Toxicological Reviews

, Volume 25, Issue 4, pp 245–260

Nanotechnology and Nanotoxicology

A Primer for Clinicians
  • John Curtis
  • Michael Greenberg
  • Janet Kester
  • Scott Phillips
  • Gary Krieger
Review Article


Nanotechnology is the manipulation of matter in dimensions <100nm. At this size, matter can take on different chemical and physical properties, giving the products characteristics useful to industry, medicine and technology. Government funding and private investors provide billions of research dollars for the development of new materials and applications. The potential utility of these technologies is such that they are expected be a trillion-dollar industry within the next 10 years.

However, the novel properties of nanoengineered materials lead to the potential for different toxicity compared with the bulk material. The field of nanotoxicology is still in its infancy, however, with very limited literature regarding potential health effects. Inhalational toxicity is to be expected, given the known effects of inhaled fine particulate matter. However, the degree to which most nanoparticles will aerosolise remains to be determined. It has been proposed that dermal exposure will be the most relevant route of exposure, but there is considerably less literature regarding dermal effects and absorption. Less defined still are the potential effects of nanoproducts on fetal development and the environment.


  1. 1.
    Lin H, Datar RH. Medical applications of nanotechnology. Natl Med J India 2006; 19(1): 27–32PubMedGoogle Scholar
  2. 2.
    Joy B. Why the future doesn’t need us. Wired 2000; 8.04: 1–11Google Scholar
  3. 3.
    Iijima S. Helical microtubules of graphitic carbon. Nature 1991; 354: 56–8CrossRefGoogle Scholar
  4. 4.
    Gogotsi Y. How safe are nanotubes and other nanofilaments? Mat Res Innov 2003; 7: 192–4CrossRefGoogle Scholar
  5. 5.
    Lam CW, James JT, McCluskey R, et al. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 2004; 77(1): 126–34PubMedCrossRefGoogle Scholar
  6. 6.
    Chan WC, Maxwell DJ, Gao X, et al. Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 2002; 13(1): 40–6PubMedCrossRefGoogle Scholar
  7. 7.
    Hoshino A. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 2004; 4(11): 2163–9CrossRefGoogle Scholar
  8. 8.
    Hanaki K, Momo A, Oku T, et al. Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker. Biochem Biophys Res Commun 2003; 302(3): 496–501PubMedCrossRefGoogle Scholar
  9. 9.
    Akerman ME, Chan WC, Laakkonen P, et al. Nanocrystal targeting in vivo. Proc Natl Acad Sci U S A 2002; 99(20): 12617–21PubMedCrossRefGoogle Scholar
  10. 10.
    Han M, Gao X, Su JZ, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 2001; 19(7): 631–5PubMedCrossRefGoogle Scholar
  11. 11.
    Office of the Press Secretary. National nanotechnology initiative: leading to the next industrial revolution [online]. Available from URL: [Accessed 2006 Aug 18]
  12. 12.
    Guzman KA, Taylor MR, Banfield JF. Environmental risks of nanotechnology: National Nanotechnology Initiative funding, 2000–2004. Environ Sci Technol 2006; 40(5): 1401–7PubMedCrossRefGoogle Scholar
  13. 13.
    Salamanca-Buentello F, Persad DL, Court EB, et al. Nanotechnology and the developing world. PLoS Med 2005; 2(5): e97PubMedCrossRefGoogle Scholar
  14. 14.
    Hsiao JC, Fong K. Making big money from small technology. Nature 2004; 428(6979): 218–20PubMedCrossRefGoogle Scholar
  15. 15.
    Triendl R. Breaking down biological borders. Nature 2002; 418(6899): 7PubMedCrossRefGoogle Scholar
  16. 16.
    Aitken RJ, Chaudhry MQ, Boxall AB, et al. Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med (Lond) 2006; 56(5): 300–6CrossRefGoogle Scholar
  17. 17.
    Milunovich S, Roy JMA, Fan Z-H. Nanotechnology: introducing the Merrill Lynch Nanotech Index [online]. Available from URL: [Accessed 2007 Jan 11]
  18. 18.
    Brumfiel G. Consumer products leap aboard the nano bandwagon. Nature 2006; 440(7082): 262PubMedCrossRefGoogle Scholar
  19. 19.
    Lemley MA. Patenting nanotechnology. Stanford Law Rev 2005; 58(2): 601–30PubMedGoogle Scholar
  20. 20.
    Whatmore RW. Nanotechnology: what is it? Should we be worried? Occup Med (Lond) 2006; 56(5): 295–9CrossRefGoogle Scholar
  21. 21.
    Vandorpe J, Schacht E, Dunn S, et al. Long circulating biodegradable poly (phosphazene) nanoparticles surface modified with poly (phosphazene)-poly (ethylene oxide) copolymer. Biomaterials 1997; 18(17): 1147–52PubMedCrossRefGoogle Scholar
  22. 22.
    Garnett MC, Kallinteri P. Nanomedicines and nanotoxicology: some physiological principles. Occup Med (Lond) 2006; 56(5): 307–11CrossRefGoogle Scholar
  23. 23.
    Maeda H, Matsumura Y. Tumoritropic and lymphotropic principles of macromolecular drugs. Crit Rev Ther Drug Carrier Syst 1989; 6(3): 193–210PubMedGoogle Scholar
  24. 24.
    Porter CJ, Moghimi SM, Ilium L, et al. The polyoxyethylene/polyoxypropylene block co-polymer poloxamer-407 selectively redirects intravenously injected microspheres to sinusoidal endothelial cells of rabbit bone marrow. FEBS Lett 1992; 305(1): 62–6PubMedCrossRefGoogle Scholar
  25. 25.
    Lind K, Kresse M, Debus NP, et al. A novel formulation for superparamagnetic iron oxide (SPIO) particles enhancing MR lymphography: comparison of physicochemical properties and the in vivo behaviour. J Drug Target 2002; 10(3): 221–30PubMedCrossRefGoogle Scholar
  26. 26.
    Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 2001; 47(1): 65–81PubMedCrossRefGoogle Scholar
  27. 27.
    Pantarotto D, Briand JP, Prato M, et al. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun (Camb) 2004; (1): 16–7Google Scholar
  28. 28.
    Harisinghani MG, Barentsz J, Hahn PF, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 2003; 348(25): 2491–9PubMedCrossRefGoogle Scholar
  29. 29.
    Bruchez M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels. Science 1998; 281(5385): 2013–6PubMedCrossRefGoogle Scholar
  30. 30.
    Steiniger SCJ, Kreuter J, Khalansky AS, et al. Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int J Cancer 2004; 109(5): 759–67PubMedCrossRefGoogle Scholar
  31. 31.
    Michaelis K, Hoffmann MM, Dreis S, et al. Covalent linkage of apolipoprotein e to albumin nanoparticles strongly enhances drug transport into the brain. J Pharmacol Exp Ther 2006; 317(3): 1246–53PubMedCrossRefGoogle Scholar
  32. 32.
    Zheng G, Patolsky F, Cui Y, et al. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 2005; 23(10): 1294–301PubMedCrossRefGoogle Scholar
  33. 33.
    Donaldson K, Stone V, Clouter A, et al. Ultrafine particles. Occup Environ Med 2001; 58(3): 211–6, 199PubMedCrossRefGoogle Scholar
  34. 34.
    Peters A, Wichmann HE, Tuch T, et al. Respiratory effects are associated with the number of ultrafine particles. Am J Respir Crit Care Med 1997; 155(4): 1376–83PubMedGoogle Scholar
  35. 35.
    Dockery DW, Pope CA, Xu X, et al. An association between air pollution and mortality in six US cities. N Engl J Med 1993; 329(24): 1753–9PubMedCrossRefGoogle Scholar
  36. 36.
    Dockery DW. Epidemiologic evidence of cardiovascular effects of particulate air pollution. Environ Health Perspect 2001; 109Suppl. 4: 483–6PubMedGoogle Scholar
  37. 37.
    Pope CA, Dockery DW. Acute health effects of PM10 pollution on symptomatic and asymptomatic children. Am Rev Respir Dis 1992; 145(5): 1123–8PubMedCrossRefGoogle Scholar
  38. 38.
    Xu B, Xia M, Deng Y, et al. Nanotechnology and nanoparticles and their advances of investigation and application in the fields of biomedicine [in Chinese]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2004; 21(2): 333–6PubMedGoogle Scholar
  39. 39.
    Dockery DW, Luttmann-Gibson H, Rich DQ, et al. Association of air pollution with increased incidence of ventricular tachyarrhythmias recorded by implanted cardioverter defibrillators. Environ Health Perspect 2005; 113(6): 670–4PubMedCrossRefGoogle Scholar
  40. 40.
    Franklin M, Zeka A, Schwartz J. Association between PM (2.5) and all-cause and specific-cause mortality in 27 US communities. J Expo Sci Environ Epidemiol 2006 [Epub ahead of print]Google Scholar
  41. 41.
    Brown DM, Stone V, Findlay P, et al. Increased inflammation and intracellular calcium caused by ultrafine carbon black is independent of transition metals or other soluble components. Occup Environ Med 2000; 57(10): 685–91PubMedCrossRefGoogle Scholar
  42. 42.
    Renwick LC, Brown D, Clouter A, et al. Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occup Environ Med 2004; 61(5): 442–7PubMedCrossRefGoogle Scholar
  43. 43.
    Warheit DB, Webb TR, Sayes CM, et al. Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon particle size and surface area. Toxicol Sci 2006; 91(1): 227–36PubMedCrossRefGoogle Scholar
  44. 44.
    Beckett WS, Chalupa DF, Pauly-Brown A, et al. Comparing inhaled ultrafine versus fine zinc oxide particles in healthy adults: a human inhalation study. Am J Respir Crit Care Med 2005; 171(10): 1129–35PubMedCrossRefGoogle Scholar
  45. 45.
    Brown JS, Zeman KL, Bennett WD. Ultrafine particle deposition and clearance in the healthy and obstructed lung. Am J Respir Crit Care Med 2002; 166(9): 1240–7PubMedCrossRefGoogle Scholar
  46. 46.
    Geiser M, Rothen-Rutishauser B, Kapp N, et al. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 2005; 113(11): 1555–60PubMedCrossRefGoogle Scholar
  47. 47.
    Beck-Speier I, Dayal N, Karg E, et al. Agglomerates of ultrafine particles of elemental carbon and TiO2 induce generation of lipid mediators in alveolar macrophages. Environ Health Perspect 2001; 109Suppl. 4: 613–8PubMedGoogle Scholar
  48. 48.
    Gavett SH, Madison SL, Dreher KL, et al. Metal and sulfate composition of residual oil fly ash determines airway hyperreactivity and lung injury in rats. Environ Res 1997; 72(2): 162–72PubMedCrossRefGoogle Scholar
  49. 49.
    Dreher KL, Jaskot RH, Lehmann JR, et al. Soluble transition metals mediate residual oil fly ash induced acute lung injury. J Toxicol Environ Health 1997; 50(3): 285–305PubMedCrossRefGoogle Scholar
  50. 50.
    Ghio AJ, Cohen MD. Disruption of iron homeostasis as a mechanism of biologic effect by ambient air pollution particles. Inhal Toxicol 2005; 17(13): 709–16PubMedCrossRefGoogle Scholar
  51. 51.
    Mossman BT, Bignon J, Corn M, et al. Asbestos: scientific developments and implications for public policy. Science 1990; 247(4940): 294–301PubMedCrossRefGoogle Scholar
  52. 52.
    Brown RC, Hoskins JA, Miller K, et al. Pathogenetic mechanisms of asbestos and other mineral fibres. Mol Aspects Med 1990; 11(5): 325–49PubMedCrossRefGoogle Scholar
  53. 53.
    Magrez A, Kasas S, Salicio V, et al. Cellular toxicity of carbon-based nanomaterials. Nano Lett 2006; 6(6): 1121–5PubMedCrossRefGoogle Scholar
  54. 54.
    Gaensler EA, Cadigan JB, Sasahara AA, et al. Graphite pneumoconiosis of electrotypers. Am J Med 1966; 41(6): 864–82PubMedCrossRefGoogle Scholar
  55. 55.
    Oberdorster G. Determinants of the pathogenicity of man-made vitreous fibers (MMVF). Int Arch Occup Environ Health 2000; 73 Suppl.: S60–8PubMedCrossRefGoogle Scholar
  56. 56.
    Hesterberg TW, Chase G, Axten C, et al. Biopersistence of synthetic vitreous fibers and amosite asbestos in the rat lung following inhalation. Toxicol Appl Pharmacol 1998; 151(2): 262–75PubMedCrossRefGoogle Scholar
  57. 57.
    Hesterberg TW, Hart GA, Chevalier J, et al. The importance of fiber biopersistence and lung dose in determining the chronic inhalation effects of X607, RCF1, and chrysotile asbestos in rats. Toxicol Appl Pharmacol 1998; 153(1): 68–82PubMedCrossRefGoogle Scholar
  58. 58.
    Hesterberg TW, Miiller WC, Musselman RP, et al. Biopersistence of man-made vitreous fibers and crocidolite asbestos in the rat lung following inhalation. Fundam Appl Toxicol 1996; 29(2): 267–79PubMedCrossRefGoogle Scholar
  59. 59.
    Shvedova AA, Kisin ER, Mercer R, et al. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 2005; 289(5): L698–708PubMedCrossRefGoogle Scholar
  60. 60.
    Warheit DB, Laurence BR, Reed KL, et al. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 2004; 77(1): 117–25PubMedCrossRefGoogle Scholar
  61. 61.
    Muller J, Huaux F, Moreau N, et al. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 2005; 207(3): 221–31PubMedCrossRefGoogle Scholar
  62. 62.
    Inoue K, Takano H, Yanagisawa R, et al. Effects of nano particles on antigen-related airway inflammation in mice. Respir Res 2005; 6: 106PubMedCrossRefGoogle Scholar
  63. 63.
    Jia G, Wang H, Yan L, et al. Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 2005; 39(5): 1378–83PubMedCrossRefGoogle Scholar
  64. 64.
    Baron PA, Maynard AD, Foley M. Evaluation of aerosol release during the handling of unrefined single walled carbon nanotube material. Cincinnati (OH): National Institute for Occupational Safety and Health, 2002 Dec. NIOSH report: DART-02-191Google Scholar
  65. 65.
    Maynard AD, Baron PA, Foley M, et al. Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J Toxicol Environ Health A 2004; 67(1): 87–107PubMedCrossRefGoogle Scholar
  66. 66.
    Masciangioli T, Zhang WX. Environmental technologies at the nanoscale. Environ Sci Technol 2003; 37(5): 102A–8APubMedCrossRefGoogle Scholar
  67. 67.
    Sayes CM, Gobin AM, Ausman KD, et al. Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials 2005; 26(36): 7587–95PubMedCrossRefGoogle Scholar
  68. 68.
    Sayes C, Fortner J, Lyon D, et al. The differential cytotoxicity of water soluble fullerenes. Nano Lett 2004; 4: 1881–7CrossRefGoogle Scholar
  69. 69.
    Nelson MA, Domann FE, Bowden GT, et al. Effects of acute and subchronic exposure of topically applied fullerene extracts on the mouse skin. Toxicol Ind Health 1993; 9(4): 623–30PubMedGoogle Scholar
  70. 70.
    Monteiro-Riviere NA, Nemanich RJ, Inman AO, et al. Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett 2005; 155(3): 377–84PubMedCrossRefGoogle Scholar
  71. 71.
    Ding L, Stilwell J, Zhang T, et al. Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast. Nano Lett 2005; 5(12): 2448–64PubMedCrossRefGoogle Scholar
  72. 72.
    Shvedova AA, Castranova V, Kisin ER, et al. Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health A 2003; 66(20): 1909–26PubMedCrossRefGoogle Scholar
  73. 73.
    Manna SK, Sarkar S, Barr J, et al. Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kappaB in human keratinocytes. Nano Lett 2005; 5(9): 1676–84PubMedCrossRefGoogle Scholar
  74. 74.
    Huczko AL, Lange H. Carbon nanotubes: experimental evidence for a null risk of skin irritation and allergy. Fullerene Sci Technol 2001; 9(2): 247–50CrossRefGoogle Scholar
  75. 75.
    Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA. Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol Sci 2006; 91(1): 159–65PubMedCrossRefGoogle Scholar
  76. 76.
    Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA. Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. J Invest Dermatol. Epub 2006 Aug 10Google Scholar
  77. 77.
    Lademann J, Weigmann H, Rickmeyer C, et al. Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol Appl Skin Physiol 1999; 12(5): 247–56PubMedCrossRefGoogle Scholar
  78. 78.
    Schulz J, Hohenberg H, Pflucker F, et al. Distribution of sunscreens on skin. Adv Drug Deliv Rev 2002; 54Suppl. 1: S157–63PubMedCrossRefGoogle Scholar
  79. 79.
    Lam PK, Chan ES, Ho WS, et al. In vitro cytotoxicity testing of a nanocrystalline silver dressing (Acticoat) on cultured keratinocytes. Br J Biomed Sci 2004; 61(3): 125–7PubMedGoogle Scholar
  80. 80.
    Chen Z, Meng H, Xing G, et al. Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 2006; 163(2): 109–20PubMedCrossRefGoogle Scholar
  81. 81.
    Chen HH, Yu C, Ueng TH, et al. Acute and subacute toxicity study of water-soluble polyalkylsulfonated C60 in rats. Toxicol Pathol 1998; 26(1): 143–51PubMedCrossRefGoogle Scholar
  82. 82.
    Yamago S, Tokuyama H, Nakamura E, et al. In vivo biological behavior of a water-miscible fullerene: 14C labeling, absorption, distribution, excretion and acute toxicity. Chem Biol 1995; 2(6): 385–9PubMedCrossRefGoogle Scholar
  83. 83.
    Tsuchiya T, Oguri I, Yamakoshi YN, et al. Novel harmful effects of [60]fullerene on mouse embryos in vitro and in vivo. FEBS Lett 1996; 393(1): 139–45PubMedCrossRefGoogle Scholar
  84. 84.
    Rajagopalan P, Wudl F, Schinazi RF, et al. Pharmacokinetics of a water-soluble fullerene in rats. Antimicrob Agents Chemother 1996; 40(10): 2262–5PubMedGoogle Scholar
  85. 85.
    Hillyer JF, Albrecht RM. Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J Pharm Sci 2001; 90(12): 1927–36PubMedCrossRefGoogle Scholar
  86. 86.
    Oberdorster G, Sharp Z, Atudorei V, et al. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 2004; 16(6–07): 437–45PubMedCrossRefGoogle Scholar
  87. 87.
    Oberdorster E. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 2004; 112(10): 1058–62PubMedCrossRefGoogle Scholar
  88. 88.
    Zhu S, Oberdorster E, Haasch ML. Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow. Mar Environ Res 2006; 62 Suppl.: S5–9PubMedCrossRefGoogle Scholar
  89. 89.
    Wang H, Wang J, Deng X, et al. Biodistribution of carbon single-wall carbon nanotubes in mice. J Nanosci Nanotechnol 2004; 4(8): 1019–24PubMedCrossRefGoogle Scholar
  90. 90.
    Yamawaki H, Iwai N. Cytotoxicity of water-soluble fullerene in vascular endothelial cells. Am J Physiol Cell Physiol 2006; 290(6): C1495–502PubMedCrossRefGoogle Scholar
  91. 91.
    Kirchner C, Liedl T, Kudera S, et al. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 2005; 5(2): 331–8PubMedCrossRefGoogle Scholar
  92. 92.
    Derfus AM, Chan WCW, Bahtia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 2004; 4(1): 11–8CrossRefGoogle Scholar
  93. 93.
    Bottini M, Bruckner S, Nika K, et al. Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett 2006; 160(2): 121–6PubMedCrossRefGoogle Scholar
  94. 94.
    Pantarotto D, Partidos CD, Graff R, et al. Synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides. J Am Chem Soc 2003; 125(20): 6160–4PubMedCrossRefGoogle Scholar
  95. 95.
    Pantarotto D, Partidos CD, Hoebeke J, et al. Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem Biol 2003; 10(10): 961–6PubMedCrossRefGoogle Scholar
  96. 96.
    Chen BX, Wilson SR, Das M, et al. Antigenicity of fullerenes: antibodies specific for fullerenes and their characteristics. Proc Natl Acad Sci U S A 1998; 95(18): 10809–13PubMedCrossRefGoogle Scholar
  97. 97.
    Zakharenko LP, Zakharov IK, Vasiunina EA, et al. Determination of the genotoxicity of fullerene C60 and fullerol using the method of somatic mosaics on cells of Drosophila melanogaster wing and SOS-chromotest [in Russian]. Genetika 1997; 33(3): 405–9PubMedGoogle Scholar
  98. 98.
    Babynin EV, Nuretdinov IA, Gubskaia VP, et al. Study of mutagenic activity of fullerene and some of its derivatives using His+ reversions of Salmonella typhimurium as an example [in Russian]. Genetika 2002; 38(4): 453–7PubMedGoogle Scholar
  99. 99.
    Sera N, Tokiwa H, Miyata N. Mutagenicity of the fullerene C60-generated singlet oxygen dependent formation of lipid peroxides. Carcinogenesis 1996; 17(10): 2163–9PubMedCrossRefGoogle Scholar
  100. 100.
    Tsuchiya T, Yamakoshi YN, Miyata N. A novel promoting action of fullerene C60 on the chondrogenesis in rat embryonic limb bud cell culture system. Biochem Biophys Res Commun 1995; 206(3): 885–94PubMedCrossRefGoogle Scholar
  101. 101.
    Zheng M, Jagota A, Semke ED, et al. DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater 2003; 2(5): 338–42PubMedCrossRefGoogle Scholar
  102. 102.
    Green M, Howman E. Semiconductor quantum dots and free radical induced DNA nicking. Chem Commun (Camb) 2005; (1): 121–3Google Scholar
  103. 103.
    Lu ZX, Zhang ZL, Zhang MX, et al. Core/shell quantum-dot-photosensitized nano-TiO (2) films: fabrication and application to the damage of cells and DNA. J Phys Chem B Condens Matter Mater Surf Interfaces Biophys 2005; 109(47): 22663–6PubMedGoogle Scholar
  104. 104.
    Braydich-Stolle L, Hussain S, Schlager JJ, et al. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 2005; 88(2): 412–9PubMedCrossRefGoogle Scholar
  105. 105.
    ETC-Group. No small matter II: the case for a global moratorium. Size matters! Ottawa: ETC Group, 2003Google Scholar
  106. 106.
    Owen R, Depledge M. Nanotechnology and the environment: risks and rewards. Mar Pollut Bull 2005; 50(6): 609–12PubMedCrossRefGoogle Scholar
  107. 107.
    Powell K. Green groups baulk at joining nanotechnology talks. Nature 2004; 432(7013): 5PubMedCrossRefGoogle Scholar
  108. 108.
    Gaskell G, Ten Eyck T, Jackson J, et al. Public attitudes to nanotechnology in Europe and the United States. Nat Mater 2004; 3(8): 496PubMedCrossRefGoogle Scholar
  109. 109.
    Giles J. Size matters when it comes to safety, report warns. Nature 2004; 430(7000): 599PubMedCrossRefGoogle Scholar
  110. 110.
    Moore MN. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 2006 Dec; 32(8): 967–76PubMedCrossRefGoogle Scholar
  111. 111.
    Colvin VL. The potential environmental impact of engineered nanomaterials. Nat Biotechnol 2003; 21(10): 1166–70PubMedCrossRefGoogle Scholar
  112. 112.
    Oberdorster E, Zhu S, Blickley TM, et al. Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C60) on aquatic organisms. Carbon 2006; 44: 1112–20CrossRefGoogle Scholar
  113. 113.
    Bergeson LL, Auerbach B. The Environmental regulatory implications of nanotechnology. Daily Environment Report No. 71. Washington, DC: Bureau of National Affairs Inc., 2004Google Scholar
  114. 114.
    Sharpe M. Small wonders, big future: the development of environmental nanotechnology. J Environ Monit 2006; 8(2): 235–9PubMedCrossRefGoogle Scholar
  115. 115.
    Service RF. Nanotechnology: EPA ponders voluntary nanotechnology regulations [online]. Available from URL:;309/5731/36b [Accessed 2007 Jan 15]
  116. 116.
    US Environmental Protection Agency. Toxicology of particulate matter in humans and laboratory animals [online]. Available from URL: [Accessed 2007 Jan 15]
  117. 117.
    US Environmental Protection Agency. Air quality criteria for particulate matter [online]. Available from URL: [Accessed 2007 Jan 15]
  118. 118.
    US Environmental Protection Agency. Particulate matter standards [online]. Available from URL: [Accessed 2006 Dec 13]
  119. 119.
    Dreher KL. Health and environmental impact of nanotechnology: toxicological assessment of manufactured nanoparticles. Toxicol Sci 2004; 77(1): 3–5PubMedCrossRefGoogle Scholar
  120. 120.
    US Department of Labor. Occupational Safety & Health Administration. Table Z-1 limits for air contaminants [online]. Available from URL: [Accessed 2007 Jan 11]
  121. 121.
    US Department of Labor. Occupational Safety & Health Administration. Table Z-2–1910 [online]. Available from URL: [Accessed 2007 Jan 11]
  122. 122.
    US Department of Labor. Occupational Safety & Health Administration. Table Z-3 mineral dusts [online]. Available from URL: [Accessed 2007 Jan 11]
  123. 123.
    Miller J. Beyond biotechnology: FDA regulation of nanomedicine. Columbia Sci Technol Law Rev 2003; 4: E5PubMedGoogle Scholar
  124. 124.
    Moore R. Standards in the 21st century: standardising new medical technologies, part I. Med Device Technol 2002; 13(9): 44–5PubMedGoogle Scholar

Copyright information

© Adis Data Information BV 2006

Authors and Affiliations

  • John Curtis
    • 1
  • Michael Greenberg
    • 1
  • Janet Kester
    • 2
  • Scott Phillips
    • 3
  • Gary Krieger
    • 4
  1. 1.Division of Medical ToxicologyDrexel University College of MedicinePhiladelphiaUSA
  2. 2.Newfields, LLCSt LouisUSA
  3. 3.Division of Clinical Pharmacology and ToxicologyUniversity of Colorado Health Sciences Center, Rocky Mountain Poison and Drug CenterDenverUSA
  4. 4.Department of Pharmaceutical Sciences, Molecular Toxicology Section, School of PharmacyUniversity of Colorado Health Sciences CenterDenverUSA
  5. 5.Department of Emergency MedicineDrexel University College of Medicine, Hahnemann University HospitalPhiladelphiaUSA

Personalised recommendations