, Luscher TF, Linder L, et al. Endothelin-1-induced vasoconstriction in humans: reversal by calcium channel blockade but not by nitrovasodilators or endothelium-derived relaxing factor. Circulation 1991; 83: 469–75PubMedCrossRefGoogle Scholar
  67. 67.
    Taddei S, Virdis A, Ghiadoni L, et al. Lacidipine restores endothelium-dependent vasodilation in essential hypertensive patients. Hypertension 1997; 30: 1606–12PubMedCrossRefGoogle Scholar
  68. 68.
    Frielingsdorf J, Seiler C, Kaufmann P, et al. Normalization of abnormal coronary vasomotion by calcium antagonists in patients with essential hypertension. Circulation 1996; 93: 1380–7PubMedCrossRefGoogle Scholar
  69. 69.
    Schiffrin EL, Deng LY. Structure and function of resistance arteries of hypertensive patients treated with a beta-blocker or a calcium channel antagonist. J Hypertens 1996; 14: 1247–55PubMedCrossRefGoogle Scholar
  70. 70.
    Lupo E, Locher R, Weisse B, et al. In vitro antioxidant activity of calcium antagonists against LDL oxidation compared with alpha-tocopherol. Biochem Biophys Res Commun 1994; 203: 1803–8PubMedCrossRefGoogle Scholar
  71. 71.
    Mak TI, Boehme P, Weglicki WB. Antioxidant effects of calcium channel blockers against free radical injury in endothelial cells. Circ Res 1992; 70: 1099–103PubMedCrossRefGoogle Scholar
  72. 72.
    Van Amsterdam FTM, Roveri A, Maiorino M, et al. Lacidipine: a dihydropyridine calcium antagonist with antioxidant activity. Free Radic Biol Med 1992; 12: 183–7PubMedCrossRefGoogle Scholar
  73. 73.
    McMahon S, Rogers A. Blood pressure, antihypertensive treatment and stroke risk. J Hypertens 1994; 12 Suppl. 10: S5–S14Google Scholar
  74. 74.
    Godfraind T, Salomone S. New advances in hypertensive treatment with calcium antagonists. J Cardiovasc Pharmacol 1997; 30 Suppl. 2: S1–5Google Scholar
  75. 75.
    Takakura S, Furuichi Y, Yamamoto T, et al. Effect of nilvadipine on the development of neurological deficits in stroke-prone spontaneously hypertensive rats. Stroke 1994; 25: 677–83PubMedCrossRefGoogle Scholar
  76. 76.
    Shinyama H, Nagai H, Kawamura T, et al. Therapeutic effect of AE00047, a novel calcium antagonist, on progression of brain damage after stroke in stroke-prone spontaneously hypertensive rats. Gen Pharmacol 1998; 30: 379–86PubMedCrossRefGoogle Scholar
  77. 77.
    Napoli C, Salomone S, Godfraind T, et al. 1,4 Dihydropyridine calcium channel blockers inhibit plasma and LDL oxidation and formation of oxidation-specific epitopes in the arterial wall and prolong survival in stroke-prone spontaneously hypertensive rats. Stroke 1999; 30: 1907–15PubMedCrossRefGoogle Scholar
  78. 78.
    Cosentino F, Luscher TF, Volpe M. Nifedipine inhibits superoxide production induced by pulsatile stretch in human aortic endothelial cells [abstract]. Am J Hypertens 2000; 13: 35ACrossRefGoogle Scholar
  79. 79.
    Taddei S, Virdis A, Ghiadoni L, et al. Restoration of nitric oxide availability after calcium antagonist treatment in essential hypertension. Hypertension 2001; 37 943–8PubMedCrossRefGoogle Scholar
  80. 80.
    Verhaar MC, Honing MLH, Van dam T, et al. Nifedipine improves nitric oxidemediated vasodilation in hypercholesterolemia independent of an effect on blood pressure or plasma lipids. Cardiovasc Res 1999; 42: 752–60PubMedCrossRefGoogle Scholar
  81. 81.
    Lichtlen PR, Hugenholtz PG, Rafflenbeul W, et al. Retardation of angiographic progression of coronary artery disease by nifedipine: results of the International Nifedipine Trial on Antiatherosclerotic Therapy (INTACT). Lancet 1990; 335: 1109–13PubMedCrossRefGoogle Scholar
  82. 82.
    Waters D, Lesperance J, Francétich M, et al. A controlled clinical trial to assess the effect of a calcium channel blocker on the progression of coronary atherosclerosis. Circulation 1990; 82: 1940–53PubMedCrossRefGoogle Scholar
  83. 83.
    Luscher TF, Zeiher AM, Meinertz T, et al. Effect of calcium antagonist and HMG-Co-enzyme reductase inhibition on endothelial function and atherosclerosis: rationale and outline of the ENCORE Trials. J Cardiovasc Pharmacol 1997; 30 Suppl. 3: S48–52Google Scholar
  84. 84.
    ENCORE Investigators. Effect of nifedipine and cerivastatin on coronary endothelial function in patients with coronary artery disease: the ENCORE I Study (Evaluation of Nifedipine and Cerivastatin On Recovery of coronary Endothelial function). Circulation 2003 Jan 28; 107 (3): 422–8Google Scholar
  85. 85.
    Pitt B, Byington RP, Furberg CD, et al. Effect of amlodipine on the progression of atherosclerosis and the occurence of clinical events. Circulation 2000; 102: 1503–10PubMedCrossRefGoogle Scholar
  86. 86.
    Zanchetti A, Bond MG, Hennig M, et al., and European Lacidipine Study on Atherosclerosis Investigators. Calcium antagonist lacidipine slows down progression of asymptomatic carotid atherosclerosis: principal results of the European Lacidipine Study on Atherosclerosis (ELSA), a randomised, double-blind, long-term trial. Circulation 2002 Nov 5; 106 (19): 2422–7PubMedCrossRefGoogle Scholar
  87. 87.
    Schachinger V, Britten MB, Zeiher AM. Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 2000; 101: 1899–906PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2004

Authors and Affiliations

  1. 1.Cardiology, II Faculty of MedicineUniversity of Rome “La Sapienza”, Ospedale Sant’AndreaRomeItaly
  2. 2.IRCCS NeuromedPozzilliItaly

Personalised recommendations