Pediatric Drugs

, Volume 9, Issue 2, pp 81–96 | Cite as

Emerging Treatments and Gene Expression Profiling in High-Risk Medulloblastoma

Leading Article


The past decades have seen an increase in the survival rates of patients with standard-risk medulloblastoma. Efforts have, therefore, been focused on obtaining better results in the treatment of patients with high-risk tumors.

In addition to consolidated therapies, novel approaches such as small molecules, monoclonal antibodies, and antiangiogenic therapies that aim to improve outcomes and quality of life are now available through new breakthroughs in the molecular biology of medulloblastoma. The advent of innovative anticancer drugs tested in brain tumors has important consequences for personalized therapy. Gene expression profiling of medulloblastoma can be used to identify the genes and signaling transduction pathways that are crucial for the tumorigenesis process, thereby revealing both new targets for therapy and sensitive/resistance phenotypes.

The interpretation of microarray data for new treatments of patients with high-risk medulloblastoma, as well as other poor prognosis tumors, should be developed through a consensus multidisciplinary approach involving oncologists, neurosurgeons, radiotherapists, biotechnologists, bioinformaticists, and other professionals.


  1. 1.
    Fischer PG. Embryonal tumors. In: Gupta N, Banerjee A, Haas-Kogan D, editors. Pediatric CNS tumors. Berlin: Springer-Verlag, 2004: 83–105Google Scholar
  2. 2.
    Michalski AG, Gare ML. Infant brain tumours. In: Walker D, Perilongo G, Punt JAG, et al., editors. Spinal tumours of childhood. London: Arnold, 2004Google Scholar
  3. 3.
    Sarkar C, Deb P, Sharma MC. Recent advances in embryonal tumours of the central nervous system. Childs Nerv Syst 2005; 21: 272–93PubMedCrossRefGoogle Scholar
  4. 4.
    Giangaspero F, Perilongo G, Fondelli MP, et al. Medulloblastoma with extensive nodularity: a variant with favorable prognosis. J Neurosurg 1999; 91: 971–7PubMedCrossRefGoogle Scholar
  5. 5.
    Vogel H, Fuller GN. Primitive neuroectodermal tumors, embryonal tumors, and other small cell and poorly differentiated malignant neoplasms of the central and peripheral nervous systems. Ann Diagn Pathol 2003; 7: 387–98PubMedCrossRefGoogle Scholar
  6. 6.
    Doolittle ND. State of the science in brain tumor classification. Semin Oncol Nurs 2004; 20: 224–30PubMedGoogle Scholar
  7. 7.
    Gyure KA. Newly defined central nervous system neoplasms. Am J Clin Pathol 2005; 123 Suppl.: S3–12PubMedGoogle Scholar
  8. 8.
    Packer RJ, Rood BR, MacDonald TJ. Medulloblastoma: present concepts of stratification into risk groups. Pediatr Neurosurg 2003; 39: 60–7PubMedCrossRefGoogle Scholar
  9. 9.
    Jakacki RI. Treatment strategies for high-risk medulloblastoma and supratentorial primitive neuroectodermal tumors: review of the literature. J Neurosurg 2005; 102(1 Suppl.): 44–52PubMedGoogle Scholar
  10. 10.
    Rutkowski S, Bode U, Deinlein F, et al. Treatment of early childhood medulloblastoma by postoperative chemotherapy alone. N Engl J Med 2005; 352: 978–86PubMedCrossRefGoogle Scholar
  11. 11.
    Tong CY, Hui AB, Yin XL, et al. Detection of oncogene amplifications in medulloblastomas by comparative genomic hybridization and array-based comparative genomic hybridization. J Neurosurg 2004; 100(2 Suppl Pediatrics): 187–93PubMedGoogle Scholar
  12. 12.
    Rossi MR, Conroy J, McQuaid D, et al. Array CGH analysis of pediatric medulloblastomas. Genes Chromosomes Cancer 2006; 45: 290–303PubMedCrossRefGoogle Scholar
  13. 13.
    Mendrzyk F, Korshunov A, Toedt G, et al. Isochromosome breakpoints on 17p in medulloblastoma are flanked by different classes of DNA sequence repeats. Genes Chromosomes Cancer 2006; 45: 401–10PubMedCrossRefGoogle Scholar
  14. 14.
    Ehrbrecht A, Muller U, Wolter M, et al. Comprehensive genomic analysis of desmoplastic medulloblastomas: identification of novel amplified genes and separate evaluation of the different histological components. J Pathol 2006; 208: 554–63PubMedCrossRefGoogle Scholar
  15. 15.
    DeChiara C, Borghese A, Fiorillo A, et al. Cytogenetic evaluation of isochromosome 17q in posterior fossa tumors of children and correlation with clinical outcome in medulloblastoma: detection of a novel chromosomal abnormality. Childs Nerv Syst 2002; 18: 380–4PubMedCrossRefGoogle Scholar
  16. 16.
    Jung HL, Wang KC, Kim SK, et al. Loss of heterozygosity analysis of chromosome 17p13.1–13.3 and its correlation with clinical outcome in medulloblastomas. J Neurooncol 2004; 67: 41–6PubMedCrossRefGoogle Scholar
  17. 17.
    Lamont JM, McManamy CS, Pearson AD, et al. Combined histopathological and molecular cytogenetic stratification of medulloblastoma patients. Clin Cancer Res 2004; 10: 5482–93PubMedCrossRefGoogle Scholar
  18. 18.
    Pan E, Pellarin M, Holmes E, et al. Isochromosome 17q is a negative prognostic factor in poor-risk childhood medulloblastoma patients. Clin Cancer Res 2005; 11: 4733–40PubMedCrossRefGoogle Scholar
  19. 19.
    Biegel JA, Janss AJ, Raffel C, et al. Prognostic significance of chromosome 17p deletions in childhood primitive neuroectodermal tumors (medulloblastomas) of the central nervous system. Clin Cancer Res 1997; 3: 473–8PubMedGoogle Scholar
  20. 20.
    Kraus JA, Felsberg J, Tonn JC, et al. Molecular genetic analysis of the TP53, PTEN, CDKN2A, EGFR, CDK4 and MDM2 tumour-associated genes in supratentorial primitive neuroectodermal tumours and glioblastomas of childhood. Neuropathol Appl Neurobiol 2002; 28: 325–33PubMedCrossRefGoogle Scholar
  21. 21.
    Rood BR, Zhang H, Weitman DM, et al. Hypermethylation of HIC-1 and 17p allelic loss in medulloblastoma. Cancer Res 2002; 62: 3794–7PubMedGoogle Scholar
  22. 22.
    Waha A, Waha A, Koch A, et al. Epigenetic silencing of the HIC-1 gene in human medulloblastomas. J Neuropathol Exp Neurol 2003; 62: 1192–201PubMedGoogle Scholar
  23. 23.
    Bigner SH, Vogelstein B. Cytogenetics and molecular genetics of malignant gliomas and medulloblastoma. Brain Pathol 1990; 1: 12–8PubMedCrossRefGoogle Scholar
  24. 24.
    Kraus JA, Koch A, Albrecht S, et al. Loss of heterozygosity at locus F13B on chromosome 1q in human medulloblastoma. Int J Cancer 1996; 67: 11–5PubMedCrossRefGoogle Scholar
  25. 25.
    Inda MM, Perot C, Guillaud-Bataille M, et al. Genetic heterogeneity in supratentorial and infratentorial primitive neuroectodermal tumours of the central nervous system. Histopathology 2005; 47: 631–7PubMedCrossRefGoogle Scholar
  26. 26.
    Kalifa C, Grill J. The therapy of infantile malignant brain tumors: current status? J Neurooncol 2005; 75: 279–85PubMedCrossRefGoogle Scholar
  27. 27.
    Lee A, Kessler JD, Read TA, et al. Isolation of neural stem cells from the postnatal cerebellum. Nat Neurosci 2005; 8: 723–39PubMedCrossRefGoogle Scholar
  28. 28.
    Aruga J, Yokota N, Hashimoto M, et al. A novel zinc finger protein, zic, is involved in neurogenesis, especially in the cell lineage of cerebellar granule cells. J Neurochem 1994; 63: 1880–90PubMedCrossRefGoogle Scholar
  29. 29.
    Yokota N, Aruga J, Takai S, et al. Predominant expression of human zic in cerebellar granule cell lineage and medulloblastoma. Cancer Res 1996; 56: 377–83PubMedGoogle Scholar
  30. 30.
    Schofield D, West DC, Anthony DC, et al. Correlation of loss of heterozygosity at chromosome 9q with histological subtype in medulloblastomas. Am J Pathol 1995; 146: 472–80PubMedGoogle Scholar
  31. 31.
    Hahn H, Wojnowski L, Specht K, et al. Patched target Igf2 is indispensable for the formation of medulloblastoma and rhabdomyosarcoma. J Biol Chem 2000; 275: 28341–4PubMedCrossRefGoogle Scholar
  32. 32.
    Boonen SE, Stahl D, Kreiborg S, et al. Delineation of an interstitial 9q22 deletion in basal cell nevus syndrome. Am J Med Genet 2005; 132: 324–8CrossRefGoogle Scholar
  33. 33.
    Reifenberger J, Wolter M, Weber RG, et al. Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res 1998; 58: 1798–803PubMedGoogle Scholar
  34. 34.
    Smyth I, Narang MA, Evans T, et al. Isolation and characterization of human patched 2 (PTCH2), a putative tumour suppressor gene in basal cell carcinoma and medulloblastoma on chromosome 1p32. Hum Mol Genet 1999; 8: 291–7PubMedCrossRefGoogle Scholar
  35. 35.
    Zurawel RH, Allen C, Chiappa S, et al. Analysis of PTCH/SMO/SHH pathway genes in medulloblastoma. Genes Chromosomes Cancer 2000; 27: 44–51PubMedCrossRefGoogle Scholar
  36. 36.
    Hamilton SR, Liu B, Parsons RE, et al. The molecular basis of Turcot’s syndrome. N Engl J Med 1995; 332: 839–47PubMedCrossRefGoogle Scholar
  37. 37.
    Huang H, Mahler-Araujo BM, Sankila A, et al. APC mutations in sporadic medulloblastomas. Am J Pathol 2000; 156: 433–7PubMedCrossRefGoogle Scholar
  38. 38.
    Taylor MD, Zhang X, Liu L, et al. Failure of a medulloblastoma-derived mutant of SUFU to suppress WNT signaling. Oncogene 2004; 23: 4577–83PubMedCrossRefGoogle Scholar
  39. 39.
    Leung JY, Kolligs FT, Wu R, et al. Activation of AXIN2 expression by beta-catenin-T cell factor: a feedback repressor pathway regulating Wnt signaling. J Biol Chem 2002; 277: 21657–65PubMedCrossRefGoogle Scholar
  40. 40.
    Yokota N, Nishizawa S, Ohta S, et al. Role of Wnt pathway in medulloblastoma oncogenesis. Int J Cancer 2002; 101: 198–201PubMedCrossRefGoogle Scholar
  41. 41.
    Badiali M, Pession A, Basso G, et al. N-myc and c-myc oncogenes amplification in medulloblastomas: evidence of particularly aggressive behavior of a tumor with c-myc amplification. Tumori 1991; 77: 118–21PubMedGoogle Scholar
  42. 42.
    Gilbertson R, Wickramasinghe C, Hernan R, et al. Clinical and molecular stratification of disease risk in medulloblastoma. Br J Cancer 2001; 85: 705–12PubMedCrossRefGoogle Scholar
  43. 43.
    Stearns D, Chaudhry A, Abel TW, et al. c-myc overexpression causes anaplasia in medulloblastoma. Cancer Res 2006; 66: 673–81PubMedCrossRefGoogle Scholar
  44. 44.
    Gilbertson RJ, Clifford SC, MacMeekin W, et al. Expression of the ErbB-neuregulin signaling network during human cerebellar development: implications for the biology of medulloblastoma. Cancer Res 1998; 58: 3932–41PubMedGoogle Scholar
  45. 45.
    Gilbertson R, Hernan R, Pietsch T, et al. Novel ERBB4 juxtamembrane splice variants are frequently expressed in childhood medulloblastoma. Genes Chromosomes Cancer 2001; 31: 288–94PubMedCrossRefGoogle Scholar
  46. 46.
    Gajjar A, Hernan R, Kocak M, et al. Clinical, histopathologic, and molecular markers of prognosis: toward a new disease risk stratification system for medulloblastoma. J Clin Oncol 2004; 22: 984–93PubMedCrossRefGoogle Scholar
  47. 47.
    Gilbertson RJ, Perry RH, Kelly PJ, et al. Prognostic significance of HER2 and HER4 coexpression in childhood medulloblastoma. Cancer Res 1997; 57: 3272–80PubMedGoogle Scholar
  48. 48.
    Herms JW, Behnke J, Bergmann M, et al. Potential prognostic value of C-erbB-2 expression in medulloblastomas in very young children. J Pediatr Hematol Oncol 1997; 19: 510–5PubMedCrossRefGoogle Scholar
  49. 49.
    Muragaki Y, Chou TT, Kaplan DR, et al. Nerve growth factor induces apoptosis in human medulloblastoma cell lines that express TrkA receptors. J Neurosci 1997; 17: 530–42PubMedGoogle Scholar
  50. 50.
    Tajima Y, Molina Jr RP, Rorke LB, et al. Neurotrophins and neuronal versus glial differentiation in medulloblastomas and other pediatric brain tumors. Acta Neuropathol 1998; 95: 325–32PubMedCrossRefGoogle Scholar
  51. 51.
    Pomeroy SL, Sutton ME, Goumnerova LC, et al. Neurotrophins in cerebellar granule cell development and medulloblastoma. J Neurooncol 1997; 35: 347–52PubMedCrossRefGoogle Scholar
  52. 52.
    Kim JY, Sutton ME, Lu DJ, et al. Activation of neurotrophin-3 receptor TrkC induces apoptosis in medulloblastomas. Cancer Res 1999; 59: 711–9PubMedGoogle Scholar
  53. 53.
    Eberhart CG, Kaufman WE, Tihan T, et al. Apoptosis, neuronal maturation, and neurotrophin expression within medulloblastoma nodules. J Neuropathol Exp Neurol 2001; 60: 462–9PubMedGoogle Scholar
  54. 54.
    Nakagawara A. Trk receptor tyrosine kinases: a bridge between cancer and neural development. Cancer Lett 2001; 169: 107–14PubMedCrossRefGoogle Scholar
  55. 55.
    Grotzer MA, Janss AJ, Fung K, et al. TrkC expression predicts good clinical outcome in primitive neuroectodermal brain tumors. J Clin Oncol 2000; 18: 1027–35PubMedGoogle Scholar
  56. 56.
    Stylianou S, Clarke RB, Brennan K. Aberrant activation of notch signaling in human breast cancer. Cancer Res 2006; 66: 1517–25PubMedCrossRefGoogle Scholar
  57. 57.
    van Es JH, Clevers H. Notch and Wnt inhibitors as potential new drugs for intestinal neoplastic disease. Trends Mol Med 2005; 11: 496–502PubMedCrossRefGoogle Scholar
  58. 58.
    Grabher C, von Boehmer H, Look AT. Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nat Rev Cancer 2006; 6: 347–59PubMedCrossRefGoogle Scholar
  59. 59.
    Leong KG, Karsan A. Recent insights into the role of Notch signaling in tumorigenesis. Blood 2006; 107: 2223–33PubMedCrossRefGoogle Scholar
  60. 60.
    Fan X, Mikolaenko I, Elhassan I, et al. Notch1 and notch2 have opposite effects on embryonal brain tumor growth. Cancer Res 2004; 64: 7787–93PubMedCrossRefGoogle Scholar
  61. 61.
    Solecki DJ, Liu XL, Tomoda T, et al. Activated Notch2 signaling inhibits differentiation of cerebellar granule neuron precursors by maintaining proliferation. Neuron 2001; 31: 557–68PubMedCrossRefGoogle Scholar
  62. 62.
    Lasky JL, Wu H. Notch signaling, brain development, and human disease. Pediatr Res 2005; 57: 104R–9RPubMedCrossRefGoogle Scholar
  63. 63.
    Fan X, Matsui W, Khaki L, et al. Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res 2006; 66: 7445–52PubMedCrossRefGoogle Scholar
  64. 64.
    Friedman HS, Schold Jr SC, Muhlbaier LH, et al. In vitro versus in vivo correlations of chemosensitivity of human medulloblastoma. Cancer Res 1984; 44: 5145–9PubMedGoogle Scholar
  65. 65.
    Powell SN, Mills J, McMillan TJ. Radiosensitive human tumour cell lines show misrepair of DNA termini. Br J Radiol 1998; 71: 1178–84PubMedGoogle Scholar
  66. 66.
    Iwadate Y, Fujimoto S, Yamaura A. Differential chemosensitivity in human intracerebral gliomas measured by flow cytometric DNA analysis. Int J Mol Med 2002; 10: 187–92PubMedGoogle Scholar
  67. 67.
    Landberg TG, Lindgren ML, Cavallin-Stahl EK, et al. Improvements in the radiotherapy of medulloblastoma, 1946–1975. Cancer 1980; 45: 670–8PubMedCrossRefGoogle Scholar
  68. 68.
    Bouffet E, Bernard JL, Frappaz D, et al. M4 protocol for cerebellar medulloblastoma: supratentorial radiotherapy may not be avoided. Int J Radiat Oncol Biol Phys 1992; 24: 79–85PubMedCrossRefGoogle Scholar
  69. 69.
    Thomas PR, Deutsch M, Kepner JL, et al. Low-stage medulloblastoma: final analysis of trial comparing standard-dose with reduced-dose neuraxis irradiation. J Clin Oncol 2000; 18: 3004–11PubMedGoogle Scholar
  70. 70.
    Packer RJ, Goldwein J, Nicholson HS, et al. Treatment of children with medulloblastomas with reduced-dose craniospinal radiation therapy and adjuvant chemotherapy: a Children’s Cancer Group study. J Clin Oncol 1999; 17: 2127–36PubMedGoogle Scholar
  71. 71.
    Prados MD, Edwards MS, Chang SM, et al. Hyperfractionated craniospinal radiation therapy for primitive neuroectodermal tumors: results of a phase II study. Int J Radiat Oncol Biol Phys 1999; 43: 279–85PubMedCrossRefGoogle Scholar
  72. 72.
    Ricardi U, Corrias A, Einaudi S, et al. Thyroid dysfunction as a late effect in childhood medulloblastoma: a comparison of hyperfractionated versus conventionally fractionated craniospinal radiotherapy. Int J Radiat Oncol Biol Phys 2001; 50: 1287–94PubMedCrossRefGoogle Scholar
  73. 73.
    Kalifa C, Valteau D, Pizer B, et al. High-dose chemotherapy in childhood brain tumours. Childs Nerv Syst 1999; 15: 498–505PubMedCrossRefGoogle Scholar
  74. 74.
    Abrey LE, Rosenblum MK, Papadopoulos E, et al. High dose chemotherapy with autologous stem cell rescue in adults with malignant primary brain tumors. J Neurooncol 1999; 44: 147–53PubMedCrossRefGoogle Scholar
  75. 75.
    Millot F, Delval O, Giraud C, et al. High-dose chemotherapy with hematopoietic stem cell transplantation in adults with bone marrow relapse of medulloblastoma: report of two cases. Bone Marrow Transplant 1999; 24: 1347–9PubMedCrossRefGoogle Scholar
  76. 76.
    Papadakis V, Dunkel IJ, Cramer LD, et al. High-dose carmustine, thiotepa and etoposide followed by autologous bone marrow rescue for the treatment of high risk central nervous system tumors. Bone Marrow Transplant 2000; 26: 153–60PubMedCrossRefGoogle Scholar
  77. 77.
    Zia MI, Forsyth P, Chaudhry A, et al. Possible benefits of high-dose chemotherapy and autologous stem cell transplantation for adults with recurrent medulloblastoma. Bone Marrow Transplant 2002; 30: 565–9PubMedCrossRefGoogle Scholar
  78. 78.
    Chi SN, Gardner SL, Levy AS, et al. Feasibility and response to induction chemotherapy intensified with high-dose methotrexate for young children with newly diagnosed high-risk disseminated medulloblastoma. J Clin Oncol 2004; 22: 4881–7PubMedCrossRefGoogle Scholar
  79. 79.
    Perez-Martinez A, Quintero V, Vicent MG, et al. High-dose chemotherapy with autologous stem cell rescue as first line of treatment in young children with medulloblastoma and supratentorial primitive neuroectodermal tumors. J Neurooncol 2004; 67: 101–6PubMedCrossRefGoogle Scholar
  80. 80.
    Perez-Martinez A, Lassaletta A, Gonzalez-Vicent M, et al. High-dose chemotherapy with autologous stem cell rescue for children with high risk and recurrent medulloblastoma and supratentorial primitive neuroectodermal tumors. J Neurooncol 2005; 71: 33–8PubMedCrossRefGoogle Scholar
  81. 81.
    Valteau-Couanet D, Fillipini B, Benhamou E, et al. High-dose busulfan and thiotepa followed by autologous stem cell transplantation (ASCT) in previously irradiated medulloblastoma patients: high toxicity and lack of efficacy. Bone Marrow Transplant 2005; 36: 939–45PubMedCrossRefGoogle Scholar
  82. 82.
    Kortmann RD, Kuhl J, Timmermann B, et al. Postoperative neoadjuvant chemotherapy before radiotherapy as compared to immediate radiotherapy followed by maintenance chemotherapy in the treatment of medulloblastoma in childhood: results of the German prospective randomized trial HIT 91. Int J Radiat Oncol Biol Phys 2000; 46: 269–79PubMedCrossRefGoogle Scholar
  83. 83.
    Taylor RE, Bailey CC, Robinson KJ, et al. Impact of radiotherapy parameters on outcome in the International Society of Paediatric Oncology/United Kingdom Children’s Cancer Study Group PNET-3 study of preradiotherapy chemotherapy for M0–M1 medulloblastoma. Int J Radiat Oncol Biol Phys 2004; 58: 1184–93PubMedCrossRefGoogle Scholar
  84. 84.
    Oyharcabal-Bourden V, Kalifa C, Gentet JC, et al. Standard-risk medulloblastoma treated by adjuvant chemotherapy followed by reduced-dose craniospinal radiation therapy: a French Society of Pediatric Oncology Study. J Clin Oncol 2005; 23: 4726–34PubMedCrossRefGoogle Scholar
  85. 85.
    Tait DM, Thornton-Jones H, Bloom HJ, et al. Adjuvant chemotherapy for medulloblastoma: the first multi-centre control trial of the International Society of Paediatric Oncology (SIOP I). Eur J Cancer 1990; 26: 464–9PubMedGoogle Scholar
  86. 86.
    Evans AE, Jenkin RD, Sposto R, et al. The treatment of medulloblastoma: results of a prospective randomized trial of radiation therapy with and without CCNU, vincristine, and prednisone. J Neurosurg 1990; 72: 572–82PubMedCrossRefGoogle Scholar
  87. 87.
    Packer RJ, Siegel KR, Sutton LN, et al. Efficacy of adjuvant chemotherapy for patients with poor-risk medulloblastoma: a preliminary report. Ann Neurol 1988; 24: 503–8PubMedCrossRefGoogle Scholar
  88. 88.
    Packer RJ, Sutton LN, Elterman R, et al. Outcome for children with medulloblastoma treated with radiation and cisplatin, CCNU, and vincristine chemotherapy. J Neurosurg 1994; 81: 690–8PubMedCrossRefGoogle Scholar
  89. 89.
    Gentet JC, Bouffet E, Doz F, et al. Preirradiation chemotherapy including‘eight drugs in 1 day’ regimen and high-dose methotrexate in childhood medulloblastoma: results of the M7 French Cooperative Study. J Neurosurg 1995; 82: 608–14PubMedCrossRefGoogle Scholar
  90. 90.
    Spreafico F, Massimino M, Gandola L, et al. Survival of adults treated for medulloblastoma using paediatric protocols. Eur J Cancer 2005; 41: 1304–10PubMedCrossRefGoogle Scholar
  91. 91.
    Zeltzer PM, Boyett JM, Finlay JL, et al. Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: conclusions from the Children’s Cancer Group 921 randomized phase III study. J Clin Oncol 1999; 17: 832–45PubMedGoogle Scholar
  92. 92.
    Strother D, Ashley D, Kellie SJ, et al. Feasibility of four consecutive high-dose chemotherapy cycles with stem-cell rescue for patients with newly diagnosed medulloblastoma or supratentorial primitive neuroectodermal tumor after craniospinal radiotherapy: results of a collaborative study. J Clin Oncol 2001; 19: 2696–704PubMedGoogle Scholar
  93. 93.
    Taylor RE, Bailey CC, Robinson KJ, et al. Outcome for patients with metastatic (M2–3) medulloblastoma treated with SIOP/UKCCSG PNET-3 chemotherapy. Eur J Cancer 2005; 41: 727–34PubMedCrossRefGoogle Scholar
  94. 94.
    Walker DA, Wilne S. Treatment of medulloblastoma in young children. Lancet Oncol 2005; 6: 541–2PubMedCrossRefGoogle Scholar
  95. 95.
    Grill J, Sainte-Rose C, Jouvet A, et al. Treatment of medulloblastoma with postoperative chemotherapy alone: an SFOP prospective trial in young children. Lancet Oncol 2005; 6: 573–80PubMedCrossRefGoogle Scholar
  96. 96.
    Mahar Doan KM, Boje KM. Theoretical pharmacokinetic and pharmacodynamic simulations of drug delivery mediated by blood-brain barrier transporters. Biopharm Drug Dispos 2000; 21: 261–78PubMedCrossRefGoogle Scholar
  97. 97.
    Chen Y, Dalwadi G, Benson HA. Drug delivery across the blood-brain barrier. Curr Drug Deliv 2004; 1: 361–76PubMedCrossRefGoogle Scholar
  98. 98.
    Kabanov AV, Batrakova EV. New technologies for drug delivery across the blood brain barrier. Curr Pharm Des 2004; 10: 1355–63PubMedCrossRefGoogle Scholar
  99. 99.
    Tsuji A. Small molecular drug transfer across the blood-brain barrier via carrier-mediated transport systems. NeuroRx 2005; 2: 54–62PubMedCrossRefGoogle Scholar
  100. 100.
    Mamelak AN. Locoregional therapies for glioma. Oncology 2005; 19: 1803–10PubMedGoogle Scholar
  101. 101.
    Pollack IF, Keating R. New delivery approaches for pediatric brain tumors. J Neurooncol 2005; 75: 315–26PubMedCrossRefGoogle Scholar
  102. 102.
    Perry A, Schmidt RE. Cancer therapy-associated CNS neuropathology: an update and review of the literature. Acta Neuropathol (Berl) 2006; 111: 197–212CrossRefGoogle Scholar
  103. 103.
    Butowski NA, Sneed PK, Chang SM. Diagnosis and treatment of recurrent highgrade astrocytoma. J Clin Oncol 2006; 24: 1273–80PubMedCrossRefGoogle Scholar
  104. 104.
    Saito R, Krauze MT, Noble CO, et al. Tissue affinity of the infusate affects the distribution volume during convection-enhanced delivery into rodent brains: implications for local drug delivery. J Neurosci Methods 2006; 154: 225–32PubMedCrossRefGoogle Scholar
  105. 105.
    Romer J, Curran T. Targeting medulloblastoma: small-molecule inhibitors of the sonic hedgehog pathway as potential cancer therapeutics. Cancer Res 2005; 65: 4975–8PubMedCrossRefGoogle Scholar
  106. 106.
    Gabay L, Lowell S, Rubin LL, et al. Deregulation of dorsoventral patterning by FGF confers trilineage differentiation capacity on CNS stem cells in vitro. Neuron 2003; 40: 485–99PubMedCrossRefGoogle Scholar
  107. 107.
    Kabbinavar F, Hurwitz HI, Fehrenbacher L, et al. Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J Clin Oncol 2003; 21: 60–5PubMedCrossRefGoogle Scholar
  108. 108.
    Robert F, Blumenschein G, Herbst RS, et al. Phase I/IIa study of cetuximab with gemcitabine plus carboplatin in patients with chemotherapy-naive advanced non-small-cell lung cancer. J Clin Oncol 2005; 23: 9089–96PubMedCrossRefGoogle Scholar
  109. 109.
    Bonner JA, Harari PM, Giralt J, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 2006; 354: 567–78PubMedCrossRefGoogle Scholar
  110. 110.
    Pfister DG, Su YB, Kraus DH, et al. Concurrent cetuximab, cisplatin, and concomitant boost radiotherapy for locoregionally advanced, squamous cell head and neck cancer: a pilot phase II study of a new combined-modality paradigm. J Clin Oncol 2006; 24: 1072–8PubMedCrossRefGoogle Scholar
  111. 111.
    Jubb AM, Hurwitz HI, Bai W, et al. Impact of vascular endothelial growth factor-A expression, thrombospondin-2 expression, and microvessel density on the treatment effect of bevacizumab in metastatic colorectal cancer. J Clin Oncol 2006; 24: 217–27PubMedCrossRefGoogle Scholar
  112. 112.
    Brown ER, Shepherd FA. Erlotinib in the treatment of non-small cell lung cancer. Expert Rev Anticancer Ther 2005; 5: 767–75PubMedCrossRefGoogle Scholar
  113. 113.
    Smith J. Erlotinib: small-molecule targeted therapy in the treatment of non-small-cell lung cancer. Clin Ther 2005; 27: 1513–34PubMedCrossRefGoogle Scholar
  114. 114.
    Rich JN, Reardon DA, Peery T, et al. Phase II trial of gefitinib in recurrent glioblastoma. J Clin Oncol 2004; 22: 133–42PubMedCrossRefGoogle Scholar
  115. 115.
    Lassman AB, Rossi MR, Razier JR, et al. Molecular study of malignant gliomas treated with epidermal growth factor receptor inhibitors: tissue analysis from North American brain tumor consortium trials 01–03 and 00–01. Clin Cancer Res 2005; 11: 7841–50PubMedCrossRefGoogle Scholar
  116. 116.
    Mellinghoff IK, Wang MY, Vivanco I, et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 2005; 353: 2012–24PubMedCrossRefGoogle Scholar
  117. 117.
    Reardon DA, Quinn JA, Vredenburgh JJ, et al. Phase 1 trial of gefitinib plus sirolimus in adults with recurrent malignant glioma. Clin Cancer Res 2006; 12(3 Pt 1): 860–8PubMedCrossRefGoogle Scholar
  118. 118.
    Reardon DA, Egorin MJ, Quinn JA, et al. Phase II study of imatinib mesylate plus hydroxyurea in adults with recurrent glioblastoma multiforme. J Clin Oncol 2005; 23: 9359–68PubMedCrossRefGoogle Scholar
  119. 119.
    Geng L, Shinohara ET, Kim D, et al. STI571 (Gleevec) improves tumor growth delay and survival in irradiated mouse models of glioblastoma. Int J Radiat Oncol Biol Phys 2006; 64: 263–71PubMedCrossRefGoogle Scholar
  120. 120.
    Dai H, Marbach P, Lemaire M, et al. Distribution of STI-571 to the brain is limited by P-glycoprotein-mediated efflux. J Pharmacol Exp Ther 2003; 304: 1085–92PubMedCrossRefGoogle Scholar
  121. 121.
    Wolff NC, Richardson JA, Egorin M, et al. The CNS is a sanctuary for leukemic cells in mice receiving imatinib mesylate for Bcr/Abl-induced leukemia. Blood 2003; 101: 5010–3PubMedCrossRefGoogle Scholar
  122. 122.
    Senior K. Gleevec does not cross blood-brain barrier. Lancet Oncol 2003; 4: 198PubMedCrossRefGoogle Scholar
  123. 123.
    Geoerger B, Kerr K, Tang CB, et al. Antitumor activity of the rapamycin analog CCI-779 in human primitive neuroectodermal tumor/medulloblastoma models as single agent and in combination chemotherapy. Cancer Res 2001; 61: 1527–32PubMedGoogle Scholar
  124. 124.
    Dudkin L, Dilling MB, Cheshire PJ, et al. Biochemical correlates of mTOR inhibition by the rapamycin ester CCI-779 and tumor growth inhibition. Clin Cancer Res 2001; 7: 1758–64PubMedGoogle Scholar
  125. 125.
    Xu G, Zhang W, Bertram P, et al. Pharmacogenomic profiling of the PI3K/PTEN-AKT-mTOR pathway in common human tumors. Int J Oncol 2004; 24: 893–900PubMedGoogle Scholar
  126. 126.
    Newton HB. Molecular neuro-oncology and development of targeted therapeutic strategies for brain tumors: part 2. PI3K/Akt/PTEN, mTOR, SHH/PTCH and angiogenesis. Expert Rev Anticancer Ther 2004; 4: 105–28PubMedCrossRefGoogle Scholar
  127. 127.
    Hu X, Pandolfi PP, Li Y, et al. mTOR promotes survival and astrocytic characteristics induced by Pten/AKT signaling in glioblastoma. Neoplasia 2005; 7: 356–68PubMedCrossRefGoogle Scholar
  128. 128.
    Galanis E, Buckner JC, Maurer MJ, et al. Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J Clin Oncol 2005; 23: 5294–304PubMedCrossRefGoogle Scholar
  129. 129.
    Feldkamp MM, Lau N, Guha A. Growth inhibition of astrocytoma cells by farnesyl transferase inhibitors is mediated by a combination of anti-proliferative, proapoptotic and anti-angiogenic effects. Oncogene 1999; 18: 7514–26PubMedCrossRefGoogle Scholar
  130. 130.
    Pollack IF, Bredel M, Erff M, et al. Inhibition of Ras and related guanosine triphosphate-dependent proteins as a therapeutic strategy for blocking malignant glioma growth: II. Preclinical studies in a nude mouse model. Neurosurgery 1999; 45: 1208–14PubMedCrossRefGoogle Scholar
  131. 131.
    Glass TL, Liu TJ, Yung WK. Inhibition of cell growth in human glioblastoma cell lines by farnesyltransferase inhibitor SCH66336. Neuro-oncol 2000; 2: 151–8PubMedGoogle Scholar
  132. 132.
    Feldkamp MM, Lau N, Roncari L, et al. Isotype-specific Ras.GTP-levels predict the efficacy of farnesyl transferase inhibitors against human astrocytomas regardless of Ras mutational status. Cancer Res 2001; 61: 4425–31PubMedGoogle Scholar
  133. 133.
    End DW, Smets G, Todd AV, et al. Characterization of the antitumor effects of the selective farnesyl protein transferase inhibitor R115777 in vivo and in vitro. Cancer Res 2001; 61: 131–7PubMedGoogle Scholar
  134. 134.
    Basso AD, Mirza A, Liu G, et al. The farnesyl transferase inhibitor (FTI) SCH66336 (lonafarnib) inhibits Rheb farnesylation and mTOR signaling: role in FTI enhancement of taxane and tamoxifen anti-tumor activity. J Biol Chem 2005; 280: 31101–8PubMedCrossRefGoogle Scholar
  135. 135.
    Swift P. Novel techniques in the delivery of radiation in pediatric oncology. Pediatr Clin North Am 2002; 49: 1107–29PubMedCrossRefGoogle Scholar
  136. 136.
    Tremont-Lukats IW, Gilbert MR. Advances in molecular therapies in patients with brain tumors. Cancer Control 2003; 10: 125–37PubMedGoogle Scholar
  137. 137.
    Butowski N, Chang SM. Small molecule and monoclonal antibody therapies in neurooncology. Cancer Control 2005; 12: 116–24PubMedGoogle Scholar
  138. 138.
    Zhu Z, Hattori K, Zhang H, et al. Inhibition of human leukemia in an animal model with human antibodies directed against vascular endothelial growth factor receptor 2: correlation between antibody affinity and biological activity. Leukemia 2003; 17: 604–11PubMedCrossRefGoogle Scholar
  139. 139.
    Mellstedt H. Monoclonal antibodies in human cancer. Drugs Today 2003; 39Suppl. C: 1–16PubMedGoogle Scholar
  140. 140.
    Hinoda Y, Sasaki S, Ishida T, et al. Monoclonal antibodies as effective therapeutic agents for solid tumors. Cancer Sci 2004; 95: 621–5PubMedCrossRefGoogle Scholar
  141. 141.
    Stern M, Herrmann R. Overview of monoclonal antibodies in cancer therapy: present and promise. Crit Rev Oncol Hematol 2005; 54: 11–29PubMedCrossRefGoogle Scholar
  142. 142.
    Tanner JE. Designing antibodies for oncology. Cancer Metastasis Rev 2005; 24: 585–98PubMedCrossRefGoogle Scholar
  143. 143.
    Adams GP, Weiner LM. Monoclonal antibody therapy of cancer. Nat Biotechnol 2005; 23: 1147–57PubMedCrossRefGoogle Scholar
  144. 144.
    Wedam SB, Low JA, Yang SX, et al. Antiangiogenic and antitumor effects of bevacizumab in patients with inflammatory and locally advanced breast cancer. J Clin Oncol 2006; 24: 769–77PubMedCrossRefGoogle Scholar
  145. 145.
    Maloney DG. Immunotherapy for non-Hodgkin’s lymphoma: monoclonal antibodies and vaccines. J Clin Oncol 2005; 23: 6421–8PubMedCrossRefGoogle Scholar
  146. 146.
    Wikstrand CJ, Hale LP, Batra SK, et al. Monoclonal antibodies against EGFRvIII are tumor specific and react with breast and lung carcinomas and malignant gliomas. Cancer Res 1995; 55: 3140–8PubMedGoogle Scholar
  147. 147.
    Wikstrand CJ, Cokgor I, Sampson JH, et al. Monoclonal antibody therapy of human gliomas: current status and future approaches. Cancer Metastasis Rev 1999; 18: 451–64PubMedCrossRefGoogle Scholar
  148. 148.
    Mishima K, Johns TG, Luwor RB, et al. Growth suppression of intracranial xenografted glioblastomas overexpressing mutant epidermal growth factor receptors by systemic administration of monoclonal antibody (mAb) 806, a novel monoclonal antibody directed to the receptor. Cancer Res 2001; 61: 5349–54PubMedGoogle Scholar
  149. 149.
    Stragliotto G, Vega F, Stasiecki P, et al. Multiple infusions of anti-epidermal growth factor receptor (EGFR) monoclonal antibody (EMD 55,900) in patients with recurrent malignant gliomas. Eur J Cancer 1996; 32A: 636–40PubMedCrossRefGoogle Scholar
  150. 150.
    Crombet T, Torres O, Rodriguez V, et al. Phase I clinical evaluation of a neutralizing monoclonal antibody against epidermal growth factor receptor in advanced brain tumor patients: preliminary study. Hybridoma 2001; 20: 131–6PubMedCrossRefGoogle Scholar
  151. 151.
    Boiardi A, Eoli M, Salmaggi A, et al. Local drug delivery in recurrent malignant gliomas. Neurol Sci 2005; 26Suppl. 1: S37–9PubMedCrossRefGoogle Scholar
  152. 152.
    Vogelbaum MA. Convection enhanced delivery for the treatment of malignant gliomas: symposium review. J Neurooncol 2005; 73: 57–69PubMedCrossRefGoogle Scholar
  153. 153.
    Schaedel O, Reiter Y. Antibodies and their fragments as anti-cancer agents. Curr Pharm Des 2006; 12: 363–78PubMedCrossRefGoogle Scholar
  154. 154.
    Folkman J. What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 1990; 82: 4–6PubMedCrossRefGoogle Scholar
  155. 155.
    Folkerth RD. Descriptive analysis and quantification of angiogenesis in human brain tumors. J Neurooncol 2000; 50: 165–72PubMedCrossRefGoogle Scholar
  156. 156.
    Huber H, Eggert A, Janss AJ, et al. Angiogenic profile of childhood primitive neuroectodermal brain tumours/medulloblastomas. Eur J Cancer 2001; 37: 2064–72PubMedCrossRefGoogle Scholar
  157. 157.
    Zadeh G, Guha A. Molecular regulators of angiogenesis in the developing nervous system and adult brain tumors. Int J Oncol 2003; 23: 557–65PubMedGoogle Scholar
  158. 158.
    Kieran MW. Anti-angiogenic chemotherapy in central nervous system tumors. Cancer Treat Res 2004; 117: 337–49PubMedCrossRefGoogle Scholar
  159. 159.
    Pavlakovic H, Von Schutz V, Rossler J, et al. Quantification of angiogenesis stimulators in children with solid malignancies. Int J Cancer 2001; 92: 756–60PubMedCrossRefGoogle Scholar
  160. 160.
    Browder T, Folkman J, Hahnfeldt P, et al. Antiangiogenic therapy and p53. Science 2002; 297: 471PubMedCrossRefGoogle Scholar
  161. 161.
    Benouchan M, Colombo BM. Anti-angiogenetic strategies for cancer therapy. Int J Oncol 2005; 27: 563–71PubMedGoogle Scholar
  162. 162.
    Kieran MW, Turner CD, Rubin JB, et al. A feasibility trial of antiangiogenic (metronomic) chemotherapy in pediatric patients with recurrent or progressive cancer. J Pediatr Hematol Oncol 2005; 27: 573–81PubMedCrossRefGoogle Scholar
  163. 163.
    Short SC, Traish D, Dowe A, et al. Thalidomide as an anti-angiogenic agent in relapsed gliomas. J Neurooncol 2001; 51: 41–5PubMedCrossRefGoogle Scholar
  164. 164.
    Tuettenberg J, Grobholz R, Korn T, et al. Continuous low-dose chemotherapy plus inhibition of cyclooxygenase-2 as an antiangiogenic therapy of glioblastoma multiforme. J Cancer Res Clin Oncol 2005; 131: 31–40PubMedCrossRefGoogle Scholar
  165. 165.
    Eskens FA, Dumez H, Hoekstra R, et al. Phase I and pharmacokinetic study of continuous twice weekly intravenous administration of cilengitide (EMD 121974), a novel inhibitor of the integrins alphavbeta3 and alphavbeta5 in patients with advanced solid tumours. Eur J Cancer 2003; 39: 917–26PubMedCrossRefGoogle Scholar
  166. 166.
    Tucker GC. Integrins: molecular targets in cancer therapy. Curr Oncol Rep 2006; 8: 96–103PubMedCrossRefGoogle Scholar
  167. 167.
    Eisen MB, Spellman PT, Brown PO, et al. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 1998; 95: 14863–8PubMedCrossRefGoogle Scholar
  168. 168.
    Zhao H, Ljungberg B, Grankvist K, et al. Gene expression profiling predicts survival in conventional renal cell carcinoma. PLoS Med 2006; 3: e13PubMedCrossRefGoogle Scholar
  169. 169.
    Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 2001; 98: 5116–21PubMedCrossRefGoogle Scholar
  170. 170.
    Meiklejohn CD, Townsend JP. A Bayesian method for analysing spotted microarray data. Brief Bioinform 2005; 6: 318–30PubMedCrossRefGoogle Scholar
  171. 171.
    Mintz MB, Sowers R, Brown KM, et al. An expression signature classifies chemotherapy-resistant pediatric osteosarcoma. Cancer Res 2005; 65: 1748–54PubMedCrossRefGoogle Scholar
  172. 172.
    Motoori M, Takemasa I, Yano M, et al. Prediction of recurrence in advanced gastric cancer patients after curative resection by gene expression profiling. Int J Cancer 2005; 114: 963–8PubMedCrossRefGoogle Scholar
  173. 173.
    Bieche I, Tozlu S, Girault I, et al. Identification of a three-gene expression signature of poor-prognosis breast carcinoma. Mol Cancer 2004; 3: 37PubMedCrossRefGoogle Scholar
  174. 174.
    Reppe S, Stilgren L, Olstad OK, et al. Gene expression profiles give insight into the molecular pathology of bone in primary hyperparathyroidism. Bone 2006; 39: 189–98PubMedCrossRefGoogle Scholar
  175. 175.
    Pomeroy SL, Tamayo P, Gaasenbeek M, et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 2002; 415: 436–42PubMedCrossRefGoogle Scholar
  176. 176.
    MacDonald TJ, Brown KM, LaFleur B, et al. Expression profiling of medulloblastoma: PDGFRA and the RAS/MAPK pathway as therapeutic targets for metastatic disease. Nat Genet 2001; 29: 143–52PubMedCrossRefGoogle Scholar
  177. 177.
    Chopra A, Brown KM, Rood BR, et al. The use of gene expression analysis to gain insights into signaling mechanisms of metastatic medulloblastoma. Pediatr Neurosurg 2003; 39: 68–74PubMedCrossRefGoogle Scholar
  178. 178.
    Albright AL, Wisoff JH, Zeltzer PM, et al. Effects of medulloblastoma resections on outcome in children: a report from the Children’s Cancer Group. Neurosurgery 1996; 38: 265–71PubMedCrossRefGoogle Scholar
  179. 179.
    Jenkin D, Shabanah MA, Shail EA, et al. Prognostic factors for medulloblastoma. Int J Radiat Oncol Biol Phys 2000; 47: 573–84PubMedCrossRefGoogle Scholar
  180. 180.
    Park PC, Taylor MD, Mainprize TG, et al. Transcriptional profiling of medulloblastoma in children. J Neurosurg 2003; 99: 534–41PubMedCrossRefGoogle Scholar
  181. 181.
    Fernandez-Teijeiro A, Betensky RA, Sturla LM, et al. Combining gene expression profiles and clinical parameters for risk stratification in medulloblastomas. J Clin Oncol 2004; 22: 994–8PubMedCrossRefGoogle Scholar
  182. 182.
    Neben K, Korshunov A, Benner A, et al. Microarray-based screening for molecular markers in medulloblastoma revealed STK15 as independent predictor for survival. Cancer Res 2004; 64: 3103–11PubMedCrossRefGoogle Scholar
  183. 183.
    Mendrzyk F, Radlwimmer B, Joos S, et al. Genomic and protein expression profiling identifies CDK6 as novel independent prognostic marker in medulloblastoma. J Clin Oncol 2005; 23: 8853–62PubMedCrossRefGoogle Scholar
  184. 184.
    Goodrich LV, Milenkovic L, Higgins KM, et al. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 1997; 277: 1109–13PubMedCrossRefGoogle Scholar
  185. 185.
    Lee Y, McKinnon PJ. DNA ligase IV suppresses medulloblastoma formation. Cancer Res 2002; 62: 6395–9PubMedGoogle Scholar
  186. 186.
    Wetmore C, Eberhart DE, Curran T. Loss of p53 but not ARF accelerates medulloblastoma in mice heterozygous for patched. Cancer Res 2001; 61: 513–6PubMedGoogle Scholar
  187. 187.
    Lee Y, Miller HL, Jensen P, et al. A molecular fingerprint for medulloblastoma. Cancer Res 2003; 63: 5428–37PubMedGoogle Scholar
  188. 188.
    Kappler R, Hess I, Schlegel J, et al. Transcriptional up-regulation of Gadd45a in patched-associated medulloblastoma. Int J Oncol 2004; 25: 113–20PubMedGoogle Scholar
  189. 189.
    Oliver TG, Read TA, Kessler JD, et al. Loss of patched and disruption of granule cell development in a pre-neoplastic stage of medulloblastoma. Development 2005; 132: 2425–39PubMedCrossRefGoogle Scholar
  190. 190.
    Oliver TG, Grasfeder LL, Carroll AL, et al. Transcriptional profiling of the sonic hedgehog response: a critical role for N-myc in proliferation of neuronal precursors. Proc Natl Acad Sci U S A 2003; 100: 7331–6PubMedCrossRefGoogle Scholar
  191. 191.
    Ball CA, Sherlock G, Parkinson H, et al. Standards for microarray data. Science 2002; 298: 539PubMedCrossRefGoogle Scholar
  192. 192.
    Nutt CL, Mani DR, Betensky RA, et al. Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res 2003; 63: 1602–7PubMedGoogle Scholar
  193. 193.
    Freije WA, Castro-Vargas FE, Fang Z, et al. Gene expression profiling of gliomas strongly predicts survival. Cancer Res 2004; 64: 6503–10PubMedCrossRefGoogle Scholar
  194. 194.
    Mischel PS, Cloughesy TF, Nelson SF. DNA-microarray analysis of brain cancer: molecular classification for therapy. Nat Rev Neurosci 2004; 5: 782–92PubMedCrossRefGoogle Scholar
  195. 195.
    Staunton JE, Slonim DK, Coller HA, et al. Chemosensitivity prediction by transcriptional profiling. Proc Natl Acad Sci U S A 2001; 98: 10787–92PubMedCrossRefGoogle Scholar
  196. 196.
    Wallqvist A, Rabow AA, Shoemaker RH, et al. Establishing connections between microarray expression data and chemotherapeutic cancer pharmacology. Mol Cancer Ther 2002; 1: 311–20PubMedGoogle Scholar
  197. 197.
    Dan S, Tsunoda T, Kitahara O, et al. An integrated database of chemosensitivity to 55 anticancer drugs and gene expression profiles of 39 human cancer cell lines. Cancer Res 2002; 62: 1139–47PubMedGoogle Scholar
  198. 198.
    Musumarra G, Barresi V, Condorelli DF, et al. A bioinformatic approach to the identification of candidate genes for the development of new cancer diagnostics. Biol Chem 2003; 384: 321–7PubMedCrossRefGoogle Scholar
  199. 199.
    Wittig R, Nessling M, Will RD, et al. Candidate genes for cross-resistance against DNA-damaging drugs. Cancer Res 2002; 62: 6698–705PubMedGoogle Scholar
  200. 200.
    Reinhold WC, Kouros-Mehr H, Kohn KW, et al. Apoptotic susceptibility of cancer cells selected for camptothecin resistance: gene expression profiling, functional analysis, and molecular interaction mapping. Cancer Res 2003; 63: 1000–11PubMedGoogle Scholar
  201. 201.
    Boon K, Edwards JB, Siu IM, et al. Comparison of medulloblastoma and normal neural transcriptomes identifies a restricted set of activated genes. Oncogene 2003; 22: 7687–94PubMedCrossRefGoogle Scholar
  202. 202.
    Vassal G, Merlin JL, Terrier-Lacombe MJ, et al. In vivo antitumor activity of S16020, a topoisomerase II inhibitor, and doxorubicin against human brain tumor xenografts. Cancer Chemother Pharmacol 2003; 51: 385–94PubMedGoogle Scholar
  203. 203.
    Calabrese C, Frank A, Maclean K, et al. Medulloblastoma sensitivity to 17-ally-lamino-17-demethoxygeldanamycin requires MEK/ERKM. J Biol Chem 2003; 278: 24951–9PubMedCrossRefGoogle Scholar
  204. 204.
    Gilbertson RJ, Pearson AD, Perry RH, et al. Prognostic significance of the cerbB-2 oncogene product in childhood medulloblastoma. Br J Cancer 1995; 71: 473–7PubMedCrossRefGoogle Scholar
  205. 205.
    Hernan R, Fasheh R, Calabrese C, et al. ERBB2 up-regulates S100A4 and several other prometastatic genes in medulloblastoma. Cancer Res 2003; 63: 140–8PubMedGoogle Scholar
  206. 206.
    Barone G, Maurizi P, Tamburrini G, et al. Role of temozolomide in pediatric brain tumors. Childs Nerv Syst 2006; 22: 652–61PubMedCrossRefGoogle Scholar
  207. 207.
    Pomeroy SL, Sturla LM. Molecular biology of medulloblastoma therapy. Pediatr Neurosurg 2003; 39: 299–304PubMedCrossRefGoogle Scholar
  208. 208.
    Piedimonte LR, Wailes IK, Weiner HL. Medulloblastoma: mouse models and novel targeted therapies based on the sonic hedgehog pathway. Neurosurg Focus 2005; 19: E8PubMedCrossRefGoogle Scholar
  209. 209.
    Dakubo GD, Mazerolle CJ, Wallace VA. Expression of Notch and Wnt pathway components and activation of Notch signaling in medulloblastomas from heterozygous patched mice. J Neurooncol 2006; 79: 221–7PubMedCrossRefGoogle Scholar
  210. 210.
    Thompson MC, Fuller C, Hogg TL, et al. Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J Clin Oncol 2006; 24: 1924–31PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2007

Authors and Affiliations

  • Iacopo Sardi
    • 1
  • Duccio Cavalieri
    • 2
  • Maura Massimino
    • 3
  1. 1.Department of Pediatrics, Onco-hematology and Neuro-surgery UnitsUniversity of Florence Medical School at the A. Meyer Children’s HospitalFlorenceItaly
  2. 2.Department of Pharmacology ‘M. Aiazzi Mancini’University of FlorenceFlorenceItaly
  3. 3.Department of Pediatric OncologyIstituto Nazionale TumoriMilanItaly

Personalised recommendations