Advertisement

Toxicological Reviews

, Volume 22, Issue 1, pp 65–70 | Cite as

Ricin Poisoning

  • Sally M. BradberryEmail author
  • Kirsten J. Dickers
  • Paul Rice
  • Gareth D. Griffiths
  • J. Allister Vale
Review Article

Abstract

Ricin is a naturally occurring toxin derived from the beans of the castor oil plant Ricinus communis. It is considered a potential chemical weapon. Ricin binds to cell surface carbohydrates, is internalised then causes cell death by inhibiting protein synthesis. Oral absorption is poor and absorption through intact skin most unlikely; the most hazardous routes of exposure being inhalation and injection. Features of toxicity mainly reflect damage to cells of the reticuloendothelial system, with fluid and protein loss, bleeding, oedema and impaired cellular defence against endogenous toxins. It has been estimated that in man, the lethal dose by inhalation (breathing in solid or liquid particles) and injection (into muscle or vein) is approximately 5–10 µg/kg, that is 350–700µg for a 70kg adult. Death has ensued within hours of deliberate subcutaneous injection. Management is supportive. Prophylactic immunisation against ricin toxicity is a developing research initiative, although presently not a realistic option in a civilian context.

Keywords

Continuous Positive Airway Pressure Castor Bean Creatine Kinase Activity Cell Surface Carbohydrate Hypovolaemic Shock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Pevny I. Ricinusschrot-Allergie. Derm Beruf Umwelt 1979; 27: 159–62PubMedGoogle Scholar
  2. 2.
    Burrows WD, Renner SE. Biological warfare agents as threats to potable water. Environ Health Perspect 1999; 107: 975–84PubMedCrossRefGoogle Scholar
  3. 3.
    Lord MJ, Joliffe NA, Marsden CJ, et al. Ricin: mechanisms of toxicity. Toxicol Rev. 2003; 22(1): 53–64PubMedCrossRefGoogle Scholar
  4. 4.
    Bingen A, Creppy EE, Gut JP, et al. The Kupffer cell is the first target in ricin-induced hepatitis. J Submicrosc Cytol 1987; 19: 247–56PubMedGoogle Scholar
  5. 5.
    Kumar O, Sugendran K, Vijayaraghavan R. Oxidative stress associated hepatic and renal toxicity induced by ricin in mice. Toxicon 2003; 41: 333–8PubMedCrossRefGoogle Scholar
  6. 6.
    Ishiguro M, Tanabe S, Matori Y, et al. Biochemical studies on oral toxicity of ricin: IV. A fate of orally administered ricin in rats. J Pharmacobiodyn 1992; 15: 147–56PubMedCrossRefGoogle Scholar
  7. 7.
    Fodstad Ø, Olsnes S, Pihl A. Toxicity, distribution and elimination of the cancerostatic lectins abrin and ricin after parenteral injection into mice. Br J Cancer 1976; 34: 418–25PubMedCrossRefGoogle Scholar
  8. 8.
    Griffiths GD, Newman H, Gee DJ. Identification and quantification of ricin toxin in animal tissues using ELISA. J Forensic Sci Soc 1986; 26: 349–58PubMedCrossRefGoogle Scholar
  9. 9.
    Ramsden CS, Drayson MT, Bell EB. The toxicity, distribution and excretion of ricin holotoxin in rats. Toxicology 1989; 55: 161–71PubMedCrossRefGoogle Scholar
  10. 10.
    Franz DR, Jaax NK. Ricin toxin. In: Sidell FR, Takafuji ET, Franz DR, editors. Medical aspects of chemical and biological warfare. Washington, DC: Office of the Surgeon General at TMM Publications, 1997: 631–42Google Scholar
  11. 11.
    Wedin GP, Neal JS, Everson GW, et al. Castor bean poisoning. Am J Emerg Med 1986; 4: 259–61PubMedCrossRefGoogle Scholar
  12. 12.
    Kopferschmitt J, Flesch F, Lugnier A, et al. Acute voluntary intoxication by ricin. Hum Toxicol 1983; 2: 239–42PubMedCrossRefGoogle Scholar
  13. 13.
    Palatnick W, Tenenbein M. Hepatotoxicity from castor bean ingestion in a child. J Toxicol Clin Toxicol 2000; 38: 67–9PubMedCrossRefGoogle Scholar
  14. 14.
    Crompton R, Gall D. Georgi Markov: death in a pellet. Med Leg J 1980; 48: 51–62PubMedGoogle Scholar
  15. 15.
    Challoner KR, McCarron MM. Castor bean intoxication. Ann Emerg Med 1990; 19: 1177–83PubMedCrossRefGoogle Scholar
  16. 16.
    Möschl H. Zur Klinik und Pathogenese der Rizinvergiftung. Wien Klin Wochenschr 1938; 51: 473–5Google Scholar
  17. 17.
    Bispham WN. Report of cases of poisoning by fruit of Ricinus communis. Am J Med Sci 1903; 12: 319–21CrossRefGoogle Scholar
  18. 18.
    Kaszás T, Papp G. Ricinussamen-Vergiftung von Schulkindern. Archiv Toxikol 1960; 18: 145–50Google Scholar
  19. 19.
    Hutchinson LTR. Poisoning by castor oil seeds. BMJ 1900; 1: 1155–6CrossRefGoogle Scholar
  20. 20.
    Aplin PJ, Eliseo T. Ingestion of castor oil plant seeds. Med J Aust 1997; 167: 260–1PubMedGoogle Scholar
  21. 21.
    Malizia E, Sarcinelli L, Andreucci G. Ricinus poisoning: a familiar epidemy. Acta Pharmacol. Toxicol 1977; 41: 351–61Google Scholar
  22. 22.
    Meldrum WP. Poisoning by castor oil seeds. BMJ 1900; 1: 317Google Scholar
  23. 23.
    Ingle VN, Kale VG, Talwalkar YB. Accidental poisoning in children with particular reference to castor beans. Indian J Pediatr 1966; 33: 237–40PubMedCrossRefGoogle Scholar
  24. 24.
    Spyker DA, Sauer K, Kell SO, et al. A castor bean poisoning and a widely available bioassay for ricin [abstract]. Vet Hum Toxicol 1982; 24: 293Google Scholar
  25. 25.
    Rauber A, Heard J. Castor bean toxicity re-examined: a new perspective. Vet Hum Toxicol 1985; 27: 498–502PubMedGoogle Scholar
  26. 26.
    Koch LA, Caplan J. Castor bean poisoning. Am J Dis Child 1942; 64: 485–6Google Scholar
  27. 27.
    Levin Y, Sherer Y, Bibi H, et al. Rare Jatropha multifida intoxication in two children. J Emerg Med 2000; 19: 173–5PubMedCrossRefGoogle Scholar
  28. 28.
    Balint GA. Ricin: the toxic protein of castor oil seeds. Toxicology 1974; 2: 77–102PubMedCrossRefGoogle Scholar
  29. 29.
    Leek MD. Pathological changes induced by ricin poisoning. Leeds: University of Leeds, 1989Google Scholar
  30. 30.
    Leek MD, Griffiths GD, Green MA. Intestinal pathology following intramuscular ricin poisoning. J Pathol 1989; 159: 329–34PubMedCrossRefGoogle Scholar
  31. 31.
    Fine DR, Shepherd HA, Griffiths GD, et al. Sub-lethal poisoning by self-injection with ricin. Med Sci Law 1992; 32: 70–2PubMedGoogle Scholar
  32. 32.
    Targosz D, Winnik L, Szkolnicka B. Suicidal poisoning with castor bean (Ricinus communis) extract injected subcutaneously: case report [abstract]. J Toxicol Clin Toxicol 2002; 40: 398Google Scholar
  33. 33.
    Fodstad Ø, Kvalheim G, Godal A, et al. Phase I study of the plant protein ricin. Cancer Res 1984; 44: 862–5PubMedGoogle Scholar
  34. 34.
    Engert A, Diehl V, Schnell R, et al. A phase-I study of an anti-CD25 ricin A-chain immunotoxin (RFT5-SMPT-dgA) in patients with refractory Hodgkin’s lymphoma. Blood 1997; 89: 403–10PubMedGoogle Scholar
  35. 35.
    Baluna R, Sausville EA, Stone MJ, et al. Decreases in levels of serum fibronectin predict the severity of vascular leak syndrome in patients treated with ricin A chain-containing immunotoxins. Clin Cancer Res 1996; 2: 1705–12PubMedGoogle Scholar
  36. 36.
    Schindler J, Sausville E, Messmann R, et al. The toxicity of deglycosylated ricin A chain-containing immunotoxins in patients with non-Hodgkin’s lymphoma is exacerbated by prior radiotherapy: a retrospective analysis of patients in five clinical trials. Clin Cancer Res 2001; 7: 255–8PubMedGoogle Scholar
  37. 37.
    Wilhelmsen C, Pitt L. Lesions of acute inhaled lethal ricin intoxication in rhesus monkeys [abstract]. Vet Pathol 1993; 30: 482Google Scholar
  38. 38.
    Griffiths GD, Rice P, Allenby AC, et al. Inhalation toxicology and histopathology of ricin and abrin toxins. Inhal Toxicol 1995; 7: 269–88CrossRefGoogle Scholar
  39. 39.
    Kokes J, Assaad A, Pitt L, et al. Acute pulmonary response of rats exposed to a sublethal dose of ricin aerosol [abstract]. FASEB J 1994; 8: A144Google Scholar
  40. 40.
    Brown RFR, White DE. Ultrastructure of rat lung following inhalation of ricin aerosol. Int J Exp Pathol 1997; 78: 267–76PubMedCrossRefGoogle Scholar
  41. 41.
    Topping MD, Henderson RTS, Luczynska CM, et al. Castor bean allergy among workers in the felt industry. Allergy 1982; 37: 603–8PubMedCrossRefGoogle Scholar
  42. 42.
    Figley KD, Elrod RH. Endemic asthma due to castor bean dust. JAMA 1928; 90: 79–82CrossRefGoogle Scholar
  43. 43.
    Kanerva L, Estlander T, Jolanki R. Long-lasting contact urticaria: type I and type IV allergy from castor bean and a hypothesis of systemic IgE-mediated allergic dermatitis. Dermatol Clin 1990; 8: 181–8PubMedGoogle Scholar
  44. 44.
    Metz G, Böcher D, Metz J. IgE-mediated allergy to castor bean dust in a landscape gardener. Contact Dermatitis 2001; 44: 367PubMedGoogle Scholar
  45. 45.
    Lockey Jr SD, Dunkelberger L. Anaphylaxis from an Indian necklace. JAMA 1968; 206: 2900–1PubMedCrossRefGoogle Scholar
  46. 46.
    Grant WM, Schuman JS. Toxicology of the eye: effects on the eyes and visual system from chemicals, drugs, metals and minerals, plants, toxins and venoms; also, systemic side effects from eye medications. 4th ed. Springfield (IL): Charles C. Thomas, 1993Google Scholar
  47. 47.
    May MJ, Hartley MR, Roberts LM, et al. Ribosome inactivation by ricin A chain: a sensitive method to assess the activity of wild-type and mutant polypeptides. EMBO J 1989; 8: 301–8PubMedGoogle Scholar
  48. 48.
    Leith AG, Griffiths GD, Green MA. Quantification of ricin toxin using a highly sensitive avidin/biotin enzyme-linked immunosorbent assay. J Forensic Sci Soc 1988; 28: 227–36PubMedCrossRefGoogle Scholar
  49. 49.
    Houston LL. Protection of mice from ricin poisoning by treatment with antibodies directed against ricin. J Toxicol Clin Toxicol 1982; 19: 385–9PubMedCrossRefGoogle Scholar
  50. 50.
    Hewetson JF, Rivera VP, Lemley PV, et al. A formalinized toxoid for protection of mice from inhaled ricin. Vaccine Res 1995; 4: 179–87Google Scholar
  51. 51.
    Griffiths GD, Phillips GJ, Bailey SC. Comparison of the quality of protection elicited by toxoid and peptide liposomal vaccine formulations against ricin as assessed by markers of inflammation. Vaccine 1999; 17: 2562–8PubMedCrossRefGoogle Scholar
  52. 52.
    Griffiths GD, Lindsay CD, Allenby AC, et al. Protection against inhalation toxicity of ricin and abrin by immunisation. Hum Exp Toxicol 1995; 14: 155–64PubMedCrossRefGoogle Scholar
  53. 53.
    Kende M, Yan C, Hewetson J, et al. Oral immunization of mice with ricin toxoid vaccine encapsulated in polymeric microspheres against aerosol challenge. Vaccine 2002; 20: 1681–91PubMedCrossRefGoogle Scholar
  54. 54.
    Poli MA, Rivera VR, Pitt ML, et al. Aerosolized specific antibody protects mice from lung injury associated with aerosolized ricin exposure. Toxicon 1996; 34: 1037–44PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2003

Authors and Affiliations

  • Sally M. Bradberry
    • 1
    • 2
    Email author
  • Kirsten J. Dickers
    • 1
  • Paul Rice
    • 3
  • Gareth D. Griffiths
    • 3
  • J. Allister Vale
    • 1
    • 2
  1. 1.National Poisons Information Service (Birmingham Centre)City HospitalBirminghamUK
  2. 2.West Midlands Poisons UnitCity HospitalBirminghamUK
  3. 3.Dstl Porton DownSalisburyUK

Personalised recommendations