Pediatric Drugs

, Volume 8, Issue 3, pp 151–165 | Cite as

Necrotizing Enterocolitis

A Practical Guide to its Prevention and Management
Therapy In Practice


Neonatal necrotizing enterocolitis is the second most common cause of morbidity in premature infants and requires intensive care over an extended period. Despite advances in medical and surgical techniques, the mortality and long-term morbidity due to necrotizing enterocolitis remain very high.

Recent advances have shifted the attention of researchers from the classic triad (ischemia, bacteria, and the introduction of a metabolic substrate into the intestine) of necrotizing enterocolitis, to gut maturation, feeding practices, and inflammation. The focus on inflammation includes proinflammatory cytokines such as tumor necrosis factor-α, interleukin (IL)-6, IL-18, and platelet-activating factor. Research related to the etiology of necrotizing enterocolitis has moved quickly from clostridial toxin to bacterial and other infectious agents. More recently, the pattern of bacterial colonization has been given emphasis rather than the particular species or strain of bacteria or their virulence. Gram-negative bacteria that form part of the normal flora are now speculated as important factors in triggering the injury process in a setting where there is a severe paucity of bacterial species and possible lack of protective Gram-positive organisms. Although the incidence of necrotizing enterocolitis has increased because of the survival of low birthweight infants, clinicians are more vigilant in their detection of the early gastrointestinal symptoms of necrotizing enterocolitis; however, radiographic demonstration of pneumatosis intestinalis remains the hallmark of necrotizing enterocolitis. With prompt diagnosis, a large proportion of infants with necrotizing enterocolitis are now able to be managed medically with intravenous fluid and nutrition, nasogastric suction, antibacterials, and close monitoring of physiologic parameters. In the advanced cases that require surgery, clinicians tend to opt for either simple peritoneal drainage (for very small and sick infants) or laparotomy and resection of the affected part. Intestinal transplantation later in life is available as a viable option for those who undergo resection of large segments of the intestine.

It is becoming more evident that treatment of this devastating disease is expensive and comes with the toll of significant long-term sequelae. This has resulted in renewed interest in designing alternative strategies to prevent this serious gastrointestinal disease. Simple trophic feeding and the use of L-glutamine and arginine are novel avenues that have been examined. The use of probiotics (‘friendly’ bacterial flora) has been introduced as a promising tool for establishing healthy bacterial flora in the newborn gut to block the injury process that may ultimately lead to necrotizing enterocolitis.



No sources of funding were used to assist in the preparation of this review. The author has no conflicts of interest that are directly relevant to the content of this review.


  1. 1.
    Kanto Jr WP, Hunter JE, Stoll BJ. Recognition and medical management of necrotizing enterocolitis. In: Stoll B, Kliegman RM, editors. Clinics in perinatology (necrotizing enterocolitis). Philadelphia (PA): W.B. Saunders Company, 1994: 21 (2): 335–46Google Scholar
  2. 2.
    Generisch A. Bauchfellentzundung beim neugeborenen in folge von perforation des ileums. Virchows Arch Path Anat 1891; 126: 485Google Scholar
  3. 3.
    Paltauf A. Die spontane dickdarm ruptur der neugeborenen. Virchows Arch Path Anat 1888; 111: 461Google Scholar
  4. 4.
    Santulli TV, Schullinger JN, Heird WC, et al. Acute necrotizing enterocolitis in infancy: a review of 64 cases. Pediatrics 1975; 55(3): 376–87PubMedGoogle Scholar
  5. 5.
    Mizzahi A, Barlow O, Berdon W, et al. Necrotizing enterocolitis in premature infants. J Pediatr 1965; 66: 697–705CrossRefGoogle Scholar
  6. 6.
    Wilson R, Kanto W, McCarthy BJ, et al. Epidemiologic characteristics of necrotizing enterocolitis: a population-based study. Am J Epidemiol 1981; 114: 880–7PubMedGoogle Scholar
  7. 7.
    Uauy RD, Fanaroff A, Korones SB, et al. Necrotizing enterocolitis in very low birthweight infants: Biodemographics and clinical correlates. J Pediatr 1991; 119: 630–8PubMedCrossRefGoogle Scholar
  8. 8.
    Stoll BJ, Kanto WP, Glass RI, et al. Epidemiology of necrotizing enterocolitis: a case control study. J Pediatr 1980; 96: 447–51PubMedCrossRefGoogle Scholar
  9. 9.
    Holman RC, Stoll BJ, Clarke MJ, et al. The epidemiology of necrotizing enterocolitis infant mortality in the United States. Am J Pub Health 1997; 87(12): 2026–31CrossRefGoogle Scholar
  10. 10.
    Kliegman RM, Walker WA, Yolken RH. Necrotizing enterocolitis: research agenda for a disease of unknown etiology and pathogenesis. Pediatr Res 1993; 34(6): 701–8PubMedCrossRefGoogle Scholar
  11. 11.
    Hack M, Wright L, Shankaran S, et al. Very low birth weight outcomes of the NICHD neonatal network, November 1989 to October 1990. Am J Obstet Gynecol 1995 Feb; 172 (2 Pt 1): 457–64PubMedCrossRefGoogle Scholar
  12. 12.
    Touloukian RJ, Berdon WE, Amoury RA, et al. Surgical experience with necrotizing enterocolitis in the infant. J Pediatr Surg 1967; 2: 389–401CrossRefGoogle Scholar
  13. 13.
    Lloyd J. The etiology of gastrointestinal perforations in the newborn. J Pediatr Surg 1969; 4: 77–84PubMedCrossRefGoogle Scholar
  14. 14.
    Kliegman R, Fanaroff A. Necrotizing enterocolitis. N Engl J Med 1984; 310: 1093–103PubMedCrossRefGoogle Scholar
  15. 15.
    Bauer CR, Morrison JC, Poole WK, et al. A decreased incidence of necrotizing enterocolitis after prenatal glucocorticoid therapy. Pediatrics 1984; 73(5): 682–8PubMedGoogle Scholar
  16. 16.
    Halac E, Halac J, Begue EF, et al. Prenatal and postnatal corticosteroid therapy to prevent neonatal necrotizing enterocolitis: a controlled trial. J Pediatr 1990; 117 (1 Pt 1): 132–8PubMedCrossRefGoogle Scholar
  17. 17.
    Israel EJ. Neonatal necrotizing enterocolitis, a disease of the immature intestinal mucosal barrier. Acta Pediatr Suppl 1994; 396: 27–32CrossRefGoogle Scholar
  18. 18.
    Israel EJ, Schiffrin EJ, Carter EA, et al. Prevention of necrotizing enterocolitis in the rat with prenatal cortisone. Gastroenterology 1990; 99(5): 1333–8PubMedGoogle Scholar
  19. 19.
    Israel EJ, Schiffrin EJ, Carter EA, et al. Cortisone strengthens the intestinal mucosal barrier in a rodent necrotizing enterocolitis model. Adv Exp Med Biol 1991; 310: 375–80PubMedCrossRefGoogle Scholar
  20. 20.
    Mannick E, Udall Jr JN. Neonatal gastrointestinal mucosal immunity. Clin Perinatol 1996; 23(2): 287–304PubMedGoogle Scholar
  21. 21.
    Wonodi A, Braileanu G, Panigrahi P. Effects of Gram negative bacteria and Lactobacillus plantarum on the expression of ZO-1 and occluding in Caco-2 cells [abstract]. Peds Res Suppl 2003; 53(4): 392AGoogle Scholar
  22. 22.
    Udall Jr JN. Gastrointestinal host defense and necrotizing enterocolitis. J Pediatr 1990; 117 (1 Pt 2): S33–43PubMedCrossRefGoogle Scholar
  23. 23.
    Udall JN, Pang K, Fritze L, et al. Development of gastrointestinal mucosal barrier: I. The effect of age on intestinal permeability to macromolecules. Pediatr Res 1981; 15(3): 241–4PubMedCrossRefGoogle Scholar
  24. 24.
    Insoft RM, Sanderson IR, Walker WA. Development of immune function in the intestine and its role in neonatal diseases. Pediatr Clin North Am 1996; 43(2): 551–71PubMedCrossRefGoogle Scholar
  25. 25.
    Granger H, Nyhof RA. Dynamics of intestinal oxygenation: interactions between oxygen supply and uptake. Am J Physiol 1982; 243: G91–6PubMedGoogle Scholar
  26. 26.
    Shepherd A, Granger J. Autoregulatory escape in the gut: a systems analysis. Gastroenterology 1973; 65: 77–91PubMedGoogle Scholar
  27. 27.
    Herbst JJ, Koldovsky O. Cell migration and cortisone induction of sucrase activity in jejunum and ileum. Biochem J 1972; 126(3): 471–6PubMedGoogle Scholar
  28. 28.
    Neu J, Koldovsky O. Nutrient absorption in the preterm neonate. In: Neu J, editor. Clinics in perinatology (neonatal gastroenterology). Philadelphia (PA): W.B. Saunders Company, 1996: 23 (2): 229–43Google Scholar
  29. 29.
    Brown BG, Sweet A. Preventing necrotizing enterocolitis in neonates. JAMA 1978; 240: 2452–4PubMedCrossRefGoogle Scholar
  30. 30.
    La Gamma EF, Ostertag SG, Birenbaum H. Failure of delayed oral feedings to prevent necrotizing enterocolitis: results of study in very-low-birth-weight neonates. Am J Dis Child 1985 Apr; 139(4): 385–9Google Scholar
  31. 31.
    Ostertag SG, LaGamma E, Reisen CE, et al. Early enteral feeding does not affect the incidence of necrotizing enterocolitis. Pediatrics 1986; 77: 275–80PubMedGoogle Scholar
  32. 32.
    Lucas A, Cole TJ. Breast milk and neonatal necrotising enterocolitis. Lancet 1990; 336(8730): 1519–23PubMedCrossRefGoogle Scholar
  33. 33.
    Lucas A, Bloom S, Green A. Gastrointestinal peptides and the adaptation to extrauterine nutrition. Can J Physiol Pharmacol 1985; 63: 527–37PubMedCrossRefGoogle Scholar
  34. 34.
    Berseth CL. Effect of early feeding on maturation of the preterm infant’s small intestine. J Pediatr 1992; 120: 947–53PubMedCrossRefGoogle Scholar
  35. 35.
    Slagle TA, Gross S. Effect of early enteral substrate on subsequent feeding intolerance. J Pediatr 1988; 113: 526–31PubMedCrossRefGoogle Scholar
  36. 36.
    Meetze WH, Valentine C, McGuigan JE, et al. Gastrointestinal priming prior to full enteral nutrition in very low birth weight infants. J Pediatr Gastroenterol Nutr 1992; 15: 163–70PubMedCrossRefGoogle Scholar
  37. 37.
    Wallace E. The radiology of necrotizing enterocolitis. In: Gilchrist BF, editor. Necrotizing enterocolitis, Medical Intelligence Unit 18. Georgetown (TX): Landers Bioscience, 2000: 31–53Google Scholar
  38. 38.
    Guthrie SO, Gordon PV, Thomas V, et al. Necrotizing enterocolitis among neonates in the United States. J Perinatol 2003; 23(4): 278–85PubMedCrossRefGoogle Scholar
  39. 39.
    Kafetzis DA, Skevaki C, Costalos C. Neonatal necrotizing enterocolitis: an overview. Curr Opin Infect Dis 2003; 16(4): 349–55PubMedCrossRefGoogle Scholar
  40. 40.
    Blakey JL, Lubitz L, Campbell NT, et al. Enteric colonization in sporadic neonatal necrotizing enterocolitis. J Pediatr Gastroenterol Nutr 1985; 4(4): 591–5PubMedCrossRefGoogle Scholar
  41. 41.
    Scheifele DW. Role of bacterial toxins in neonatal necrotizing enterocolitis. J Pediatr 1990; 117 (1 Pt 2): S44–6PubMedCrossRefGoogle Scholar
  42. 42.
    Rotbart HA, Levin MJ, Yolken RH, et al. An outbreak of rotavirus-associated neonatal necrotizing enterocolitis. J Pediatr 1983; 103(3): 454–9PubMedCrossRefGoogle Scholar
  43. 43.
    Karlowicz MG. Risk factors associated with fungal peritonitis in very low birth weight neonates with severe necrotizing enterocolitis: a case-control study. Pediatr Infect Dis J 1993; 12(7): 574–7PubMedCrossRefGoogle Scholar
  44. 44.
    Clark DA, Miller MJ. Intraluminal pathogenesis of necrotizing enterocolitis. J Pediatr 1990; 117 (1 Pt 2): S64–7PubMedCrossRefGoogle Scholar
  45. 45.
    Bury RG, Tudehope D. Enteral antibiotics for preventing necrotising enterocolitis in low birthweight or preterm infants. Cochrane Database Syst Rev 2000; (2): CD000405Google Scholar
  46. 46.
    Bury RG, Tudehope D. Enteral antibiotics for preventing necrotizing enterocolitis in low birthweight or preterm infants. Cochrane Database Syst Rev 2001; (1): CD000405Google Scholar
  47. 47.
    Davis MW. A review of pigbel (necrotizing enteritis) in Papua New Guinea, 1961–1984. P N G Med J 1985 Jun; 28(2): 78–82Google Scholar
  48. 48.
    Gupta S, Morris Jr JG, Panigrahi P, et al. Endemic necrotizing enterocolitis: lack of association with a specific infectious agent. Pediatr Infect Dis J 1994; 13(8): 728–34PubMedCrossRefGoogle Scholar
  49. 49.
    Panigrahi P, Gupta S, Gewolb IH, et al. Occurrence of necrotizing enterocolitis may be dependent on patterns of bacterial adherence and intestinal colonization: studies in Caco-2 tissue culture and weanling rabbit models. Pediatr Res 1994; 36 (1 Pt 1): 115–21PubMedCrossRefGoogle Scholar
  50. 50.
    Panigrahi P, Bamford P, Horvath K, et al. Escherichia coli transcytosis in a Caco-2 cell model: implications in neonatal necrotizing enterocolitis. Pediatr Res 1996; 40(3): 415–21PubMedCrossRefGoogle Scholar
  51. 51.
    Burns JL, Griffith A, Barry JJ, et al. Transcytosis of gastrointestinal epithelial cells by Escherichia coli K1. Pediatr Res 2001; 49(1): 30–7PubMedCrossRefGoogle Scholar
  52. 52.
    Duffy LC, Zielezny MA, Carrion V, et al. Concordance of bacterial cultures with endotoxin and interleukin-6 in necrotizing enterocolitis. Dig Dis Sci 1997; 42(2): 359–65PubMedCrossRefGoogle Scholar
  53. 53.
    Steffen EK, Berg RD, Deitch EA. Comparison of translocation rates of various indigenous bacteria from the gastrointestinal tract to the mesenteric lymph node. J Infect Dis 1988; 157(5): 1032–8PubMedCrossRefGoogle Scholar
  54. 54.
    Deitch EA. Role of bacterial translocation in necrotizing enterocolitis. Acta Paediatr Suppl 1994; 396: 33–6PubMedCrossRefGoogle Scholar
  55. 55.
    Edelson MB, Bagwell CE, Rozycki HJ. Circulating pro- and counter-inflammatory cytokine levels and severity in necrotizing enterocolitis. Pediatrics 1999; 103 (4 Pt 1): 766–71PubMedCrossRefGoogle Scholar
  56. 56.
    Edelson MB, Sonnino RE, Bagwell CE, et al. Plasma intestinal fatty acid binding protein in neonates with necrotizing enterocolitis: a pilot study. J Pediatr Surg 1999; 34(10): 1453–7PubMedCrossRefGoogle Scholar
  57. 57.
    Halpern MD, Dominguez JA, Dvorakova K, et al. Ileal cytokine dysregulation in experimental necrotizing enterocolitis is reduced by epidermal growth factor. J Pediatr Gastroenterol Nutr 2003; 36(1): 126–33PubMedCrossRefGoogle Scholar
  58. 58.
    Halpern MD, Holubec H, Dominguez JA, et al. Hepatic inflammatory mediators contribute to intestinal damage in necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 2003; 284(4): G695–702PubMedGoogle Scholar
  59. 59.
    Halpern MD, Holubec H, Dominguez JA, et al. Up-regulation of IL-18 and IL-12 in the ileum of neonatal rats with necrotizing enterocolitis. Pediatr Res 2002; 51(6): 733–9PubMedCrossRefGoogle Scholar
  60. 60.
    Harris MC, Costarino Jr AT, Sullivan JS, et al. Cytokine elevations in critically ill infants with sepsis and necrotizing enterocolitis. J Pediatr 1994; 124(1): 105–11PubMedCrossRefGoogle Scholar
  61. 61.
    Morecroft JA, Spitz L, Hamilton PA, et al. Plasma cytokine levels in necrotizing enterocolitis. Acta Paediatr Suppl 1994; 396: 18–20PubMedCrossRefGoogle Scholar
  62. 62.
    Tan X, Hsueh W, Gonzalez-Crussi F. Cellular localization of tumor necrosis factor (TNF)-alpha transcripts in normal bowel and in necrotizing enterocolitis: TNF gene expression by Paneth cells, intestinal eosinophils, and macrophages. Am J Pathol 1993; 142(6): 1858–65PubMedGoogle Scholar
  63. 63.
    Akisu M, Kultursay N, Ozkayin N, et al. Platelet-activating factor levels in term and preterm human milk. Biol Neonate 1998; 74(4): 289–93PubMedCrossRefGoogle Scholar
  64. 64.
    Akisu M, Kullahcioglu Girgin F, Baka M, et al. The role of recombinant human erythropoietin in lipid peroxidation and platelet-activating factor generation in a rat model of necrotizing enterocolitis. Eur J Pediatr Surg 2001; 11(3): 167–72PubMedCrossRefGoogle Scholar
  65. 65.
    Caplan MS, Sun XM, Hsueh W. Hypoxia causes ischemic bowel necrosis in rats: the role of platelet-activating factor (PAF-acether). Gastroenterology 1990; 99(4): 979–86PubMedGoogle Scholar
  66. 66.
    Caplan MS, Sun XM, Hsueh W. Hypoxia, PAF, and necrotizing enterocolitis. Lipids 1991; 26(12): 1340–3PubMedCrossRefGoogle Scholar
  67. 67.
    Caplan MS, Kelly A, Hsueh W. Endotoxin and hypoxia-induced intestinal necrosis in rats: the role of platelet activating factor. Pediatr Res 1992; 31(5): 428–34PubMedCrossRefGoogle Scholar
  68. 68.
    Caplan MS, Hedlund E, Adler L, et al. The platelet-activating factor receptor antagonist WEB 2170 prevents neonatal necrotizing enterocolitis in rats. J Pediatr Gastroenterol Nutr 1997; 24(3): 296–301PubMedCrossRefGoogle Scholar
  69. 69.
    Caplan MS, Lickerman M, Adler L, et al. The role of recombinant platelet-activating factor acetylhydrolase in a neonatal rat model of necrotizing enterocolitis. Pediatr Res 1997; 42(6): 779–83PubMedCrossRefGoogle Scholar
  70. 70.
    Ewer AK. Role of platelet-activating factor in the pathophysiology of necrotizing enterocolitis. Acta Paediatr Suppl 2002; 91(437): 2–5PubMedCrossRefGoogle Scholar
  71. 71.
    Furukawa M, Lee EL, Johnston JM. Platelet-activating factor-induced ischemic bowel necrosis: the effect of platelet-activating factor acetylhydrolase. Pediatr Res 1993; 34(2): 237–41PubMedCrossRefGoogle Scholar
  72. 72.
    MacKendrick W, Hill N, Hsueh W, et al. Increase in plasma platelet-activating factor levels in enterally fed preterm infants. Biol Neonate 1993; 64(2–3): 89–95PubMedGoogle Scholar
  73. 73.
    Muguruma K, Gray PW, Tjoelker LW, et al. The central role of PAF in necrotizing enterocolitis development. Adv Exp Med Biol 1997; 407: 379–82PubMedGoogle Scholar
  74. 74.
    Rabinowitz SS, Dzakpasu P, Piecuch S, et al. Platelet-activating factor in infants at risk for necrotizing enterocolitis. J Pediatr 2001; 138(1): 81–6PubMedCrossRefGoogle Scholar
  75. 75.
    Hsueh W, Caplan MS, Qu XW, et al. Neonatal necrotizing enterocolitis: clinical considerations and pathogenetic concepts. Pediatr Dev Pathol 2003; 6(1): 6–23PubMedCrossRefGoogle Scholar
  76. 76.
    Claud EC, Savidge T, Walker WA. Modulation of human intestinal epithelial cell IL-8 secretion by human milk factors. Pediatr Res 2003; 53(3): 419–25PubMedCrossRefGoogle Scholar
  77. 77.
    Morecroft JA, Spitz L, Hamilton PA, et al. Necrotizing enterocolitis: multisystem organ failure of the newborn? Acta Paediatr Suppl 1994; 396: 21–3PubMedCrossRefGoogle Scholar
  78. 78.
    Schullinger J, Mollitt DL, Vincur CD, et al. Neonatal necrotizing enterocolitis: survival, management, and complications: a 25 year study. Am J Dis Child 1981; 135: 612–4PubMedGoogle Scholar
  79. 79.
    Bell MJ, Ternberg JL, Feigin RD, et al. An experimental study of acute neonatal necrotizing enterocolitis: therapeutic decisions based upon clinical staging. Ann Surg 1978; 187: 1–7PubMedCrossRefGoogle Scholar
  80. 80.
    Walsh MA, Kliegman RM. Treatment based on staging criteria. Pediatr Clin North Am 1986; 33: 179–201PubMedGoogle Scholar
  81. 81.
    Walsh MC, Kliegman R, Fanaroff AA. Necrotizing enterocolitis: a practitioner’s perspective. Pediatr Rev 1988; 9: 219–26PubMedCrossRefGoogle Scholar
  82. 82.
    Young TE, Mangum B, editors. Neofax. Raleigh (NC): Acorn Publishing Inc., 2005Google Scholar
  83. 83.
    Bethel C. The surgery of necrotizing enterocolitis. In: Gilchrist BF, editor. Necrotizing enterocolitis, Medical Intelligence Unit 18. Georgetown (TX): Landers Bioscience, 2000: 63–8Google Scholar
  84. 84.
    Ein SH, Marshall D, Girvan D. Peritoneal drainage under local anesthesia for necrotizing enterocolitis. J Pediatr Surg 1977; 12: 963–7PubMedCrossRefGoogle Scholar
  85. 85.
    Lessin M. The medical and ICU management of necrotizing enterocolitis. In: Gilchrist BF, editor. Necrotizing enterocolitis. Georgetown (WA): and Landers Bioscience, 2000: 55–61Google Scholar
  86. 86.
    Ein SH, Shandling B, Wesson D, et al. A 13-year experience with peritoneal drainage under local anesthesia for necrotizing enterocolitis perforation. J Pediatr Surg 1990; 25(10): 1034–6PubMedCrossRefGoogle Scholar
  87. 87.
    Morgan LJ, Shochat S, Hartman GE. Peritoneal drainage as primary management of perforated NEC in the very low birth weight infant. J Pediatr Surg 1994; 29: 310–5PubMedCrossRefGoogle Scholar
  88. 88.
    Lessin MS, Luks F, Wesselhoeft CW, et al. Peritoneal drainage as definitive treatment for intestinal perforations in infants with extremely low birth weight (<750g). J Pediatr Surg 1998; 33: 370–2PubMedCrossRefGoogle Scholar
  89. 89.
    Ade-Ajayi N, Kiely E, Drake D, et al. Resection and primary anastomosis in necrotizing enterocolitis. J R Soc Med 1996; 89(7): 385–8PubMedGoogle Scholar
  90. 90.
    Gilchrist BF. Preface. In: Gilchrist BF, editor. Necrotizing enterocolitis, Medical Intelligence Unit 18. Georgetown (TX): Landers Bioscience, 2000Google Scholar
  91. 91.
    Gilchrist B. Afterword. In: Gilchrist BF, editor. Necrotizing enterocolitis, Medical Intelligence Unit 18. Georgetown (TX): Landers Bioscience, 2000Google Scholar
  92. 92.
    Tapia JL, Ramirez R, Cifuentes J, et al. The effect of early dexamethasone administration on bronchopulmonary dysplasia in preterm infants with respiratory distress syndrome. J Pediatr 1998; 132(1): 48–52PubMedCrossRefGoogle Scholar
  93. 93.
    Goldman HI. Feeding and necrotizing enterocolitis. Am J Dis Child 1980; 134(6): 553–5PubMedGoogle Scholar
  94. 94.
    McKeown RE, Marsh T, Amarnath U, et al. Role of delayed feeding and of feeding increments in necrotizing enterocolitis. J Pediatr 1992; 121: 764–70PubMedCrossRefGoogle Scholar
  95. 95.
    Book LS, Herbst J, Jung AL. Comparison of fast and slow feeding rate schedules to the development of necrotizing enterocolitis. J Pediatr 1976; 89: 463–6PubMedCrossRefGoogle Scholar
  96. 96.
    Willis DM, Chabot J, Radde IC, et al. Unsuspected hyperosmolality of oral solutions contributing to necrotizing enterocolitis in very-low-birth-weight infants. Pediatrics 1977 Oct; 60(4): 535–8PubMedGoogle Scholar
  97. 97.
    Grand RJ, Watkins J, Torti FM. Development of the human gastrointestinal tract. Gastroenterology 1976; 70: 790–810PubMedGoogle Scholar
  98. 98.
    Pritchard J. Fetal swallowing and amniotic fluid volume. Obstet Gynecol 1966; 28: 606–10PubMedGoogle Scholar
  99. 99.
    La Gamma EF, Browne L. Feeding practices for infants weighing less than 1500g at birth and the pathogenesis of necrotizing enterocolitis. Clin Perinatal 1994; 21(2): 271–306Google Scholar
  100. 100.
    Berseth C. Neonatal small intestinal motility: motor responses to feeding in term and preterm infants. J Pediatr 1990; 117: 777–82PubMedCrossRefGoogle Scholar
  101. 101.
    Berseth CL, Nordyke C, Valdes MD, et al. Response of gastrointestinal peptides and motor activity to milk and water feedings in preterm and term infants. Pediatr Res 1992; 31: 587–90PubMedCrossRefGoogle Scholar
  102. 102.
    Newell S. Enteral feeding of the micropremie. Clin Perinatol 2000; 27(1): 221–34PubMedCrossRefGoogle Scholar
  103. 103.
    McClure R. Trophic feeding of the preterm infant. Acta Paediatr Suppl 2001; 90(436): 19–21PubMedCrossRefGoogle Scholar
  104. 104.
    McClure RJ, Newell SJ. Randomised controlled study of clinical outcome following trophic feeding. Arch Dis Child Fetal Neonatal Ed 2000 Jan; 82(1): F29–33PubMedCrossRefGoogle Scholar
  105. 105.
    McClure RJ, Newell S. Randomized controlled study of digestive enzyme activity following trophic feeding. Acta Paediatr 2002; 3: 292–6CrossRefGoogle Scholar
  106. 106.
    Markowitz JE, Bengmark S. Probiotics in health and disease in the pediatric patient. Pediatr Clin North Am 2002; 49(1): 127–41PubMedCrossRefGoogle Scholar
  107. 107.
    Caplan MS, Jilling T. Neonatal necrotizing enterocolitis: possible role of probiotic supplementation. J Pediatr Gastroenterol Nutr 2000; 30Suppl. 2: S18–22PubMedGoogle Scholar
  108. 108.
    Dai D, Walker WA. Role of bacterial colonization in neonatal necrotizing enterocolitis and its prevention. Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi 1998; 39(6): 357–65PubMedGoogle Scholar
  109. 109.
    Dai D, Walker WA. Protective nutrients and bacterial colonization in the immature human gut. Adv Pediatr 1999; 46: 353–82PubMedGoogle Scholar
  110. 110.
    Dani C, Biadaioli R, Bertini G, et al. Probiotics feeding in prevention of urinary tract infection, bacterial sepsis and necrotizing enterocolitis in preterm infants: a prospective double-blind study. Biol Neonate 2002; 82(2): 103–8PubMedCrossRefGoogle Scholar
  111. 111.
    Hoyos AB. Reduced incidence of necrotizing enterocolitis associated with enteral administration of Lactobacillus acidophilus and Bifidobacterium infantis to neonates in an intensive care unit. Int J Infect Dis 1999; 3(4): 197–202PubMedCrossRefGoogle Scholar
  112. 112.
    Kalliomaki M, Salminen S, Arvilommi H, et al. Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet 2001; 357(9262): 1076–9PubMedCrossRefGoogle Scholar
  113. 113.
    Murch SH. Toll of allergy reduced by probiotics. Lancet 2001; 357(9262): 1057–9PubMedCrossRefGoogle Scholar
  114. 114.
    Noerr B. Current controversies in the understanding of necrotizing enterocolitis: part 1. Adv Neonatal Care 2003; 3(3): 107–20PubMedCrossRefGoogle Scholar
  115. 115.
    Van den Driessche M, Veereman-Wauters G. Functional foods in pediatrics. Acta Gastroenterol Belg 2002; 65(1): 45–51PubMedGoogle Scholar
  116. 116.
    Gewolb IH, Schwalbe R, Taciak VL, et al. Stool microflora in extremely low birthweight infants. Arch Dis Child Fetal Neonatal Ed 1999; 80: 167–73CrossRefGoogle Scholar
  117. 117.
    Agarwal R, Sharma N, Chaudhry R, et al. Effects of oral lactobacillus GG on enteric microflora in low-birth-weight neonates. J Pediatr Gastroenterol Nutr 2003; 36(3): 397–402PubMedCrossRefGoogle Scholar
  118. 118.
    Panigrahi P, Srinivas S, Gewolb IH, et al. Lactobacillus plantarum blocks bacteria-induced tissue injury in a weanling rabbit ileal loop model of necrotizing enterocolitis. Suppl Ped Res 2000; 47(4): 423AGoogle Scholar
  119. 119.
    Caplan MS, Miller-Catchpole R, Kaup S, et al. Bifidobacterial supplementation reduces the incidence of necrotizing enterocolitis in a neonatal rat model. Gastroenterology 1999; 117(3): 577–83PubMedCrossRefGoogle Scholar
  120. 120.
    Butel MJ, Szylit O. Bifidobacteria in necrotizing enterocolitis. Gastroenterology 2000; 118(6): 1280–1PubMedCrossRefGoogle Scholar
  121. 121.
    Butel MJ, Waligora-Dupriet AJ, Szylit O. Oligofructose and experimental model of neonatal necrotising enterocolitis. Br J Nutr 2002; 87 Suppl. 2: 213–9CrossRefGoogle Scholar
  122. 122.
    Catala I, Butel MJ, Bensaada M, et al. Oligofructose contributes to the protective role of bifidobacteria in experimental necrotising enterocolitis in quails. J Med Microbiol 1999; 48(1): 89–94PubMedCrossRefGoogle Scholar
  123. 123.
    Lin HC, Su BH, Chen AC, et al. Oral probiotics reduce the incidence and severity of necrotizing enterocolitis in very low birth weight infants. Pediatrics 2005; 115(1): 1–4PubMedGoogle Scholar
  124. 124.
    Bin-Nun A, Bromiker R, Wilschanski M, et al. Oral probiotics prevent necrotizing enterocolitis in very low birth weight neonates. J Pediatr 2005; 147(2): 192–6PubMedCrossRefGoogle Scholar
  125. 125.
    Neu J, Bernstein H. Update on host defense and immunonutrients. Clin Perinatal 2002; 29(1): 41–64CrossRefGoogle Scholar
  126. 126.
    Becker RM, Wu G, Galanko JA, et al. Reduced serum amino acid concentrations in infants with necrotizing enterocolitis. J Pediatr 2000; 137(6): 785–93PubMedCrossRefGoogle Scholar
  127. 127.
    Potsic B, Holliday N, Lewis P, et al. Glutamine supplementation and deprivation: effect on artificially reared rat small intestinal morphology. Pediatr Res 2002; 52(3): 430–6PubMedCrossRefGoogle Scholar
  128. 128.
    Panigrahi P, Gewolb IH, Bamford P, et al. Role of glutamine in bacterial transcytosis and epithelial cell injury. J Parenter Enteral Nutr 1997 Mar–Apr; 21(2): 75–80CrossRefGoogle Scholar
  129. 129.
    Neu J, Roig J, Meetze WH, et al. Enteral glutamine supplementation for very low birth weight infants decreases morbidity. J Pediatr 1997; 131(5): 691–9PubMedCrossRefGoogle Scholar
  130. 130.
    Vaughn P, Thomas P, Clark R, et al. Enteral glutamine supplementation and morbidity in low birth weight infants. J Pediatr 2003; 142(6): 662–8PubMedCrossRefGoogle Scholar
  131. 131.
    Zamora SA, Amin HJ, McMillan DD, et al. Plasma L-arginine concentrations in premature infants with necrotizing enterocolitis. J Pediatr 1997; 131(2): 226–32PubMedCrossRefGoogle Scholar
  132. 132.
    Amin HJ, Zamora S, McMillan DD, et al. Arginine supplementation prevents necrotizing enterocolitis in the premature infant. J Pediatr 2002; 140(4): 425–31PubMedCrossRefGoogle Scholar
  133. 133.
    Di Lorenzo M, Bass J, Krantis A. Use of L-arginine in the treatment of experimental necrotizing enterocolitis. J Pediatr Surg 1995; 30(2): 235–40PubMedCrossRefGoogle Scholar
  134. 134.
    Akisu M, Ozmen D, Baka M, et al. Protective effect of dietary supplementation with L-arginine and L-carnitine on hypoxia/reoxygenation-induced necrotizing enterocolitis in young mice. Biol Neonate 2002; 81(4): 260–5PubMedCrossRefGoogle Scholar
  135. 135.
    Barlow B, Santulli TV, Heird WC, et al. An experimental study of acute neonatal enterocolitis: the importance of breast milk. J Pediatr Surg 1974; 9(5): 587–95PubMedCrossRefGoogle Scholar
  136. 136.
    Yoshioka H, Iseki K, Fujita K. Development and differences of intestinal flora in the neonatal period in breast-fed and bottle-fed infants. Pediatrics 1983; 72(3): 317–21PubMedGoogle Scholar
  137. 137.
    Cummins AG, Thompson FM. Postnatal changes in mucosal immune response: a physiological perspective of breast feeding and weaning. Immunol Cell Biol 1997; 75(5): 419–29PubMedCrossRefGoogle Scholar
  138. 138.
    Eibl MM, Wolf HM, Furnkranz H, et al. Prevention of necrotizing enterocolitis in low-birth-weight infants by IgA-IgG feeding. N Engl J Med 1988; 319(1): 1–7PubMedCrossRefGoogle Scholar
  139. 139.
    Malik S, Giacoia GP, West K. The use of intravenous immunoglobulin (IVIG) to prevent infections in bronchopulmonary dysplasia: report of a pilot study. J Perinatal 1991; 11(3): 239–44Google Scholar
  140. 140.
    Buescher ES. Host defense mechanisms of human milk and their relations to enteric infections and necrotizing enterocolitis. Clin Perinatol 1994; 21(2): 247–62PubMedGoogle Scholar
  141. 141.
    Grazioso CF, Werner AL, Alling DW, et al. Antiinflammatory effects of human milk on chemically induced colitis in rats. Pediatr Res 1997; 42(5): 639–43PubMedCrossRefGoogle Scholar
  142. 142.
    Groer M, Walker WA. What is the role of preterm breast milk supplementation in the host defenses of preterm infants? Science vs fiction. Adv Pediatr 1996; 43: 335–8PubMedGoogle Scholar
  143. 143.
    Pitt J, Barlow B, Heird WC. Protection against experimental necrotizing enterocolitis by maternal milk: I. Role of milk leukocytes. Pediatr Res 1977; 11(8): 906–9PubMedCrossRefGoogle Scholar
  144. 144.
    Shanahan F. Immunology: therapeutic manipulation of gut flora. Science 2000; 289(5483): 1311–2PubMedCrossRefGoogle Scholar
  145. 145.
    Warner BW. NEC, EGF, milk, and spit. Gastroenterology 2002; 123(1): 383–4PubMedCrossRefGoogle Scholar
  146. 146.
    Shin CE, Falcone JR RA, Stuart L, et al. Diminished epidermal growth factor levels in infants with necrotizing enterocolitis. J Pediatr Surg 2000; 35(2): 173–6PubMedCrossRefGoogle Scholar
  147. 147.
    Podolsky DK. Healing the epithelium: solving the problem from two sides. J Gastroenterol 1997; 32(1): 122–6PubMedCrossRefGoogle Scholar
  148. 148.
    Lawrence JP, Brevetti L, Obiso RJ, et al. Effects of epidermal growth factor and Clostridium difficile toxin B in a model of mucosal injury. J Pediatr Surg 1997; 32(3): 430–3PubMedCrossRefGoogle Scholar
  149. 149.
    Fagbemi AO, Wright N, Lakhoo K, et al. Immunoreactive epidermal growth factor receptors are present in gastrointestinal epithelial cells of preterm infants with necrotising enterocolitis. Early Hum Dev 2001; 65(1): 1–9PubMedCrossRefGoogle Scholar
  150. 150.
    Dvorak B, Halpern MD, Holubec H, et al. Epidermal growth factor reduces the development of necrotizing enterocolitis in a neonatal rat model. Am J Physiol Gastrointest Liver Physiol 2002; 282(1): G156–64PubMedGoogle Scholar
  151. 151.
    Chen K, Nezu R, Wasa M, et al. Insulin-like growth factor-1 modulation of intestinal epithelial cell restitution. J Parenter Enteral Nutr 1999; 23 (5 Suppl.): S89–92CrossRefGoogle Scholar
  152. 152.
    Singh P, Dai B, Yallampalli U, et al. Proliferation and differentiation of a human colon cancer cell line (CaCo2) is associated with significant changes in the expression and secretion of insulin-like growth factor (IGF) IGF-II and IGF binding protein-4: role of IGF-II. Endocrinology 1996; 137(5): 1764–74PubMedCrossRefGoogle Scholar
  153. 153.
    Watanabe S, Hirose M, Wang XE, et al. Epithelial-mesenchymal interaction in gastric mucosal restoration. J Gastroenterol 2000; 35 Suppl. 12: 65–8Google Scholar
  154. 154.
    Ford H, Watkins S, Reblock K, et al. The role of inflammatory cytokines and nitric oxide in the pathogenesis of necrotizing enterocolitis. J Pediatr Surg 1997; 32(2): 275–82PubMedCrossRefGoogle Scholar
  155. 155.
    Fritsch C, Orian-Rousseaul V, Lefebvre O, et al. Characterization of human intestinal stromal cell lines: response to cytokines and interactions with epithelial cells. Exp Cell Res 1999; 248(2): 391–406PubMedCrossRefGoogle Scholar
  156. 156.
    Kiristioglu I, Teitelbaum DH. Alteration of the intestinal intraepithelial lymphocytes during total parenteral nutrition. J Surg Res 1998; 79(2): 91–6PubMedCrossRefGoogle Scholar
  157. 157.
    Wahl SM, Wong H, McCartney-Francis N. Role of growth factors in inflammation and repair. J Cell Biochem 1989; 40(2): 193–9PubMedCrossRefGoogle Scholar
  158. 158.
    Chan KL, Hui CW, Chan KW, et al. Revisiting ischemia and reperfusion injury as a possible cause of necrotizing enterocolitis: role of nitric oxide and Superoxide dismutase. J Pediatr Surg 2002; 37(6): 828–34PubMedCrossRefGoogle Scholar
  159. 159.
    Di Lorenzo M, Krantis A. Nitric oxide synthase isoenzyme activities in a premature piglet model of necrotizing enterocolitis: effects of nitrergic manipulation. Pediatr Surg Int 2002; 18(7): 624–9PubMedCrossRefGoogle Scholar
  160. 160.
    Potoka DA, Nadler EP, Upperman JS, et al. Role of nitric oxide and peroxynitrite in gut barrier failure. World J Surg 2002; 26(7): 806–11PubMedCrossRefGoogle Scholar
  161. 161.
    Gounaris A, Alexiou N, Costalos C, et al. Gut hormone concentrations in preterm infants with necrotizing enterocolitis. Acta Paediatr 1997; 86(7): 762–3PubMedCrossRefGoogle Scholar
  162. 162.
    Gilchrist BF, editor. Preface: in necrotizing enterocolitis, Medical Intelligence Unit 18. Georgetown (TX): Landers Bioscience, 2000: 31–53Google Scholar

Copyright information

© Adis Data Information BV 2006

Authors and Affiliations

  1. 1.Department of PediatricsUniversity of Maryland School of MedicineBaltimoreUSA

Personalised recommendations