Toxicological Reviews

, Volume 25, Issue 3, pp 199–209 | Cite as

New Syndromes in Mushroom Poisoning

  • Philippe SaviucEmail author
  • Vincent Danel
Review Article


Several new mushroom poisoning syndromes have been described since the early 1990s. In these syndromes, the onset of symptoms generally occurs >6 hours after ingestion. Treatment is mainly supportive. The syndrome induced by Amanita smithiana/proxima consists of acute tubulopathy, which appears earlier and does not have the same poor prognosis as the orellanine-induced syndrome. It has been described since 1992 in the US and Canada with A. smithiana; in France, Spain and Italy with A. proximo; and in Japan with A. pseudoporphyria. The responsible toxin is probably 2-amino-4,5-hexadienoic acid. The erythromelalgia syndrome has been described as early as the late 19th century in Japan and South Korea with Clitocybe acromelalga, and since 1996 in France and then Italy with C. amoenolens. Responsible toxins are probably acromelic acids identified in both species. Several cases of massive rhabdomyolysis have been reported since 1993 in France and 2001 in Poland after ingestion of large amounts of an edible and, until then, valuable species called Tricholoma equestre. These cases of rhabdomyolysis are associated with respiratory and cardiac (myocarditis) complications leading to death. Rhabdomyolysis with an apparently different mechanism was described in Taiwan in 2001 with Russula subnigricans. Finally, cases of encephalopathy were observed twice after ingestion of Hapalopilus rutilans in Germany in 1992 and Pleurocybella porrigens in Japan in 2004, where a convulsive encephalopathy outbreak was reported in patients with history of chronic renal failure.


West Nile Virus Poison Control Centre Edible Species Erythromelalgia Mushroom Poisoning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank Valérie Arrigo for her help. No sources of external funding were used to assist in the preparation of this review. The authors are not aware of any potential conflicts of interest directly relevant to the contents of this review.


  1. 1.
    Beuhler M, Graeme KA. Overview of mushroom poisoning. In: Breent J, Wallace KL, Burkhart KK, et al., editors. Critical care toxicology: diagnosis and management of the critically poisoned patient. Philadelphia (PA): Elsevier, 2005: 1263–75Google Scholar
  2. 2.
    Schonwald S. Mushrooms. In: Dart RC, editor. Medical toxicology. 3rd ed. Philadelphia (PA): Lippincott Williams & Wilkins, 2004: 1719–35Google Scholar
  3. 3.
    Goldfrank LR. Mushrooms. In: Flomenbaum NE, Goldfrank LR, Hoffman RS, et al., editors. Goldfrank’s toxicologic emergencies. 8th ed. New York: McGraw-Hill, 2006: 1115–26Google Scholar
  4. 4.
    Benjamin DR. Diagnosis and management of mushrooms poisoning: mushrooms poisons and panaceas — a handbook for naturalists, mycologists, and physicians. New York: WH Freeman and Company, 1995: 171–96Google Scholar
  5. 5.
    Rumack BH. Symptomatic diagnosis and treatment of mushroom poisoning. In: Spoerke DG, Rumack BH, editors. Handbook of mushroom poisoning: diagnosis and treatment. 2nd ed. Boca Rota (FL): CRC Press, 1994: 149–63Google Scholar
  6. 6.
    Proudfoot A. Features and treatment of specific poisons: mushrooms — diagnosis and management of acute poisoning. Oxford: Blackwell Scientific Publications, 1982: 145–9Google Scholar
  7. 7.
    Saviuc P, Flesch F, Danel V. Intoxications par les champignons: syndromes majeurs. Paris: Encyclopédie Médico-Chirurgicale — Elsevier, 2003; 16077-A-10: 1–10Google Scholar
  8. 8.
    Saviuc P, Flesch F, Danel V. Intoxications par les champignons: syndromes mineurs. Paris: Encyclopédie Médico-Chirurgicale — Elsevier, 2006; 16077-B-10: 1–12Google Scholar
  9. 9.
    Grzymala S. Massenvergiftung durch den orangefuchsigen Hatkopt. Z Pilzkd 1957; 23: 138–44Google Scholar
  10. 10.
    Danel V, Saviuc P, Garon D. Main features of Cortinarius spp. poisoning: a literature review. Toxicon 2001; 39: 1053–60PubMedCrossRefGoogle Scholar
  11. 11.
    Rapior S, Andary C, Privat G. Chemotaxonomic study of orellanine in species of Cortinarius and Dermocybe. Mycologia 1988; 80: 741–7CrossRefGoogle Scholar
  12. 12.
    Tulloss RE, Lindgren JE. Amanita smithiana: taxonomy, distribution and poisonings. Mycotaxon 1992; 45: 373–87Google Scholar
  13. 13.
    Leathern AM, Purssell RA, Chan VR, et al. Renal failure caused by mushroom poisoning. J Toxicol Clin Toxicol 1997; 35: 67–75CrossRefGoogle Scholar
  14. 14.
    Warden CR, Benjamin DR. Acute renal failure associated with suspected Amanita smithiana mushroom ingestions: a case series. Acad Emerg Med 1998; 5: 808–12PubMedCrossRefGoogle Scholar
  15. 15.
    Leray H, Canaud B, Andary C, et al. Intoxication par Amanita proxima; une nouvelle cause d’insuffisance rénale aiguë. Nephrologie 1994; 15: 197–9PubMedGoogle Scholar
  16. 16.
    Ducros J, Labastie J, Saingra S. Une observation supplémentaire d’intoxication par Amanita proxima à l’origine d’insuffisance rénale aiguë. Nephrologie 1995; 16: 341PubMedGoogle Scholar
  17. 17.
    De Haro L, Jouglard J, Arditi J, et al. Insuffisance rénale aiguë lors d’intoxications par Amanita proxima: expérience du Centre Anti-poisons de Marseille. Nephrologie 1998; 19: 21–4PubMedGoogle Scholar
  18. 18.
    Saviuc P, Garon D, Danel V, et al. Intoxications par les cortinaires: analyse des cas de la littérature. Nephrologie 2001; 2: 167–73Google Scholar
  19. 19.
    Seeger R, Kraus H, Wiedmann R. Zum Vorkommen von Hämolysinen in Pilzen der Gattung Amanita. Arch Toxicol 1973; 30: 215–26CrossRefGoogle Scholar
  20. 20.
    Jouglard J, Murisasco A, Poyen D, et al. Un cas d’intoxication par des champignons avec insuffisance rénale aiguë réversible. Mars Med 1969; 106: 1075–80PubMedGoogle Scholar
  21. 21.
    Martinez JG, Losada P, Morey A, et al. Fracaso renal agudo secundario a intoxicación por setas. Nefrologia 1999; 19: 560–3Google Scholar
  22. 22.
    De Giacomo M, Gargano F, Marchione F, et al. Three cases of acute renal failure managed by the antipoison center of the catholic university of Rome during the last two years [abstract]. 24th Congress EAPCCT, 2004 Jun 1–4; Strasbourg. J Toxicol Clin Toxicol 2004; 44: 118Google Scholar
  23. 23.
    Myler RK, Lee JC, Hopper J. Renal tubular necrosis caused by mushroom poisoning. Ann Intern Med 1964; 114: 196–204CrossRefGoogle Scholar
  24. 24.
    Moore B, Burton BT, Lindgren J, et al. Cortinarius mushroom poisoning resulting in anuric renal failure [abstract]. Vet Hum Toxicol 1991; 33: 369Google Scholar
  25. 25.
    Raff E, Halloran PF, Kjellstrand CM. Renal failure after eating ‘magic’ mushrooms. CMAJ 1992; 147: 1339–41PubMedGoogle Scholar
  26. 26.
    Hatanaka SI. Amino acids from mushrooms. Fortschr Chem Org Naturst 1992; 59: 1–140PubMedCrossRefGoogle Scholar
  27. 27.
    Chilton WS, Tsou G, Kirk L, et al. A naturally-occuring allenic amino acid. Tetrahedron Lett 1968; 9: 6283CrossRefGoogle Scholar
  28. 28.
    Chilton WS, Tsou G. A chloroamino acid from Amanita solitaria. Phytochemistry 1972; 11: 2853–7CrossRefGoogle Scholar
  29. 29.
    Chilton WS, Ott J. Toxic metabolites of Amanita pantherina, A. cothumata, A. muscaria and other Amanita species. Lloydia 1976; 39: 150–7PubMedGoogle Scholar
  30. 30.
    Chilton WS, Tsou G, de Cato L, et al. The unsaturated norleucines of Amanita solitaria: chemical and pharmacological studies. Lloydia 1973; 36: 169–73PubMedGoogle Scholar
  31. 31.
    Pelizarri V, Feifel E, Rohrmoser M, et al. Partial purification and characterization of a toxic component of Amanita smithiana. Mycologia 1994; 86: 555–60CrossRefGoogle Scholar
  32. 32.
    Yang WS, Lin CH, Huang JW, et al. Acute renal failure caused by mushroom poisoning. J Formos Med Assoc 2006; 105: 263–7PubMedCrossRefGoogle Scholar
  33. 33.
    Hatanaka SI. Identification of 2-amino-4,5-hexadienoic acid from Amanita pseudoporphyria Hongo. Lloydia 1975; 3: 273–4Google Scholar
  34. 34.
    Hatanaka SI, Kawakani K. Biochemical studies on nitrogen compounds of fungi. XIX: isolation and identification of L-2-amino-4,5-hexadienoic acid from Amanita neovoidea Hongo. Sci Pap Coll Gen Educ Univ Tokyo 1980; 30: 147–50Google Scholar
  35. 35.
    Tulloss RE, Hongo T, Bandhary HR. Amanita neoovoidea: taxonomy and distribution. Mycotaxon 1992; 44: 235–42Google Scholar
  36. 36.
    Iwafuchi Y, Morita T, Kobayashi H, et al. Delayed onset acute renal failure associated with Amanita pseudoporphyria Hongo ingestion. Intern Med 2003; 42: 78–81PubMedCrossRefGoogle Scholar
  37. 37.
    Yamaura Y, Fukuhara M, Takabatake E, et al. Hepatotoxic action of a poisonous mushroom, Amanita abrupta in mice and its toxic component. Toxicology 1986; 38: 161–73PubMedCrossRefGoogle Scholar
  38. 38.
    Saviuc PF, Danel VC, Moreau P-A, et al. Erythromelalgia and mushroom poisoning. J Toxicol Clin Toxicol 2001; 39: 403–7PubMedCrossRefGoogle Scholar
  39. 39.
    Moreau PA, Courtecuisse R, Guez D, et al. Analyse taxinomique d’une espèce toxique: Clitocybe amoenolens Malençon. Cryptogam Mycol 2001; 22: 1–23Google Scholar
  40. 40.
    Nakamura K, Shoyama F, Toyama J, et al. Empoisonnement par le Dokou-sassa-ko (Clitocybe acromelalga). Jpn J Toxicol 1987: 9Google Scholar
  41. 41.
    Charignon Y, Garcin R. Un nouveau Champignon toxique en France. Bull Féd Mycol Dauphiné-Savoie 1998; 149: 11–4Google Scholar
  42. 42.
    Contu M, Signorello P, Anastase A. Clitocybe amoenolens Mal. in Abruzzo con osservazioni sulla sua posizione sistematica. AMER Boll 1999; 48: 16–8Google Scholar
  43. 43.
    Leonardi M, Ciulli G, Pacioni G, et al. Una intossicazione collettiva da Clitocybe amoenolens riconducibile alla sindrome acromelalgica. Micol Veget Medit 2002; 17: 133–42Google Scholar
  44. 44.
    Saviuc P, DeMatteis M, Mezin P, et al. Toxicity of the Clitocybe amoenolens mushroom in the rat. Vet Hum Toxicol 2003; 45: 180–2PubMedGoogle Scholar
  45. 45.
    Fukuwatari T, Sugimoto E, Yokoyama K, et al. Establishment of animal model for elucidating the mechanism of intoxication by the poisonous mushroom Clitocybe acromelalga. Shokuhin Eiseigaku Zasshi 2001; 42: 185–9PubMedCrossRefGoogle Scholar
  46. 46.
    Necker P, Hellon RF. Noxious thermal input from the rat tail: modulation by descending inhibitory influences. Pain 1978; 4: 231–42PubMedCrossRefGoogle Scholar
  47. 47.
    Authier N, Balayssac D, Foucaud M, et al. Evaluation comportementale de la neurotoxicité périphérique du champignon Clitocybe amoenolens [abstract]. Journées de la Société Française de Toxicologie (SFT); 2002 Nov 20–21, ParisGoogle Scholar
  48. 48.
    Ichimura T. A new poisonous mushroom. Bot Gaz 1918; 65: 109–10CrossRefGoogle Scholar
  49. 49.
    Konno K, Shirahama H, Matsumoto T. Isolation and structure of acromelic acid A and B. New kainoids of Clitocybe acromelalga. Tetrahedron Lett 1983; 24: 939–42CrossRefGoogle Scholar
  50. 50.
    Konno K, Hashimoto K, Ohfune Y, et al. Synthesis of acromelic acid A: a toxic principle of Clitocybe acromelalga. Tetrahedron Lett 1986; 27: 607–10CrossRefGoogle Scholar
  51. 51.
    Takano S, Iwabuchi Y, Ogasawara K. A concise enantioselective synthesis of acromelic acid A. J Am Chem Soc 1987; 109: 5523–4CrossRefGoogle Scholar
  52. 52.
    Konno K, Hashimoto K, Ohfune Y, et al. Acromelic acids A and B: potent neuroexcitatory amino acids isolated from Clitocybe acromelalga. J Am Chem Soc 1988; 110: 4807–15CrossRefGoogle Scholar
  53. 53.
    Fushiya S, Sato S, Kanasawa T, et al. Acromelic acid C: a new toxic constituent of Clitocybe acromelalga — an efficient isolation of acromelic acids. Tetrahedron Lett 1990; 31: 3901–4CrossRefGoogle Scholar
  54. 54.
    Fushiya S, Sato S, Kera Y, et al. Isolation of acromelic acids D and E from Clitocybe acromelalga. Heterocycles 1992; 34: 1277–80CrossRefGoogle Scholar
  55. 55.
    Yamano K, Shirahama H. The structure of a new dipeptide from the mushroom Clitocybe acromelalga. Z Naturforsch [C] 1994; 49: 157–62Google Scholar
  56. 56.
    Hirayama F, Konno K, Shirahama H, et al. 4-aminopyridine-2,3-dicarboxylic acid from Clitocybe acromelalga. Phytochemistry 1989; 28: 1133–5CrossRefGoogle Scholar
  57. 57.
    Yamano K, Shirahama H. New amino acids from Clitocybe acromelalga: possible intermediates in the biogenesis of mushroom toxins, acromelic acids. Tetrahedron 1993; 49: 2427–36CrossRefGoogle Scholar
  58. 58.
    Yamano K, Shirahama H. New amino acids from the poisonous mushroom Clitocybe acromelalga. Tetrahedron 1992; 48: 1457–64CrossRefGoogle Scholar
  59. 59.
    Konno K, Shirahama H, Matsumoto T. Clithioneine, an amino acid betaine from Clitocybe acromelalga. Phytochemistry 1984; 23: 1003–6CrossRefGoogle Scholar
  60. 60.
    Konno K, Hayano K, Shirahama H, et al. Clitidine, a new toxic pyridine nucleoside from Clitocybe acromelalga. Tetrahedron 1982; 38: 3281–4CrossRefGoogle Scholar
  61. 61.
    Yamano K, Shirahama H. Clitidine 5′-mononucleotide, a toxic pyridine nucleotide from Clitocybe acromelalga. Phytochemistry 1994; 35: 897–9CrossRefGoogle Scholar
  62. 62.
    Fushiya S, Sato S, Kusano G, et al. Beta-cyano-L-alanine and N-(gamma-L-glutamyl)-beta-cyano-L-alanine, neurotoxic constituents of Clitocybe acromelalga. Phytochemistry 1993; 33: 53–5CrossRefGoogle Scholar
  63. 63.
    Fushiya S, Matsuda M, Yamada S, et al. New opine type amino acids from a poisonous mushroom, Clitocybe acromelalga. Tetrahedron 1996; 52: 877–86CrossRefGoogle Scholar
  64. 64.
    Yamano K, Shirahama H. A piperidine amino acid, 2,4,5-piperidinetricarboxylic acid from Clitocybe acromelalga. Z Naturforsch [C] 1994; 49: 707–11Google Scholar
  65. 65.
    Fushiya S, Sato S, Nozoe S. L-stizolobic acid and L-stizolobinic acid from Clitocybe acromelalga, precursors of acromelic acids. Phytochemistry 1992; 31: 2337–9CrossRefGoogle Scholar
  66. 66.
    Bessard J, Saviuc P, Chane-Yene Y, et al. Mass spectrometric determination of acromelic acid A from a new poisonous mushroom: Clitocybe amoenolens. J Chromatogr A 2004; 1055: 99–107PubMedCrossRefGoogle Scholar
  67. 67.
    Bessard J, Saviuc P, Moreau P-A, et al. Acide acromélique A: screening de champignons proches de Clitocybe amoenolens [abstract]. Congrès de la Société Française de Toxicologie Analytique, Dinard, 2003 Jun 11–13. Ann Toxicol Analyt 2003; 15(3): 162–3Google Scholar
  68. 68.
    Chilton WS, Hsu CP, Zdybak WT. Stizolobic and stizolobinic acids in Amanita pantherina. Phytochemistry 1974; 13: 1179–81CrossRefGoogle Scholar
  69. 69.
    Wright JLC, Boyd RK, Defrietas ASW, et al. Identification of domoic acid, a neuroexcitatory amino acid, in toxic mussels from eastern Prince Edward Island. Can J Chem 1989; 67: 481–90CrossRefGoogle Scholar
  70. 70.
    Kwak S, Aizawa H, Ishida M, et al. Acromelic acid, a novel kainate analogue, induces long-lasting paraparesis with selective degeneration of interneurons in the rat spinal cord. Exp Neurol 1992; 116: 145–55CrossRefGoogle Scholar
  71. 71.
    Shinozaki H, Ishida M, Gotoh Y, et al. Specific lesions of rat spinal interneurons induced by systemic administration of acromelic acid, a new potent kainate analogue. Brain Res 1989; 503: 330–3PubMedCrossRefGoogle Scholar
  72. 72.
    Minami T, Matsumura S, Nishizawa M, et al. Acute and late effects on induction of allodynia by acromelic acid, a mushroom poison related structurally to kainic acid. Br J Pharmacol 2004; 142: 679–88PubMedCrossRefGoogle Scholar
  73. 73.
    Kwak S, Nakamura R. Selective degeneration of inhibitory interneurons in the rat spinal cord induced by intrathecal infusion of acromelic acid. Brain Res 1995; 702: 61–71PubMedCrossRefGoogle Scholar
  74. 74.
    Tsuji K, Nakamura Y, Ogata T, et al. Neurotoxicity of acromelic acid in cultured neurons from rat spinal cord. Neuroscience 1995; 68: 585–91PubMedCrossRefGoogle Scholar
  75. 75.
    Dingledine R, Borges K, Bowie D, et al. The glutamate receptor ion channels. Pharmacol Rev 1999; 51: 7–57PubMedGoogle Scholar
  76. 76.
    Fundytus ME. Glutamate receptors and nociception: implications for drug treatments of pain. CNS Drugs 2001; 15: 29–58PubMedCrossRefGoogle Scholar
  77. 77.
    Kalamees K. Taxonomy and ecology of the species of the Tricholoma equestre group in the Nordic and Baltic countries. Folia Cryptogam Est 2001; 38: 13–23Google Scholar
  78. 78.
    Bédry R, Pillet O, Sentilhes A, et al. Lethal rhabdomyolysis contemporaneous with a Cortinarius intoxication [abstract]. European Association of Poison Centres and Clinical Toxicologists (EAPCCT), Scientific Meeting; 1993 May 26–28; BirminghamGoogle Scholar
  79. 79.
    Gérault A. Intoxication collective de type orellanien provoquée par Cortinarius splendens R. Hy. Bull Soc Mycol France 1981; 97: 67–72Google Scholar
  80. 80.
    Schliessbach B, Hasler S, Friedli HP, et al. Akute Niereninsuffizienz nach Pilzvergiftung mit Cortinarius splendens (Fries) oder (schöngelbem Klumpfuss) (sog. Orellanus Syndrom). Schweiz Med Wochenschr 1983; 113: 151–3PubMedGoogle Scholar
  81. 81.
    Bédry R, Baudrimont I, Deffieux G, et al. Wild-mushroom intoxication as a cause of rhabdomyolysis. N Engl J Med 2001; 345: 798–802PubMedCrossRefGoogle Scholar
  82. 82.
    Chodorowski Z, Waldman W, Scin Anand J. Acute poisoning with Tricholoma equestre. Przegl Lek 2002; 59: 386–7PubMedGoogle Scholar
  83. 83.
    Chodorowski Z, Anand JS, Grass M. Acute poisoning with Tricholoma equestre of five-year old child. Przegl Lek 2003; 60: 309–10PubMedGoogle Scholar
  84. 84.
    Nieminen P, Mustonen A-M, Kirsi M. Increased plasma creatine kinase activities triggered by edible wild mushrooms. Food Chem Toxicol 2005; 43: 133–8PubMedCrossRefGoogle Scholar
  85. 85.
    Chodorowski Z, Scin Anand J, Madalinski M, et al. Enzymatic examination of potential interaction between statins or fibrates and consumed Tricholoma equestre. Przegl Lek 2005; 62: 468–70PubMedGoogle Scholar
  86. 86.
    Nieminem P, Kirsi M, Mustonen A-M. Suspected myotoxicity of edible wild mushrooms. Exp Biol Med 2006; 231: 221–8Google Scholar
  87. 87.
    Lee PT, Wu ML, Tsai WJ, et al. Rhabdomyolysis: an unusual feature with mushroom poisoning. Am J Kidney Dis 2001; 38: E17PubMedCrossRefGoogle Scholar
  88. 88.
    Kusano G, Ogawa H, Takahashi A, et al. A new aminoacid from Russula subnigricans. Chem Pharm Bull 1987; 35: 3482–6CrossRefGoogle Scholar
  89. 89.
    Takahashi A, Agatsuma T, Matsuda M, et al. Russuphelin A: a new cytotoxic substance from the mushroom Russula subnigricans Hongo. Chem Pharm Bull 1992; 40: 3185–8PubMedCrossRefGoogle Scholar
  90. 90.
    Takahashi A, Agatsuma T, Ohta T, et al. Russophelins B, C, D, E and F: new cytotoxic substances from the mushroom Russula subnigricans Hongo. Chem Pharm Bull 1993; 41: 1726–9PubMedCrossRefGoogle Scholar
  91. 91.
    Ohta T, Takahashi A, Matsuda M, et al. Russuphelol, a novel optically active chlorohydroquinone tetramer from the mushroom Russula subnigricans. Tetrahedron Lett 1995; 36: 5223–6Google Scholar
  92. 92.
    Herrmann M, Herrmann W, Langner J, et al. Der Zimtfarbene Weichporling — Hapalopilus rutilans — verursachte zwei Vergiftungsgeschehen. Mykol Mitt 1989; 32: 1–4Google Scholar
  93. 93.
    Kraft J, Bauer S, Keilhoff G. Biological effects of the dihydroorotate dehydrogenase inhibitor polyporic acid, a toxic constituent of the mushroom Hapalopilus rutilans, in rats. Arch Toxicol 1998; 72: 711–21PubMedCrossRefGoogle Scholar
  94. 94.
    Heim R. Considérations sur le genre Phaelus Pat. L’acide polyporique du Phaeolus nidulans (Pers.) Pat. Ann Cryptog Exotique 1931; 4: 183–5Google Scholar
  95. 95.
    Cohen PA, Robinson PD. 2,5-diphenyl-3,6-dihydroxy-1,4-benzoquinone (polyporic acid). Acta Crystallogr 2001; E57: o596–8Google Scholar
  96. 96.
    Burton JF, Cain BF. Antileukemic activity of polyporic acid. Nature 1959; 194: 1326–7CrossRefGoogle Scholar
  97. 97.
    Akiyama H, Toida T, Sakai S, et al. Determination of cyanide and thiocyanate in Sugihiratake mushroom using HPLC method with fluorometric detection. J Health Sci 2006; 52: 73–7CrossRefGoogle Scholar
  98. 98.
    Asia-Pacific Economic Cooperation — Emerging Infections Network (APEC-EINet). Japan: Acute neurological disorders in Niigata. APEC-EINet Newsletter, 2004 Nov 12, 7 (24) [online]. Available from URL: [Accessed 2006 Jul 10]Google Scholar
  99. 99.
    Gonmori K. A study on hydrogen cyanide in edible mushrooms, Pleurocybella porrigens and Grifola frondosa [abstract BE02]. 43rd International Meeting of the International Association of Forensic Toxicologists — East Meets West in Forensic Toxicology; 2005 Aug 29–Sep 2; Seoul, 214Google Scholar
  100. 100.
    Murata A. Acute encephalopathy outbreak in the northwest part of Japan: present situation. Japan Poison Information Center, National Institute of Infectious Diseases. Situation on Nov 8, 2004 [online]. Available from URL: and html version [Accessed 2006 Jul 10]
  101. 101.
    Kato T, Kawanami T, Shimizu H, et al. An outbreak of encephalopathy after eating autumn mushroom (Sugihiratake; Pleurocybella porrigens) in patients with renal failure: a clinical analysis of ten cases in Yamagata, Japan. No To Shinkei 2004; 56(12): 999–1007PubMedGoogle Scholar
  102. 102.
    Gejyo F, Homma N, Higuchi N, et al. A novel type of encephalopathy associated with mushroom Sugihiratake ingestion in patients with chronic kidney diseases. Kidney Int 2005; 68: 188–92PubMedCrossRefGoogle Scholar
  103. 103.
    Kurokawa K, Sato H, Nakajima K, et al. Clinical, neuroimaging and electroencephalographic findings of encephalopathy occurring after the ingestion of ‘sugihiratake’ (Pleurocybella porrigens), an autumn mushroom: a report of two cases. Rinsho Shinkeigaku 2005; 45: 111–6PubMedGoogle Scholar
  104. 104.
    Kuwabara T, Arai A, Honma N, et al. Acute encephalopathy among patients with renal dysfunction after ingestion of ‘sugihiratake’, angel’s wing mushroom: study on the incipient cases in the northern area of Niigata Prefecture. Rinsho Shinkeigaku 2005; 5: 39–45Google Scholar
  105. 105.
    Nishizawa M. Acute encephalopathy after ingestion of ‘sugihiratake’ mushroom. Rinsho Shinkeigaku 2005; 45: 818–20PubMedGoogle Scholar
  106. 106.
    Obara K, Okawa S, Kobayashi M, et al. A case of encephalitis-type encephalopathy related to Pleurocybella porrigens (Sugihiratake). Rinsho Shinkeigaku 2005; 45: 253–6PubMedGoogle Scholar
  107. 107.
    Aoyagi Y, Sugahara T. Beta-hydroxy-L-valine from Pleurocybella porrigens. Phytochemistry 1988; 27: 3306–7CrossRefGoogle Scholar
  108. 108.
    Furukawa K, Ying R, Nakajima T, et al. Hemagglutinins in fungus extracts and their blood group specificity. Exp Clin Immunogenet 1995; 12: 223–31PubMedGoogle Scholar
  109. 109.
    Hasuike Y, Nakanishi T, Moriguchi R, et al. Accumulation of cyanide and thiocyanate in haemodialysis patients. Nephrol Dial Transplant 2004; 19: 1474–9PubMedCrossRefGoogle Scholar
  110. 110.
    Stijve T, Meijer AAR. Hydrocyanic acid in mushrooms, with special reference to wild-growing and cultivated species. Dtsch Lebensmitt Rundsch 1999; 95: 366–73Google Scholar
  111. 111.
    Matsumoto T, Nagasawa E, Fukumasa-Nakai Y. Variation of ITS sequences in a natural Japanese population of Pleurocybella porrigens. Mycoscience 2005; 46: 370–5CrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2006

Authors and Affiliations

  1. 1.Toxicologie clinique et ToxicovigilanceCentre Hospitalier Universitaine de Grenoblecedex 9, GrenobleFrance

Personalised recommendations