Advertisement

Pediatric Drugs

, Volume 10, Issue 5, pp 281–298 | Cite as

Treatment of Invasive Candidiasis in Immunocompromised Pediatric Patients

  • Brian T. Fisher
  • Theoklis E. Zaoutis
Therapy In Practice

Abstract

In the last 3 decades, systemic candidiasis has become increasingly recognized as a major source of morbidity and mortality in immunocompromised pediatric patients. As the number of children receiving chemotherapy and bone marrow transplantations continue to increase, clinicians should expect that invasive infections from Candida spp. will also increase in these vulnerable hosts. Fortunately, in the past 15 years, the evolution of older antifungals coupled with the discovery of new classes of antifungal agents has equipped physicians with reasonable options for treating these otherwise life-threatening infections.

This review aims to familiarize the reader with the evolving epidemiology of candidiasis in immunocompromised children as well as discuss therapeutic options from each class of antifungal agents. Mechanisms of action, pharmacokinetics, toxicities, resistance patterns, chemotherapy interactions, and clinical relevance in immunocompromised children are reviewed for polyenes, flucytosine (5-fluorocytosine), azoles, and echinocandins.

Keywords

Fluconazole Candidiasis Voriconazole Caspofungin Posaconazole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Dr Zaoutis is supported in part by the National Institute of Health (IK23 AI0629753-01). Dr Zaoutis has also received funding from Merck & Co, Inc. to study caspofungin. Dr Fisher has no funding sources to disclose or conflicts of interest that are directly relevant to the content of this review.

References

  1. 1.
    Viscoli C, Girmenia C, Marinus A, et al. Candidemia in cancer patients: a prospective, multicenter surveillance study by the Invasive Fungal Infection Group (IFIG) of the European Organization for Research and Treatment of Cancer (EORTC). Clin Infect Dis 1999 May; 28(5): 1071–9PubMedCrossRefGoogle Scholar
  2. 2.
    Beck-Sague C, Jarvis WR. Secular trends in the epidemiology of nosocomial fungal infections in the United States, 1980–1990. National Nosocomial Infections Surveillance System. J Infect Dis 1993 May; 167(5): 1247–51PubMedCrossRefGoogle Scholar
  3. 3.
    Muller FM, Groll AH, Walsh TJ. Current approaches to diagnosis and treatment of fungal infections in children infected with human immuno deficiency virus. Eur J Pediatr 1999 Mar; 158(3): 187–99PubMedCrossRefGoogle Scholar
  4. 4.
    Bodey GP. The emergence of fungi as major hospital pathogens. J Hosp Infect 1988 Feb; 11Suppl. A: 411–26PubMedCrossRefGoogle Scholar
  5. 5.
    Fisher MA, Talbot GH, Maislin G, et al. Risk factors for amphotericin B-associated nephrotoxicity. Am J Med 1989 Nov; 87(5): 547–52PubMedCrossRefGoogle Scholar
  6. 6.
    Bodey GP. Fungal infections complicating acute leukemia. J Chronic Dis 1966 Jun; 19(6): 667–87PubMedCrossRefGoogle Scholar
  7. 7.
    Gruhn JG, Sanson J. Mycotic infections in leukemic patients at autopsy. Cancer 1963 Jan; 16: 61–73PubMedCrossRefGoogle Scholar
  8. 8.
    Casazza AR, Duvall CP, Carbone PP. Infection in lymphoma: histology, treatment, and duration in relation to incidence and survival. JAMA 1966 Aug 29; 197(9): 710–6PubMedCrossRefGoogle Scholar
  9. 9.
    Singer C, Kaplan MH, Armstrong D. Bacteremia and fungemia complicating neoplastic disease: a study of 364 cases. Am J Med 1977 May; 62(5): 731–42PubMedCrossRefGoogle Scholar
  10. 10.
    Myerowitz RL, Pazin GJ, Allen CM. Disseminated candidiasis: changes in incidence, underlying diseases, and pathology. Am J Clin Pathol 1977 Jul; 68(1): 29–38PubMedGoogle Scholar
  11. 11.
    DeGregorio MW, Lee WM, Linker CA, et al. Fungal infections in patients with acute leukemia. Am J Med 1982 Oct; 73(4): 543–8PubMedCrossRefGoogle Scholar
  12. 12.
    Wingard J. Bone marrow to blood stem cells: past, present, future. In: Ezzone S, Schmit-Pokorny K, editors. Bone marrow and stem cell transplantation. 3rd ed. Sudbury: Jones and Barlett Publishers, Inc., 2007: 1–27Google Scholar
  13. 13.
    Young RC, Bennett JE, Geelhoed GW, et al. Fungemia with compromised host resistance: a study of 70 cases. Ann Intern Med 1974 May; 80(5): 605–12PubMedGoogle Scholar
  14. 14.
    Maksymiuk AW, Thongprasert S, Hopfer R, et al. Systemic candidiasis in cancer patients. Am J Med 1984 Oct 30; 77(4D): 20–7PubMedGoogle Scholar
  15. 15.
    Kovacicova G, Spanik S, Kunova A, et al. Prospective study of fungaemia in a single cancer institution over a 10-y period: aetiology, risk factors, consumption of antifungals and outcome in 140 patients. Scand J Infect Dis 2001; 33(5): 367–74PubMedCrossRefGoogle Scholar
  16. 16.
    Meunier F, Aoun M, Bitar N. Candidemia in immunocompromised patients. Clin Infect Dis 1992 Mar; 14Suppl. 1: S120–5PubMedCrossRefGoogle Scholar
  17. 17.
    Strickland-Marmol LB, Vincent AL, Laartz BW, et al. Candidemia in cancer and bone marrow transplant patients: a 10-year retrospective analysis. Infect Med 2004 Jan; 21: 37–42Google Scholar
  18. 18.
    Kanamaru A, Tatsumi Y. Microbiological data for patients with febrile neutropenia. Clin Infect Dis 2004 Jul 15; 39Suppl. 1: S7–S10PubMedCrossRefGoogle Scholar
  19. 19.
    Safdar A, Chaturvedi V, Cross EW, et al. Prospective study of Candida species in patients at a comprehensive cancer center. Antimicrob Agents Chemother 2001 Jul; 45(7): 2129–33PubMedCrossRefGoogle Scholar
  20. 20.
    Vigouroux S, Morin O, Moreau P, et al. Candidemia in patients with hematologic malignancies: analysis of 7 years’ experience in a single center. Haematologica 2006 May; 91(5): 717–8PubMedGoogle Scholar
  21. 21.
    Pizzo PA, Robichaud KJ, Gill FA, et al. Empiric antibiotic and antifungal therapy for cancer patients with prolonged fever and granulocytopenia. Am J Med 1982 Jan; 72(1): 101–11PubMedCrossRefGoogle Scholar
  22. 22.
    Hughes WT, Armstrong D, Bodey GP, et al. 2002 guidelines for the use of antimicrobial agents in neutropenic patients with cancer. Clin Infect Dis 2002 Mar 15; 34(6): 730–51PubMedCrossRefGoogle Scholar
  23. 23.
    el-Mahallawy HA, Attia I, Ali-el-Din NH, et al. A prospective study on fungal infection in children with cancer. J Med Microbiol 2002 Jul; 51(7): 601–5PubMedGoogle Scholar
  24. 24.
    Zaoutis TE, Greves HM, Lautenbach E, et al. Risk factors for disseminated candidiasis in children with candidemia. Pediatr Infect Dis J 2004 Jul; 23(7): 635–41PubMedCrossRefGoogle Scholar
  25. 25.
    Zaoutis TE, Foraker E, McGowan KL, et al. Antifungal susceptibility of Candida spp. isolated from pediatric patients: a survey of 4 children’s hospitals. Diagn Microbiol Infect Dis 2005 Aug; 52(4): 295–8PubMedCrossRefGoogle Scholar
  26. 26.
    Wisplinghoff H, Seifert H, Tallent SM, et al. Nosocomial bloodstream infections in pediatric patients in United States hospitals: epidemiology, clinical features and susceptibilities. Pediatr Infect Dis J 2003 Aug; 22(8): 686–91PubMedCrossRefGoogle Scholar
  27. 27.
    Abelson JA, Moore T, Bruckner D, et al. Frequency of fungemia in hospitalized pediatric inpatients over 11 years at a tertiary care institution. Pediatrics 2005 Jul; 116(1): 61–7PubMedCrossRefGoogle Scholar
  28. 28.
    Hovi L, Saarinen-Pihkala UM, Vettenranta K, et al. Invasive fungal infections in pediatric bone marrow transplant recipients: single center experience of 10 years. Bone Marrow Transplant 2000 Nov; 26(9): 999–1004PubMedCrossRefGoogle Scholar
  29. 29.
    Dutcher JD. The discovery and development of amphotericin B. Dis Chest 1968 Oct; 54:Suppl. 1: 296–8PubMedCrossRefGoogle Scholar
  30. 30.
    Holt RJ. Progress in antimycotic chemotherapy 1945–1980. Infection 1980; 8Suppl. 3: S284–7CrossRefGoogle Scholar
  31. 31.
    Rapp RP. Changing strategies for the management of invasive fungal infections. Pharmacotherapy 2004 Feb; 24 (2 Pt 2): 4S–28S, quiz 9S-32SPubMedCrossRefGoogle Scholar
  32. 32.
    Steinbach WJ. Antifungal agents in children. Pediatr Clin North Am 2005 Jun; 52(3): 895–915, viiiPubMedCrossRefGoogle Scholar
  33. 33.
    Zaoutis TE, Benjamin DK, Steinbach WJ. Antifungal treatment in pediatric patients. Drug Resist Updat 2005 Aug; 8(4): 235–45PubMedCrossRefGoogle Scholar
  34. 34.
    Metcalf SC, Dockrell DH. Improved outcomes associated with advances in therapy for invasive fungal infections in immunocompromised hosts. J Infect 2007 Oct; 55(4): 287–99PubMedCrossRefGoogle Scholar
  35. 35.
    Tollemar J, Klingspor L, Ringden O. Liposomal amphotericin B (AmBisome) for fungal infections in immunocompromised adults and children. Clin Microbiol Infect 2001; 7Suppl. 2: 68–79PubMedCrossRefGoogle Scholar
  36. 36.
    Turnidge JD, Gudmundsson S, Vogelman B, et al. The postantibiotic effect of antifungal agents against common pathogenic yeasts. J Antimicrob Chemother 1994 Jul; 34(1): 83–92PubMedCrossRefGoogle Scholar
  37. 37.
    Groll AH, Piscitelli SC, Walsh TJ. Antifungal pharmacodynamics: concentrationeffect relationships in vitro and in vivo. Pharmacotherapy 2001 Aug; 21 (8 Pt 2): 133S–48SPubMedCrossRefGoogle Scholar
  38. 38.
    Ellis M. Amphotericin B preparations: a maximum tolerated dose in severe invasive fungal infections? Transpl Infect Dis 2000 Jun; 2(2): 51–61PubMedCrossRefGoogle Scholar
  39. 39.
    Klepser ME. Antifungal resistance among Candida species. Pharmacotherapy 2001 Aug; 21 (8 Pt 2): 124S–32SPubMedCrossRefGoogle Scholar
  40. 40.
    Krcmery V, Barnes AJ. Non-albicans Candida spp. causing fungaemia: pathogenicity and antifungal resistance. J Hosp Infect 2002 Apr; 50(4): 243–60PubMedCrossRefGoogle Scholar
  41. 41.
    Hamilton-Miller JM. Chemistry and biology of the polyene macrolide antibiotics. Bacteriol Rev 1973 Sep; 37(3): 166–96Google Scholar
  42. 42.
    Ellis D. Amphotericin B: spectrum and resistance. J Antimicrob Chemother 2002 Feb; 49Suppl. 1: 7–10PubMedCrossRefGoogle Scholar
  43. 43.
    Vermes A, Guchelaar HJ, Dankert J. Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J Antimicrob Chemother 2000 Aug; 46(2): 171–9PubMedCrossRefGoogle Scholar
  44. 44.
    Orozco AS, Higginbotham LM, Hitchcock CA, et al. Mechanism of fluconazole resistance in Candida krusei. Antimicrob Agents Chemother 1998 Oct; 42(10): 2645–9PubMedGoogle Scholar
  45. 45.
    Parkinson T, Falconer DJ, Hitchcock CA. Fluconazole resistance due to energydependent drug efflux in Candida glabrata. Antimicrob Agents Chemother 1995 Aug; 39(8): 1696–9PubMedCrossRefGoogle Scholar
  46. 46.
    Douglas CM, D’Ippolito JA, Shei GJ, et al. Identification of the FKS1 gene of Candida albicans as the essential target of 1,3-beta-D-glucan synthase inhibitors. Antimicrob Agents Chemother 1997 Nov; 41(11): 2471–9PubMedGoogle Scholar
  47. 47.
    Schuetzer-Muehlbauer M, Willinger B, Krapf G, et al. The Candida albicans Cdr2p ATP-binding cassette (ABC) transporter confers resistance to caspofungin. Mol Microbiol 2003 Apr; 48(1): 225–35PubMedCrossRefGoogle Scholar
  48. 48.
    Niimi K, Maki K, Ikeda F, et al. Overexpression of Candida albicans CDR1, CDR2, or MDR1 does not produce significant changes in echinocandin susceptibility. Antimicrob Agents Chemother 2006 Apr; 50(4): 1148–55PubMedCrossRefGoogle Scholar
  49. 49.
    Collin B, Clancy CJ, Nguyen MH. Antifungal resistance in non-albicans Candida species. Drug Resist Updat 1999 Feb; 2(1): 9–14PubMedCrossRefGoogle Scholar
  50. 50.
    Vanden Bossche H, Dromer F, Improvisi I, et al. Antifungal drug resistance in pathogenic fungi. Med Mycol 1998; 36Suppl. 1: 119–28Google Scholar
  51. 51.
    Butler WT, Bennett JE, Alling DW, et al. Nephrotoxicity of amphotericin B: early and late effects in 81 patients. Ann Intern Med 1964 Aug; 61: 175–87PubMedGoogle Scholar
  52. 52.
    Aoun M. Standard antifungal therapy in neutropenic patients. Int J Antimicrob Agents 2000 Oct; 16(2): 143–5PubMedCrossRefGoogle Scholar
  53. 53.
    Starke JR, Mason Jr EO, Kramer WG, et al. Pharmacokinetics of amphotericin B in infants and children. J Infect Dis 1987 Apr; 155(4): 766–74PubMedCrossRefGoogle Scholar
  54. 54.
    Dismukes WE. Introduction to antifungal drugs. Clin Infect Dis 2000 Apr; 30(4): 653–7PubMedCrossRefGoogle Scholar
  55. 55.
    Sandler ES, Mustafa MM, Tkaczewski I, et al. Use of amphotericin B colloidal dispersion in children. J Pediatr Hematol Oncol 2000 May–Jun; 22(3): 242–6PubMedCrossRefGoogle Scholar
  56. 56.
    Walsh TJ, Hiemenz JW, Seibel NL, et al. Amphotericin B lipid complex for invasive fungal infections: analysis of safety and efficacy in 556 cases. Clin Infect Dis 1998 Jun; 26(6): 1383–96PubMedCrossRefGoogle Scholar
  57. 57.
    Wiley JM, Seibel NL, Walsh TJ. Efficacy and safety of amphotericin B lipid complex in 548 children and adolescents with invasive fungal infections. Pediatr Infect Dis J 2005 Feb; 24(2): 167–74PubMedCrossRefGoogle Scholar
  58. 58.
    Wong-Beringer A, Jacobs RA, Guglielmo BJ. Lipid formulations of amphotericin B: clinical efficacy and toxicities. Clin Infect Dis 1998 Sep; 27(3): 603–18PubMedCrossRefGoogle Scholar
  59. 59.
    Herbrecht R, Auvrignon A, Andres E, et al. Efficacy of amphotericin B lipid complex in the treatment of invasive fungal infections in immunosuppressed paediatric patients. Eur J Clin Microbiol Infect Dis 2001 Feb; 20(2): 77–82PubMedGoogle Scholar
  60. 60.
    Lopez-Berestein G, Fainstein V, Hopfer R, et al. Liposomal amphotericin B for the treatment of systemic fungal infections in patients with cancer: a preliminary study. J Infect Dis 1985 Apr; 151(4): 704–10PubMedCrossRefGoogle Scholar
  61. 61.
    Prentice HG, Hann IM, Herbrecht R, et al. A randomized comparison of liposomal versus conventional amphotericin B for the treatment of pyrexia of unknown origin in neutropenic patients. Br J Haematol 1997 Sep; 98(3): 711–8PubMedCrossRefGoogle Scholar
  62. 62.
    Walsh TJ, Finberg RW, Arndt C, et al. Liposomal amphotericin B for empirical therapy in patients with persistent fever and neutropenia. National Institute of Allergy and Infectious Diseases Mycoses Study Group. N Engl J Med 1999 Mar 11; 340(10): 764–71PubMedCrossRefGoogle Scholar
  63. 63.
    Leenders AC, Daenen S, Jansen RL, et al. Liposomal amphotericin B compared with amphotericin B deoxycholate in the treatment of documented and suspected neutropenia-associated invasive fungal infections. Br J Haematol 1998 Oct; 103(1): 205–12PubMedCrossRefGoogle Scholar
  64. 64.
    Wingard JR, White MH, Anaissie E, et al. A randomized, double-blind comparative trial evaluating the safety of liposomal amphotericin B versus amphotericin B lipid complex in the empirical treatment of febrile neutropenia. L Amph/ABLC Collaborative Study Group. Clin Infect Dis 2000 Nov; 31(5): 1155–63PubMedCrossRefGoogle Scholar
  65. 65.
    Lass-Florl C. Standard dosing regimen of liposomal amphotericin B is as effective as a high-loading dose for patients with invasive aspergillosis: AmBiLoad trial. Expert Rev Anti Infect Ther 2007 Dec; 5(6): 929–32PubMedCrossRefGoogle Scholar
  66. 66.
    Graybill JR, Tollemar J, Torres-Rodriguez JM, et al. Antifungal compounds: controversies, queries and conclusions. Med Mycol 2000; 38Suppl. 1: 323–33PubMedGoogle Scholar
  67. 67.
    Anaissie EJ, White M, Uzun O, et al. Amphotericin B lipid complex versus amphotericin B for the treatment of invasive candidiasis: a prospective, randomized, multicenter trial [abstract no. LM21]. 35th Interscience Conference on Antimicrobial Agents Chemotherapy; 1995 Sep 17–20; San Francisco, 330Google Scholar
  68. 68.
    Kennedy MS, Deeg HJ, Siegel M, et al. Acute renal toxicity with combined use of amphotericin B and cyclosporine after marrow transplantation. Transplantation 1983 Mar; 35(3): 211–5PubMedCrossRefGoogle Scholar
  69. 69.
    AmBisome® [package insert]. San Dimas (CA): Gilead Sciences, Inc., 2002Google Scholar
  70. 70.
    Heidelberger C, Chaudhuri NK, Danneberg P, et al. Fluorinated pyrimidines, a new class of tumour-inhibitory compounds. Nature 1957 Mar 30; 179(4561): 663–6PubMedCrossRefGoogle Scholar
  71. 71.
    Tassel D, Madoff MA. Treatment of Candida sepsis and Cryptococcus meningitis with 5-fluorocytosine: a new antifungal agent. JAMA 1968 Oct 21; 206(4): 830–2PubMedCrossRefGoogle Scholar
  72. 72.
    Bennet JE. Flucytosine. Ann Intern Med 1977 Mar; 86(3): 319–21PubMedGoogle Scholar
  73. 73.
    Polak A, Grenson M. Evidence for a common transport system for cytosine, adenine and hypoxanthine in Saccharomyces cerevisiae and Candida albicans. Eur J Biochem 1973 Jan 15; 32(2): 276–82PubMedCrossRefGoogle Scholar
  74. 74.
    Vermes A, Math t RA, van der Sijs IH, et al. Population pharmacokinetics of flucytosine: comparison and validation of three models using STS, NPEM, and NONMEM. Ther Drug Monit 2000 Dec; 22(6): 676–87PubMedCrossRefGoogle Scholar
  75. 75.
    Pfaller MA, Messer SA, Boyken L, et al. In vitro activities of 5-fluorocytosine against 8,803 clinical isolates of Candida spp.: global assessment of primary resistance using National Committee for Clinical Laboratory Standards susceptibility testing methods. Antimicrob Agents Chemother 2002 Nov; 46(11): 3518–21PubMedCrossRefGoogle Scholar
  76. 76.
    Pfaller MA, Diekema DJ, Procop GW, et al. Multicenter comparison of the VITEK 2 yeast susceptibility test with the CLSI broth microdilution reference method for testing fluconazole against Candida spp. J Clin Microbiol 2007 Mar; 45(3): 796–802PubMedCrossRefGoogle Scholar
  77. 77.
    Anaissie EJ, Karyotakis NC, Hachem R, et al. Correlation between in vitro and in vivo activity of antifungal agents against Candida species. J Infect Dis 1994 Aug; 170(2): 384–9PubMedCrossRefGoogle Scholar
  78. 78.
    Graybill JR, Najvar LK, Holmberg JD, et al. Fluconazole, D0870, and flucytosine treatment of disseminated Candida tropicalis infections in mice. Antimicrob Agents Chemother 1995 Apr; 39(4): 924–9PubMedCrossRefGoogle Scholar
  79. 79.
    Medoff G, Kobayashi GS. Strategies in the treatment of systemic fungal infections. N Engl J Med 1980 Jan 17; 302(3): 145–55PubMedCrossRefGoogle Scholar
  80. 80.
    Pappas PG. Treatment guidelines for candidiasis [presentation]. 47th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2007 Sep 17–20; ChicagoGoogle Scholar
  81. 81.
    Warnock DW. Amphotericin B: an introduction. J Antimicrob Chemother 1991 Oct; 28Suppl. B: 27–38PubMedCrossRefGoogle Scholar
  82. 82.
    Francis P, Walsh TJ. Evolving role of flucytosine in immunocompromised patients: new insights into safety, pharmacokinetics, and antifungal therapy. Clin Infect Dis 1992 Dec; 15(6): 1003–18PubMedCrossRefGoogle Scholar
  83. 83.
    Stamm AM, Diasio RB, Dismukes WE, et al. Toxicity of amphotericin B plus flucytosine in 194 patients with cryptococcal meningitis. Am J Med 1987 Aug; 83(2): 236–42PubMedCrossRefGoogle Scholar
  84. 84.
    Smego RA, Jr., Perfect JR, Durack DT. Combined therapy with amphotericin B and 5-fluorocytosine for Candida meningitis. Rev Infect Dis 1984 Nov–Dec; 6(6): 791–801PubMedCrossRefGoogle Scholar
  85. 85.
    Wingfield HJ. Absence of fungistatic antagonism between flucytosine and cytarabine in vitro and in vivo. J Antimicrob Chemother 1987 Oct; 20(4): 523–7PubMedCrossRefGoogle Scholar
  86. 86.
    Maertens JA. History of the development of azole derivatives. Clin Microbiol Infect 2004 Mar; 10Suppl. 1: 1–10PubMedCrossRefGoogle Scholar
  87. 87.
    White TC, Marr KA, Bowden RA. Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev 1998 Apr; 11(2): 382–402PubMedGoogle Scholar
  88. 88.
    Antachopoulos C, Walsh TJ. New agents for invasive mycoses in children. Curr Opin Pediatr 2005 Feb; 17(1): 78–87PubMedCrossRefGoogle Scholar
  89. 89.
    Vanden Bossche H, Koymans L, Moereels H. P450 inhibitors of use in medical treatment: focus on mechanisms of action. Pharmacol Ther 1995; 67(1): 79–100CrossRefGoogle Scholar
  90. 90.
    Odds FC, Brown AJ, Gow NA. Antifungal agents: mechanisms of action. Trends Microbiol 2003 Jun; 11(6): 272–9PubMedCrossRefGoogle Scholar
  91. 91.
    Brammer KW, Farrow PR, Faulkner JK. Pharmacokinetics and tissue penetration of fluconazole in humans. Rev Infect Dis 1990 Mar-Apr; 12Suppl. 3: S318–26PubMedCrossRefGoogle Scholar
  92. 92.
    Arndt CA, Walsh TJ, McCully CL, et al. Fluconazole penetration into cerebrospinal fluid: implications for treating fungal infections of the central nervous system. J Infect Dis 1988 Jan; 157(1): 178–80PubMedCrossRefGoogle Scholar
  93. 93.
    Wildfeuer A, Laufen H, Schmalreck AF, et al. Fluconazole: comparison of pharmacokinetics, therapy and in vitro susceptibility. Mycoses 1997 Nov; 40(7–8): 259–65PubMedCrossRefGoogle Scholar
  94. 94.
    Lee JW, Seibel NL, Amantea M, et al. Safety and pharmacokinetics of fluconazole in children with neoplastic diseases. J Pediatr 1992 Jun; 120(6): 987–93PubMedCrossRefGoogle Scholar
  95. 95.
    Brammer KW, Coates PE. Pharmacokinetics of fluconazole in pediatric patients. J Clin Microbiol Infect Dis 1994 Apr; 13(4): 325–9CrossRefGoogle Scholar
  96. 96.
    Seay RE, Larson TA, Toscano JP, et al. Pharmacokinetics of fluconazole in immune-compromised children with leukemia or other hematologic diseases. Pharmacotherapy 1995 Jan–Feb; 15(1): 52–8PubMedGoogle Scholar
  97. 97.
    Klepser ME, Wolfe EJ, Jones RN, et al. Antifungal pharmacodynamic characteristics of fluconazole and amphotericin B tested against Candida albicans. Antimicrob Agents Chemother 1997 Jun; 41(6): 1392–5PubMedGoogle Scholar
  98. 98.
    Groll AH, Kolve H. Antifungal agents: in vitro susceptibility testing, pharmacodynamics, and prospects for combination therapy. J Clin Microbiol Infect Dis 2004 Apr; 23(4): 256–70CrossRefGoogle Scholar
  99. 99.
    Duswald KH, Penk A, Pittrow L. High-dose therapy with fluconazole greater or equal to 800mg per day. Mycoses 1997 Nov; 40(7–8): 267–77PubMedCrossRefGoogle Scholar
  100. 100.
    Novelli V, Holzel H. Safety and tolerability of fluconazole in children. Antimicrob Agents Chemother 1999 Aug; 43(8): 1955–60PubMedGoogle Scholar
  101. 101.
    Viscoli C, Castagnola E, Fioredda F, et al. Fluconazole in the treatment of candidiasis in immunocompromised children. Antimicrob Agents Chemother 1991 Feb; 35(2): 365–7PubMedCrossRefGoogle Scholar
  102. 102.
    Rex JH, Bennett JE, Sugar AM, et al. A randomized trial comparing fluconazole with amphotericin B for the treatment of candidemia in patients without neutropenia. Candidemia Study Group and the National Institute. N Engl J Med 1994 Nov 17; 331(20): 1325–30PubMedCrossRefGoogle Scholar
  103. 103.
    Nguyen MH, Peacock JE, Jr., Tanner DC, et al. Therapeutic approaches in patients with candidemia: evaluation in a multicenter, prospective, observational study. Arch Intern Med 1995 Dec 11–25; 155(22): 2429–35PubMedCrossRefGoogle Scholar
  104. 104.
    Anaissie E, Bodey GP, Kantarjian H, et al. Fluconazole therapy for chronic disseminated candidiasis in patients with leukemia and prior amphotericin B therapy. Am J Med 1991 Aug; 91(2): 142–50PubMedCrossRefGoogle Scholar
  105. 105.
    Kauffman CA, Bradley SF, Ross SC, et al. Hepatosplenic candidiasis: successful treatment with fluconazole. Am J Med 1991 Aug; 91(2): 137–41PubMedCrossRefGoogle Scholar
  106. 106.
    Manavathu EK, Cutright JL, Chandrasekar PH. Organism-dependent fungicidal activities of azoles. Antimicrob Agents Chemother 1998 Nov; 42(11): 3018–21PubMedGoogle Scholar
  107. 107.
    Sabo JA, Abdel-Rahman SM. Voriconazole: a new triazole antifungal. Ann Pharmacother 2000 Sep; 34(9): 1032–43PubMedCrossRefGoogle Scholar
  108. 108.
    Johnson LB, Kauffman CA. Voriconazole: a new triazole antifungal agent. Clin Infect Dis 2003 Mar 1; 36(5): 630–7PubMedCrossRefGoogle Scholar
  109. 109.
    Pearson MM, Rogers PD, Cleary JD, et al. Voriconazole: a new triazole antifungal agent. Ann Pharmacother 2003 Mar; 37(3): 420–32PubMedCrossRefGoogle Scholar
  110. 110.
    Scott LJ, Simpson D. Voriconazole: a review of its use in the management of invasive fungal infections. Drugs 2007; 67(2): 269–98PubMedCrossRefGoogle Scholar
  111. 111.
    Lutsar I, Roffey S, Troke P. Voriconazole concentrations in the cerebrospinal fluid and brain tissue of guinea pigs and immunocompromised patients. Clin Infect Dis 2003 Sep 1; 37(5): 728–32PubMedCrossRefGoogle Scholar
  112. 112.
    Hariprasad SM, Mieler WF, Holz ER,et al. Determination of vitreous, aqueous, and plasma concentration of orally administered voriconazole in humans. Arch Ophthal 2004 Jan; 122(1): 42–7PubMedCrossRefGoogle Scholar
  113. 113.
    Purkins L, Wood N, Ghahramani P, et al. Pharmacokinetics and safety of voriconazole following intravenous- to oral-dose escalation regimens. Antimicrob Agents Chemother 2002 Aug; 46(8): 2546–53PubMedCrossRefGoogle Scholar
  114. 114.
    Walsh TJ, Karlsson MO, Driscoll T, et al. Pharmacokinetics and safety of intravenous voriconazole in children after single- or multiple-dose administration. Antimicrob Agents Chemother 2004 Jun; 48(6): 2166–72PubMedCrossRefGoogle Scholar
  115. 115.
    Ikeda Y, Umemura K, Kondo K, et al. Pharmacokinetics of voriconazole and cytochrome P450 2C19 genetic status. Clin Pharmacol Ther 2004 Jun; 75(6): 587–8PubMedCrossRefGoogle Scholar
  116. 116.
    Pfaller MA, Messer SA, Boyken L, et al. In vitro activities of voriconazole, posaconazole, and fluconazole against 4,169 clinical isolates of Candida spp. and Cryptococcus neoformans collected during 2001 and 2002 in the ARTEMIS global antifungal surveillance program. Diagn Microbiol Infect Dis 2004 Mar; 48(3): 201–5PubMedCrossRefGoogle Scholar
  117. 117.
    Pfaller MA, Diekema DJ, Rinaldi MG, et al. Results from the ARTEMIS DISK Global Antifungal Surveillance Study: a 6.5-year analysis of susceptibilities of Candida and other yeast species to fluconazole and voriconazole by standardized disk diffusion testing. J Clin Microbiol 2005 Dec; 43(12): 5848–59PubMedCrossRefGoogle Scholar
  118. 118.
    Pfaller MA, Diekema DJ, Rex JH, et al. Correlation of MIC with outcome for Candida species tested against voriconazole: analysis and proposal for interpretive breakpoints. J Clin Microbiol 2006 Mar; 44(3): 819–26PubMedCrossRefGoogle Scholar
  119. 119.
    Imhof A, Balajee SA, Fredricks DN, et al. Breakthrough fungal infections in stem cell transplant recipients receiving voriconazole. Clin Infect Dis 2004 Sep 1; 39(5): 743–6PubMedCrossRefGoogle Scholar
  120. 120.
    Lazarus HM, Blumer JL, Yanovich S, et al. Safety and pharmacokinetics of oral voriconazole in patients at risk of fungal infection: a dose escalation study. J Clin Pharmacol 2002 Apr; 42(4): 395–402PubMedCrossRefGoogle Scholar
  121. 121.
    Tan K, Brayshaw N, Tomaszewski K, et al. Investigation of the potential relationships between plasma voriconazole concentrations and visual adverse events or liver function test abnormalities. J Clin Pharmacol 2006 Feb; 46(2): 235–43PubMedCrossRefGoogle Scholar
  122. 122.
    Eiden C, Peyriere H, Cociglio M, et al. Adverse effects of voriconazole: analysis of the French Pharmacovigilance Database. Ann Pharmacother 2007 May; 41(5): 755–63PubMedCrossRefGoogle Scholar
  123. 123.
    Walsh TJ, Lutsar I, Driscoll T, et al. Voriconazole in the treatment of aspergillosis, scedosporiosis and other invasive fungal infections in children. Pediatr Infect Dis J 2002 Mar; 21(3): 240–8PubMedCrossRefGoogle Scholar
  124. 124.
    Groll AH, Gea-Banacloche JC, Glasmacher A, et al. Clinical pharmacology of antifungal compounds. Infect Dis Clin North Am 2003 Mar; 17(1): 159–91, ixPubMedCrossRefGoogle Scholar
  125. 125.
    von Mach MA, Burhenne J, Weilemann LS. Accumulation of the solvent vehicle sulphobutylether beta cyclodextrin sodium in critically ill patients treated with intravenous voriconazole under renal replacement therapy. BMC Clin Pharmacol 2006; 6: 6CrossRefGoogle Scholar
  126. 126.
    Walsh TJ, Pappas P, Winston DJ, et al. Voriconazole compared with liposomal amphotericin B for empirical antifungal therapy in patients with neutropenia and persistent fever. N Engl J Med 2002 Jan 24; 346(4): 225–34PubMedCrossRefGoogle Scholar
  127. 127.
    Keating GM. Posaconazole. Drugs 2005; 65(11): 1553–67, discussion 68-9PubMedCrossRefGoogle Scholar
  128. 128.
    Gubbins PO, Krishna G, Sansone-Parsons A, et al. Pharmacokinetics and safety of oral posaconazole in neutropenic stem cell transplant recipients. Antimicrob Agents Chemother 2006 Jun; 50(6): 1993–9PubMedCrossRefGoogle Scholar
  129. 129.
    Courtney R, Pai S, Laughlin M, et al. Pharmacokinetics, safety, and tolerability of oral posaconazole administered in single and multiple doses in healthy adults. Antimicrob Agents Chemother 2003 Sep; 47(9): 2788–95PubMedCrossRefGoogle Scholar
  130. 130.
    Courtney R, Wexler D, Radwanski E, et al. Effect of food on the relative bioavailability of two oral formulations of posaconazole in healthy adults. British J Clin Pharmacol 2004 Feb; 57(2): 218–22CrossRefGoogle Scholar
  131. 131.
    Krieter P, Flannery B, Musick T, et al. Disposition of posaconazole following single-dose oral administration in healthy subjects. Antimicrob Agents Chemother 2004 Sep; 48(9): 3543–51PubMedCrossRefGoogle Scholar
  132. 132.
    Sansone-Parsons A, Krishna G, Simon J, et al. Effects of age, gender, and race/ethnicity on the pharmacokinetics of posaconazole in healthy volunteers. Antimicrob Agents Chemother 2007 Feb; 51(2): 495–502PubMedCrossRefGoogle Scholar
  133. 133.
    Ullmann AJ, Cornely OA, Burchardt A, et al. Pharmacokinetics, safety, and efficacy of posaconazole in patients with persistent febrile neutropenia or refractory invasive fungal infection. Antimicrob Agents Chemother 2006 Feb; 50(2): 658–66PubMedCrossRefGoogle Scholar
  134. 134.
    Cornely OA, Maertens J, Winston DJ, et al. Posaconazole vs. fluconazole or itraconazole prophylaxis in patients with neutropenia. N Engl J Med 2007 Jan 25; 356(4): 348–59PubMedCrossRefGoogle Scholar
  135. 135.
    Krishna G, Sansone-Parsons A, Martinho M, et al. Posaconazole plasma concentrations in juvenile patients with invasive fungal infection. Antimicrob Agents Chemother 2007 Mar; 51(3): 812–8PubMedCrossRefGoogle Scholar
  136. 136.
    Lortholary O, Dannaoui E, Raoux D, et al. In vitro susceptibility to posaconazole of 1903 yeast isolates recovered in France from 2003 to 2006 and tested by the method of the European committee on antimicrobial susceptibility testing. Antimicrob Agents Chemother 2007 Sep; 51(9): 3378–80PubMedCrossRefGoogle Scholar
  137. 137.
    Vehreschild JJ, Kruger K, Kurzai O, et al. Salvage therapy of refractory chronic disseminated candidiasis in a patient with acute myeloid leukaemia and secondary prophylaxis during allogeneic stem cell transplantation. Mycoses 2006; 49Suppl. 1: 42–7PubMedCrossRefGoogle Scholar
  138. 138.
    Boucher HW, Groll AH, Chiou CC, et al. Newer systemic antifungal agents: pharmacokinetics, safety and efficacy. Drugs 2004; 64(18): 1997–2020PubMedCrossRefGoogle Scholar
  139. 139.
    Walsh TJ, Viviani MA, Arathoon E, et al. New targets and delivery systems for antifungal therapy. Med Mycol 2000; 38Suppl. 1: 335–47PubMedGoogle Scholar
  140. 140.
    Fung-Tomc JC, Huczko E, Minassian B, et al. In vitro activity of a new oral triazole, BMS-207147 (ER-30346). Antimicrob Agents Chemother 1998 Feb; 42(2): 313–8PubMedGoogle Scholar
  141. 141.
    Bartroli J, Turmo E, Alguero M, et al. New azole antifungals. 3: synthesis and antifungal activity of 3-substituted-4 (3H)-quinazolinones. J Med Chem 1998 May 21; 41(11): 1869–82PubMedCrossRefGoogle Scholar
  142. 142.
    Ramos G, Cuenca-Estrella M, Monzon A, et al. In-vitro comparative activity of UR-9825, itraconazole and fluconazole against clinical isolates of Candida spp. J Antimicrob Chemother 1999 Aug; 44(2): 283–6PubMedCrossRefGoogle Scholar
  143. 143.
    Miller JL, Schell WA, Wills EA, et al. In vitro and in vivo efficacies of the new triazole albaconazole against Cryptococcus neoformans. Antimicrob Agents Chemother 2004 Feb; 48(2): 384–7PubMedCrossRefGoogle Scholar
  144. 144.
    Saad AH, DePestel DD, Carver PL. Factors influencing the magnitude and clinical significance of drug interactions between azole antifungals and select immunosuppressants. Pharmacotherapy 2006 Dec; 26(12): 1730–44PubMedCrossRefGoogle Scholar
  145. 145.
    Venkataramanan R, Zang S, Gayowski T, et al. Voriconazole inhibition of the metabolism of tacrolimus in a liver transplant recipient and in human liver microsomes. Antimicrob Agents Chemother 2002 Sep; 46(9): 3091–3PubMedCrossRefGoogle Scholar
  146. 146.
    Bates DW, Yu DT. Clinical impact of drug-drug interactions with systemic azole antifungals. Drugs Today (Barc) 2003 Oct; 39(10): 801–13CrossRefGoogle Scholar
  147. 147.
    Hector RF. Compounds active against cell walls of medically important fungi. Clin Microbiol Rev 1993 Jan; 6(1): 1–21PubMedGoogle Scholar
  148. 148.
    Cappelletty D, Eiselstein-McKitrick K. The echinocandins. Pharmacotherapy 2007 Mar; 27(3): 369–88PubMedCrossRefGoogle Scholar
  149. 149.
    Bartizal K, Gill CJ, Abruzzo GK, et al. In vitro preclinical evaluation studies with the echinocandin antifungal MK-0991 (L-743,872). Antimicrob Agents Chemother 1997 Nov; 41(11): 2326–32PubMedGoogle Scholar
  150. 150.
    Onishi J, Meinz M, Thompson J, et al. Discovery of novel antifungal (1,3)-beta-D-glucan synthase inhibitors. Antimicrob Agents Chemother 2000 Feb; 44(2): 368–77PubMedCrossRefGoogle Scholar
  151. 151.
    Wagner C, Graninger W, Presterl E, et al. The echinocandins: comparison of their pharmacokinetics, pharmacodynamics and clinical applications. Pharmacology 2006; 78(4): 161–77PubMedCrossRefGoogle Scholar
  152. 152.
    Stone JA, Holland SD, Wickersham PJ, et al. Single- and multiple-dose pharmacokinetics of caspofungin in healthy men. Antimicrob Agents Chemother 2002 Mar; 46(3): 739–45PubMedCrossRefGoogle Scholar
  153. 153.
    Hebert MF, Smith HE, Marbury TC, et al. Pharmacokinetics of micafungin in healthy volunteers, volunteers with moderate liver disease, and volunteers with renal dysfunction. J Clin Pharmacol 2005 Oct; 45(10): 1145–52PubMedCrossRefGoogle Scholar
  154. 154.
    Stone JA, Xu X, Winchell GA, et al. Disposition of caspofungin: role of distribution in determining pharmacokinetics in plasma. Antimicrob Agents Chemother 2004 Mar; 48(3): 815–23PubMedCrossRefGoogle Scholar
  155. 155.
    Dowell JA, Knebel W, Ludden T, et al. Population pharmacokinetic analysis of anidulafungin, an echinocandin antifungal. J Clin Pharmacol 2004 Jun; 44(6): 590–8PubMedCrossRefGoogle Scholar
  156. 156.
    Dowell JA, Stogniew M, Krause D, et al. Assessment of the safety and pharmacokinetics of anidulafungin when administered with cyclosporine. J Clin Pharmacol 2005 Feb; 45(2): 227–33PubMedCrossRefGoogle Scholar
  157. 157.
    Cancidas® (caspofungin) [package insert]. Whitehouse Station (NJ): Merck & Co, Inc., 2001Google Scholar
  158. 158.
    Walsh TJ, Adamson PC, Seibel NL, et al. Pharmacokinetics, safety, and tolerability of caspofungin in children and adolescents. Antimicrob Agents Chemother 2005 Nov; 49(11): 4536–45PubMedCrossRefGoogle Scholar
  159. 159.
    Seibel NL, Schwartz C, Arrieta A, et al. Safety, tolerability, and pharmacokinetics of Micafungin (FK463) in febrile neutropenic pediatric patients. Antimicrob Agents Chemother 2005 Aug; 49(8): 3317–24PubMedCrossRefGoogle Scholar
  160. 160.
    Benjamin Jr DK, Driscoll T, Seibel NL, et al. Safety and pharmacokinetics of intravenous anidulafungin in children with neutropenia at high risk for invasive fungal infections. Antimicrob Agents Chemother 2006 Feb; 50(2): 632–8PubMedCrossRefGoogle Scholar
  161. 161.
    Ostrosky-Zeichner L, Rex JH, Pappas PG, et al. Antifungal susceptibility survey of 2,000 bloodstream Candida isolates in the United States. Antimicrob Agents Chemother 2003 Oct; 47(10): 3149–54PubMedCrossRefGoogle Scholar
  162. 162.
    Pfaller MA, Messer SA, Boyken L, et al. Further standardization of broth microdilution methodology for in vitro susceptibility testing of caspofungin against Candida species by use of an international collection of more than 3000 clinical isolates. J Clin Microbiol 2004 Jul; 42(7): 3117–9PubMedCrossRefGoogle Scholar
  163. 163.
    Messer SA, Diekema DJ, Boyken L, et al. Activities of micafungin against 315 invasive clinical isolates of fluconazole-resistant Candida spp. Eur J Clin Microbiol 2006 Feb; 44(2): 324–6CrossRefGoogle Scholar
  164. 164.
    Pfaller MA, Boyken L, Hollis RJ, et al. In vitro susceptibilities of Candida spp. to caspofungin: four years of global surveillance. Eur J Clin Microbiol 2006 Mar; 44(3): 760–3CrossRefGoogle Scholar
  165. 165.
    Pfaller MA, Boyken L, Hollis RJ, et al. In vitro activities of anidulafungin against more than 2500 clinical isolates of Candida spp., including 315 isolates resistant to fluconazole. Eur J Clin Microbiol 2005 Nov; 43(11): 5425–7CrossRefGoogle Scholar
  166. 166.
    Pfaller MA, Boyken L, Hollis RJ, et al. In vitro susceptibility of invasive isolates of Candida spp. to anidulafungin, caspofungin, and micafungin: six years of global surveillance. J Clin Microbiol 2008 Jan; 46(1): 150–6PubMedCrossRefGoogle Scholar
  167. 167.
    Park S, Kelly R, Kahn JN, et al. Specific substitutions in the echinocandin target Fks1p account for reduced susceptibility of rare laboratory and clinical Candida sp. isolates. Antimicrob Agents Chemother 2005 Aug; 49(8): 3264–73PubMedCrossRefGoogle Scholar
  168. 168.
    Moudgal V, Little T, Boikov D, et al. Multiechinocandin- and multiazole-resistant Candida parapsilosis isolates serially obtained during therapy for prosthetic valve endocarditis. Antimicrob Agents Chemother 2005 Feb; 49(2): 767–9PubMedCrossRefGoogle Scholar
  169. 169.
    Laverdiere M, Lalonde RG, Baril JG, et al. Progressive loss of echinocandin activity following prolonged use for treatment of Candida albicans oesophagitis. J Antimicrob Chemother 2006 Apr; 57(4): 705–8PubMedCrossRefGoogle Scholar
  170. 170.
    Stevens DA, Espiritu M, Parmar R. Paradoxical effect of caspofungin: reduced activity against Candida albicans at high drug concentrations. Antimicrob Agents Chemother 2004 Sep; 48(9): 3407–11PubMedCrossRefGoogle Scholar
  171. 171.
    Chamilos G, Lewis RE, Albert N, et al. Paradoxical effect of echinocandins across Candida species in vitro: evidence for echinocandin-specific and Candida species-related differences. Antimicrob Agents Chemother 2007 Jun; 51(6): 2257–9PubMedCrossRefGoogle Scholar
  172. 172.
    Mora-Duarte J, Betts R, Rotstein C, et al. Comparison of caspofungin and amphotericin B for invasive candidiasis. N Engl J Med 2002 Dec 19; 347(25): 2020–9PubMedCrossRefGoogle Scholar
  173. 173.
    Krause DS, Reinhardt J, Vazquez JA, et al. Phase 2, randomized, dose-ranging study evaluating the safety and efficacy of anidulafungin in invasive candidiasis and candidemia. Antimicrob Agents Chemother 2004 Jun; 48(6): 2021–4PubMedCrossRefGoogle Scholar
  174. 174.
    Walsh TJ, Teppler H, Donowitz GR, et al. Caspofungin versus liposomal amphotericin B for empirical antifungal therapy in patients with persistent fever and neutropenia. N Engl J Med 2004 Sep 30; 351(14): 1391–402PubMedCrossRefGoogle Scholar
  175. 175.
    Ostrosky-Zeichner L, Kontoyiannis D, Raffalli J, et al. International, open-label, noncomparative, clinical trial of micafungin alone and in combination for treatment of newly diagnosed and refractory candidemia. J Clin Microbiol Infect Dis 2005 Oct; 24(10): 654–61CrossRefGoogle Scholar
  176. 176.
    Kuse ER, Chetchotisakd P, da Cunha CA, et al. Micafungin versus liposomal amphotericin B for candidaemia and invasive candidiasis: a phase III randomised double-blind trial. Lancet 2007 May 5; 369(9572): 1519–27PubMedCrossRefGoogle Scholar
  177. 177.
    Pappas PG, Rotstein CM, Betts RF, et al. Micafungin versus caspofungin for treatment of candidemia and other forms of invasive candidiasis. Clin Infect Dis 2007 Oct 1; 45(7): 883–93PubMedCrossRefGoogle Scholar
  178. 178.
    Reboli AC, Rotstein C, Pappas PG, et al. Anidulafungin versus fluconazole for invasive candidiasis. N Engl J Med 2007 Jun 14; 356(24): 2472–82PubMedCrossRefGoogle Scholar
  179. 179.
    van Burik JA, Ratanatharathorn V, Stepan DE, et al. Micafungin versus fluconazole for prophylaxis against invasive fungal infections during neutropenia in patients undergoing hematopoietic stem cell transplantation. Clin Infect Dis 2004 Nov 15; 39(10): 1407–16PubMedCrossRefGoogle Scholar
  180. 180.
    Zaoutis TE, Jafri H, Huang L, et al. Prospective, multicenter study of caspofungin for treatment of documented fungal infections in pediatric patients. 45th Annual Meeting of the Infectious Disease Society of America; 2007 Oct 4–7, San Diego (CA), 78Google Scholar
  181. 181.
    Queiroz-Telles F, Berezin E, Leverger G, et al. Micafungin versus liposomal amphotericin B for pediatric patients with invasive candidiasis: a randomized double-blind trial. Pediatr Infect Dis J. In pressGoogle Scholar
  182. 182.
    European Medicine Agency. Assessment report for mycamine [online]. Available from URL: http://www.emea.europa.eu/humandocs/PDFs/EPAR/mycamine/H-734-en6.pdf [Accessed 2008 July 30]
  183. 183.
    Marr KA, Hachem R, Papanicolaou G, et al. Retrospective study of the hepatic safety profile of patients concomitantly treated with caspofungin and cyclosporin A. Transpl Infect Dis 2004 Sep; 6(3): 110–6PubMedCrossRefGoogle Scholar
  184. 184.
    Sanz-Rodriguez C, Lopez-Duarte M, Jurado M, et al. Safety of the concomitant use of caspofungin and cyclosporin A in patients with invasive fungal infections. Bone Marrow Transplant 2004 Jul; 34(1): 13–20PubMedCrossRefGoogle Scholar
  185. 185.
    Hebert MF, Blough DK, Townsend RW, et al. Concomitant tacrolimus and micafungin pharmacokinetics in healthy volunteers. J Clin Pharmacol 2005 Sep; 45(9): 1018–24PubMedCrossRefGoogle Scholar
  186. 186.
    Mycamine® (micafungin) [package insert]. Deerfield (IL): Astellas Pharma, Inc., 2005Google Scholar
  187. 187.
    Hanson LH, Perlman AM, Clemons KV, et al. Synergy between cilofungin and amphotericin B in a murine model of candidiasis. Antimicrob Agents Chemother 1991 Jul; 35(7): 1334–7PubMedCrossRefGoogle Scholar
  188. 188.
    Tunger O, Bayram H, Deperli K, et al. Comparison of the efficacy of combination and monotherapy with caspofungin and liposomal amphotericin B against invasive candidiasis. Saudi Medical Journal 2008 May; 29(5): 728–33PubMedGoogle Scholar
  189. 189.
    Olson JA, Adler-Moore JP, Smith PJ, et al. Treatment of Candida glabrata infection in immunosuppressed mice by using a combination of liposomal amphotericin B with caspofungin or micafungin. Antimicrob Agents Chemother 2005 Dec; 49(12): 4895–902PubMedCrossRefGoogle Scholar
  190. 190.
    Graybill JR, Bocanegra R, Najvar LK, et al. Addition of caspofungin to fluconazole does not improve outcome in murine candidiasis. Antimicrob Agents Chemother 2003 Jul; 47(7): 2373–5PubMedCrossRefGoogle Scholar
  191. 191.
    Louie A, Banerjee P, Drusano GL, et al. Interaction between fluconazole and amphotericin B in mice with systemic infection due to fluconazole-susceptible or -resistant strains of Candida albicans. Antimicrob Agents Chemother 1999 Dec; 43(12): 2841–7PubMedGoogle Scholar
  192. 192.
    Rex JH, Pappas PG, Karchmer AW, et al. A randomized and blinded multicenter trial of high-dose fluconazole plus placebo versus fluconazole plus amphotericin B as therapy for candidemia and its consequences in nonneutropenic subjects. Clin Infect Dis 2003 May 15; 36(10): 1221–8PubMedCrossRefGoogle Scholar
  193. 193.
    Kujath P, Lerch K, Kochendorfer P, et al. Comparative study of the efficacy of fluconazole versus amphotericin B/flucytosine in surgical patients with systemic mycoses. Infection 1993 Nov–Dec; 21(6): 376–82PubMedCrossRefGoogle Scholar
  194. 194.
    Garey KW, Rege M, Pai MP, et al. Time to initiation of fluconazole therapy impacts mortality in patients with candidemia: a multi-institutional study. Clin Infect Dis 2006 Jul 1; 43(1): 25–31PubMedCrossRefGoogle Scholar
  195. 195.
    Morrell M, Fraser VJ, Kollef MH. Delaying the empiric treatment of Candida bloodstream infection until positive blood culture results are obtained: a potential risk factor for hospital mortality. Antimicrob Agents Chemother 2005 Sep; 49(9): 3640–5PubMedCrossRefGoogle Scholar
  196. 196.
    Rodriguez-Adrian LJ, Grazziutti ML, Rex JH, et al. The potential role of cytokine therapy for fungal infections in patients with cancer: is recovery from neutropenia all that is needed? Clin Infect Dis 1998 Jun; 26(6): 1270–8PubMedCrossRefGoogle Scholar
  197. 197.
    Bodey GP, DeJongh D, Isassi A, et al. Hypersplenism due to disseminated candidiasis in a patient with acute leukemia. Cancer 1969 Aug; 24(2): 417–20PubMedCrossRefGoogle Scholar
  198. 198.
    Masood A, Sallah S. Chronic disseminated candidiasis in patients with acute leukemia: emphasis on diagnostic definition and treatment. Leuk res 2005 May; 29(5): 493–501PubMedCrossRefGoogle Scholar
  199. 199.
    Sallah S, Semelka RC, Wehbie R, et al. Hepatosplenic candidiasis in patients with acute leukaemia. Br J Haematol 1999 Sep; 106(3): 697–701PubMedCrossRefGoogle Scholar
  200. 200.
    Blanchard DK, Michelini-Norris MB, Djeu JY. Production of granulocyte-macrophage colony-stimulating factor by large granular lymphocytes stimulated with Candida albicans: role in activation of human neutrophil function. Blood 1991 May 15; 77(10): 2259–65PubMedGoogle Scholar
  201. 201.
    Roilides E, Holmes A, Blake C, et al. Effects of granulocyte colony-stimulating factor and interferon-gamma on antifungal activity of human polymorphonuclear neutrophils against pseudohyphae of different medically important Candida species. J Leukoc Biol 1995 Apr; 57(4): 651–6PubMedGoogle Scholar
  202. 202.
    Bodey GP, Anaissie E, Gutterman J, et al. Role of granulocyte-macrophage colony-stimulating factor as adjuvant therapy for fungal infection in patients with cancer. Clin Infect Dis 1993 Oct; 17(4): 705–7PubMedCrossRefGoogle Scholar
  203. 203.
    Nemunaitis J. Use of macrophage colony-stimulating factor in the treatment of fungal infections. Clin Infect Dis 1998 Jun; 26(6): 1279–81PubMedCrossRefGoogle Scholar
  204. 204.
    Ravindranath Y. Recent advances in pediatric acute lymphoblastic and myeloid leukemia. Curr Opin Oncol 2003 Jan; 15(1): 23–35PubMedCrossRefGoogle Scholar
  205. 205.
    Mehta P. The scientific bases of pediatric bone marrow transplant. In: Mehta P, editor. Pediatric stem cell transplantation. 1st ed. Sudbury: Jones and Bartlett Publishers, Inc., 2004: 3–12Google Scholar

Copyright information

© Adis Data Information BV 2008

Authors and Affiliations

  1. 1.Department of Pediatrics, Division of Infectious Diseases, The Children’s Hospital of PhiladelphiaUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations