Advertisement

American Journal of Drug Delivery

, Volume 1, Issue 1, pp 27–42 | Cite as

Defining the Role of Ultrasound in Drug Delivery

  • William G. PittEmail author
Healthcare Technology Review

Abstract

Ultrasound is a very effective modality for drug delivery because energy that is noninvasively transmitted through the skin can be focused on a specific location and employed to release drug at that site. Most of the drug delivery techniques employ one or both of the results of ultrasonic insonation — the generation of thermal energy, called hyperthermia, or the oscillation of gas bubbles, called acoustic cavitation. Cavitation perturbs cell membrane structures via several modes and increases the permeability to drugs or other solutes. Micro-convection, caused by stable cavitation, shears cell membranes. The shock waves and fluid jets of inertial cavitation disrupt and pierce cell membranes. While intense cavitation can lyse cells, moderate cavitation can transiently increase membrane permeability without lysis or permanent damage.

Cavitation events can increase the permeability of larger tissue systems, such as skin or capillary walls. In skin, cavitation appears to transiently disrupt the lipid organization of the stratum corneum, as well as to form pores. In bacteria, cavitation is implicated in increasing the cell wall permeability towards antibacterials. Cavitation events also increase the rate of drug transport in general by superseding the slow diffusion process with convective transport processes. Ultrasound increases the transport of proteins into blood clots, of antibacterials through alginate, and of drugs from polymeric depots. Drugs can also be released ultrasonically from liposomes and micelles that circulate in the blood and retain their cargo of drugs until they enter an insonated volume of tissue. Gas filled microbubbles in the circulatory system cavitate upon insonation and disrupt surrounding cells and membranes, thus allowing the passage of drugs into the targeted tissue.

The unique advantages of ultrasonic drug delivery have been employed in several tissue systems, including dermal and transdermal delivery, localized delivery to tumors, and delivery to selected organs, such as the heart, eyes, and lungs.

The scope of this review article covers the use of ultrasound in delivering drugs to targeted tissues, with emphasis on drug release from liposomes, micelles and polymeric depots.

Keywords

Drug Delivery Critical Micelle Concentration Cationic Liposome Convective Transport Acoustic Streaming 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Support for this review and this research has been generously provided by grants from the NIH (CA 76562 and HL 52216) and the Cancer Research Center of Brigham Young University. My colleagues at the University of Utah, Natalya Rapoport and Doug Christensen, are warmly acknowledged for their collaboration throughout the years. Jennifer Matsumura, Mike Parini, Jared Nelson, and John Carmen assisted with preparation of the manuscript.

The authors have no conflicts of interest that are directly relevant to the content of this manuscript.

References

  1. 1.
    Bommannan D, Okuyama H, Stauffer P, et al. Sonophoresis (I): the use of high-frequency ultrasound to enhance transdermal drug delivery. Pharm Res 1992; 9(4): 559–64PubMedCrossRefGoogle Scholar
  2. 2.
    Vyas SP, Singh R, Asati RK. Liposomally encapsulated diclofenac for sonophoresis induced systemic delivery. J Microencapsul 1995; 12(2): 149–54PubMedCrossRefGoogle Scholar
  3. 3.
    Mitragotri S, Blankschtein D, Langer R. Transdermal drug delivery using low-frequency sonophoresis. Pharm Res 1996; 13(3): 411–20PubMedCrossRefGoogle Scholar
  4. 4.
    Christensen DA. Ultrasonic bioinstrumentation. New York: Wiley, 1988Google Scholar
  5. 5.
    Goss SA, Johnston RL, Dunn F. Comprehensive compilation of empirical ultrasonic properties of mammalian tissues: II. J Acoust Soc Am 1980; 68(1): 93–108PubMedCrossRefGoogle Scholar
  6. 6.
    Goss SA, Johnston RL, Dunn F. Comprehensive compilation of empirical ultrasonic properties of mammalian tissues. J Acoust Soc Am 1978; 64(2): 423–53PubMedCrossRefGoogle Scholar
  7. 7.
    Barnett SB, Haar GR, Ziskin MC, et al. Current status of research on biophysical effects of ultrasound. Ultrasound Med Biol 1994; 20(3): 205–18PubMedCrossRefGoogle Scholar
  8. 8.
    Correas JM, Bridal L, Lesavre A, et al. Ultrasound contrast agents: properties, principles of action, tolerance, and artifacts. Eur Radiol 2001; 11(8): 1316–28PubMedCrossRefGoogle Scholar
  9. 9.
    Forsberg F, Merton DA, Liu JB, et al. Clinical applications of ultrasound contrast agents. Ultrasonics 1998; 36(1–5): 695–701PubMedCrossRefGoogle Scholar
  10. 10.
    Rooney JA. Hemolysis near an ultrasonically pulsating gas bubble. Science 1970; 169: 869–71PubMedCrossRefGoogle Scholar
  11. 11.
    Williams AR, Miller DL. Photometric detection of ATP release from human erythrocytes exposed to ultrasonically activated gas-filled pores. Ultrasound Med Biol 1980; 6: 251–6PubMedCrossRefGoogle Scholar
  12. 12.
    Miller DL. A review of the ultrasonic bioeffects of microsonation, gas-body activation, and related cavitation-like phenomena. Ultrasound Med Biol 1987; 13(8): 443–70PubMedCrossRefGoogle Scholar
  13. 13.
    Nyborg WL. Biological effects of ultrasound: development of safety guidelines (part II): general review. Ultrasound Med Biol 2001; 27(3): 301–33PubMedCrossRefGoogle Scholar
  14. 14.
    Urick RJ. Principles of underwater sound. 3rd ed. San Francisco (CA): McGraw-Hill Book Company, 1983Google Scholar
  15. 15.
    Brennen CE. Cavitation and bubble dynamics. New York: Oxford University Press, 1995Google Scholar
  16. 16.
    Tomita Y, Shima A. High-speed photographic observations of laser-induced cavitation bubbles in water. Acustica 1990; 71(3): 161–71Google Scholar
  17. 17.
    Starritt HC, Duck FA, Humphrey VF. An experimental investigation of streaming in pulsed diagnostic ultrasound beams. Ultrasound Med Biol 1989; 15(4): 363–73PubMedCrossRefGoogle Scholar
  18. 18.
    Draper DO, Castel JC, Castel D. Rate of temperature increase in human muscle during 1MHz and 3MHz continuous ultrasound. J Orthop Sports Phys Ther 1995; 22(4): 142–50PubMedGoogle Scholar
  19. 19.
    Durney CH, Christensen DA. Hyperthermia for cancer therapy. In: Gandhi OP, editor. Biological effects and medical applications of electromagnetic fields. New York: Prentice-Hall, 1990: 438–77Google Scholar
  20. 20.
    Huber PE, Jenne JW, Rastert R, et al. A new noninvasive approach in breast cancer therapy using magnetic resonance imaging-guided focused ultrasound surgery. Cancer Res 2001; 61: 8441–7PubMedGoogle Scholar
  21. 21.
    Kato H, Koyama T, Nikawa Y, et al. Research and development of hyperthermia machines for present and future clinical needs. Int J Hyperthermia 1998; 14(1): 1–11PubMedCrossRefGoogle Scholar
  22. 22.
    Blomley MJ, Eckersley RJ. Functional ultrasound methods in oncological imaging. Eur J Cancer 2002; 38(16): 2108–15PubMedCrossRefGoogle Scholar
  23. 23.
    Khomak EB, Tsybin IM. Ultrasonic diagnostic techniques. Crit Rev Biomed Eng 2001; 29(5–6): 661–74PubMedGoogle Scholar
  24. 24.
    Wyber JA, Andrews J, D’Emanuele A. The use of sonication for the efficient delivery of plasmid DNA into cells. Pharm Res 1997; 14(6): 750–6PubMedCrossRefGoogle Scholar
  25. 25.
    Qian Z, Sagers RD, Pitt WG. Investigation of the mechanism of the bioacoustic effect. J Biomed Mater Res 1999; 44: 198–205PubMedCrossRefGoogle Scholar
  26. 26.
    Hughes DE, Nyborg WL. Cell disruption by ultrasound. Science 1962; 123: 108–14CrossRefGoogle Scholar
  27. 27.
    Liu J, Lewis TN, Prausnitz MR. Non-invasive assessment and control of ultrasound-mediated membrane permeabilization. Pharm Res 1998; 15(6): 918–24PubMedCrossRefGoogle Scholar
  28. 28.
    Morton KI, Ter Haar GR, Stratford IJ, et al. Subharmonic emission as an indicator of ultrasonically-induced biological damage. Ultrasound Med Biol 1983; 9(6): 629–33PubMedCrossRefGoogle Scholar
  29. 29.
    Cochran SA, Prausnitz MR. Sonoluminescence as an indicator of cell membrane disruption by acoustic cavitation. Ultrasound Med Biol 2001; 27(6): 841–50PubMedCrossRefGoogle Scholar
  30. 30.
    Mortimer AJ, Dyson M. The effect of therapeutic ultrasound on calcium uptake in fibroblasts. Utlrasound Med Biol 1988; 14(6): 499–506CrossRefGoogle Scholar
  31. 31.
    Saito K, Miyake K, McNeil PL, et al. Plasma membrane disruption underlies injury of the corneal endothelium by ultrasound. Exp Eye Res 1999; 68: 421–7CrossRefGoogle Scholar
  32. 32.
    Ogawa K, Tachibana K, Uchida T, et al. High-resolution scanning electron microscopic evaluation of cell-membrane porosity by ultrasound. Med Electron Microsc 2001; 34(4): 249–53PubMedCrossRefGoogle Scholar
  33. 33.
    Tachibana K, Uchida T, Ogawa K, et al. Induction of cell-membrane porosity by ultrasound [letter]. Lancet 1999; 353: 1409PubMedCrossRefGoogle Scholar
  34. 34.
    Unger EC, McCreery TP, Sweitzer RH. Ultrasound enhances gene expression of liposomal transfection. Invest Radiol 1997; 32(12): 723–7PubMedCrossRefGoogle Scholar
  35. 35.
    Teupe C, Richter S, Fisslthaler B, et al. Vascular gene transfer of phosphomimetic endothelial nitric oxide synthase (S1177D) using ultrasound-enhanced destruction of plasmid-loaded microbubbles improves vasoreactivity. Circulation 2002; 105(9): 1104–9PubMedCrossRefGoogle Scholar
  36. 36.
    Price RJ, Kaul S. Contrast ultrasound targeted drug and gene delivery: an update on a new therapeutic modality. J Cardiovasc Pharmacol Ther 2002; 7(3): 171–80PubMedCrossRefGoogle Scholar
  37. 37.
    Lawrie A, Brisken AF, Francis SE, et al. Microbubble-enhanced ultrasound for vascular gene delivery. Gene Ther 2000; 7(23): 2023–7PubMedCrossRefGoogle Scholar
  38. 38.
    Unger EC, Hersh E, Vannan M, et al. Gene delivery using ultrasound contrast agents. Echocardiography 2001; 18(4): 355–61PubMedCrossRefGoogle Scholar
  39. 39.
    Guillaume C, Delepine P, Droal C, et al. Aerosolization of cationic lipid-DNA complexes: lipoplex characterization and optimization of aerosol delivery conditions. Biochem Biophys Res Commun 2001; 286(3): 464–71PubMedCrossRefGoogle Scholar
  40. 40.
    Pillai R, Petrak K, Blezinger P, et al. Ultrasonic nebulization of cationic lipid-based gene delivery systems for airway administration. Pharm Res 1998; 15(11): 1743–7PubMedCrossRefGoogle Scholar
  41. 41.
    Miura S, Tachibana K, Okamoto T, et al. In vitro transfer of antisense oligodeoxynucleotides into coronary endothelial cells by ultrasound. Biochem Biophys Res Commun 2002; 298(4): 587–90PubMedCrossRefGoogle Scholar
  42. 42.
    Seemann S, Hauff P, Schultze-Mosgau M, et al. Pharmaceutical evaluation of gas-filled microparticles as gene delivery system. Pharm Res 2002; 19(3): 250–7PubMedCrossRefGoogle Scholar
  43. 43.
    Koch S, Pohl P, Cobet U, et al. Ultrasound enhancement of liposome-mediated cell transfection is caused by cavitation effects. Ultrasound Med Biol 2000; 26(5): 897–903PubMedCrossRefGoogle Scholar
  44. 44.
    Taniyama Y, Tachibana K, Hiraoka K, et al. Local delivery of plasmid DNA into rat carotid artery using ultrasound. Circulation 2002; 105(10): 1233–9PubMedCrossRefGoogle Scholar
  45. 45.
    Beeri R, Guerrero JL, Supple G, et al. New efficient catheter-based system for myocardial gene delivery. Circulation 2002; 106(14): 1756–9PubMedCrossRefGoogle Scholar
  46. 46.
    Barry BW. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci 2001; 14: 101–14PubMedCrossRefGoogle Scholar
  47. 47.
    Prausnitz MR. Reversible skin permeabilization for transdermal delivery of macro-molecules. Crit Rev Ther Drug Carrier Syst 1997; 14(4): 455–83PubMedCrossRefGoogle Scholar
  48. 48.
    Guy RH. Current status and future prospects of transdermal drug delivery. Pharm Res 1996; 13(12): 1765–9PubMedCrossRefGoogle Scholar
  49. 49.
    Kassan DG, Lynch AM, Stiller MJ. Physical enhancement of dermatologic drug delivery: iontophoresis and phonophoresis. J Am Acad Dermatol 1996; 34(4): 657–66PubMedCrossRefGoogle Scholar
  50. 50.
    Byl NN. The use of ultrasound as an enhancer for transcutaneous drug delivery: phonophoresis. Phys Ther 1995; 75(6): 539–53PubMedGoogle Scholar
  51. 51.
    Tyle P, Agrawala P. Drug delivery by phonophoresis. Pharm Res 1989; 6(5): 355–61PubMedCrossRefGoogle Scholar
  52. 52.
    Skauen DM, Zentner GM. Phonophoresis. Int J Pharm 1984; 20: 235–45CrossRefGoogle Scholar
  53. 53.
    Bommannan D, Menon GK, Okuyama H, et al. Sonophoresis (II): examination of the mechanism (s) of ultrasound-enhanced transdermal drug delivery. Pharm Res 1992; 9(8): 1043–7PubMedCrossRefGoogle Scholar
  54. 54.
    Menon GK, Bommannan DB, Elias PM. High-frequency sonophoresis: permeation pathways and structural basis for enhanced permeability. Skin Pharmacol 1994; 7: 130–9PubMedCrossRefGoogle Scholar
  55. 55.
    Mitragotri S, Blankschtein D, Langer R. Ultrasound-mediated transdermal protein delivery. Science 1995; 269: 850–3PubMedCrossRefGoogle Scholar
  56. 56.
    Mitragotri S, Edwards DA, Blankschtein D, et al. A mechanistic study of ultrasonically-enhanced transdermal drug delivery. J Pharm Sci 1995; 84(6): 697–706PubMedCrossRefGoogle Scholar
  57. 57.
    Johnson ME, Mitragotri S, Patel A, et al. Synergistic effects of chemical enhancers and therapeutic ultrasound on transdermal drug delivery. J Pharm Sci 1996; 85(7): 670–7PubMedCrossRefGoogle Scholar
  58. 58.
    Kost J, Pliquett U, Mitragotri S, et al. Synergistic effect of electric field and ultrasound on transdermal transport. Pharm Res 1996; 13(4): 633–8PubMedCrossRefGoogle Scholar
  59. 59.
    Mitragotri S, Blankschtein D, Langer R. An explanation for the variation of the sonophoretic transdermal transport enhancement from drug to drug. J Pharm Sci 1997; 86(10): 1190–2PubMedCrossRefGoogle Scholar
  60. 60.
    Mitragotri S. Synergistic effect of enhancers for transdermal drug delivery. Pharm Res 2000; 17(11): 1354–7PubMedCrossRefGoogle Scholar
  61. 61.
    Mitragotri S, Kost J. Low-frequency sonophoresis: a noninvasive method of drug delivery and diagnostics. Biotechnol Prog 2000; 16: 488–92PubMedCrossRefGoogle Scholar
  62. 62.
    Tezel A, Sens A, Tuchscherer J, et al. Frequency dependence of sonophoresis. Pharm Res 2001; 18(12): 1694–700PubMedCrossRefGoogle Scholar
  63. 63.
    Tang H, Mitragotri S, Blankschtein D, et al. Theoretical description of transdermal transport of hydrophilic permeants: application to low-frequency sonophoresis. J Pharm Sci 2001; 90(5): 545–68PubMedCrossRefGoogle Scholar
  64. 64.
    Terahara T, Mitragotri S, Kost J, et al. Dependence of low-frequency sonophoresis on ultrasound parameters; distance of the horn and intensity. Int J Pharm 2002; 235: 35–42PubMedCrossRefGoogle Scholar
  65. 65.
    Tezel A, Sens A, Mitragotri S. Incorporation of lipophilic pathways into the porous pathway model for describing skin permeabilization during low-frequency sonophoresis. J Control Release 2002; 83: 183–8PubMedCrossRefGoogle Scholar
  66. 66.
    Tezel A, Sens A, Tuchscherer J, et al. Synergistic effect of low-frequency ultrasound and surfactants on skin permeability. J Pharm Sci 2002; 91(1): 91–100PubMedCrossRefGoogle Scholar
  67. 67.
    Mitragotri S, Farrell J, Tang H, et al. Determination of threshold energy dose for ultrasound-induced transdermal drug transport. J Control Release 1999; 63: 41–52CrossRefGoogle Scholar
  68. 68.
    Langer R. Biomaterials in drug delivery and tissue engineering: one laboratory’s experience. Acc Chem Res 2000; 33: 94–101PubMedCrossRefGoogle Scholar
  69. 69.
    Wu J, Chappelow J, Yang J, et al. Defects generated in human stratum corneum specimens by ultrasound. Ultrasound Med Biol 1998; 24(5): 705–10PubMedCrossRefGoogle Scholar
  70. 70.
    Yamashita N, Tachibana K, Ogawa K, et al. Scanning electron microscopic evaluation of the skin surface after ultrasound exposure. Anat Rec 1997; 247: 455–61PubMedCrossRefGoogle Scholar
  71. 71.
    Hippius M, Uhlemann C, Smolenski U, et al. In vitro investigations of drug release and penetration: enhancing effect of ultrasound on transmembrane transport of flufenamic acid. Int J Clin Pharm Ther 1998; 36: 107–11Google Scholar
  72. 72.
    Asano J, Suisha F, Takada M, et al. Effects of pulsed output ultrasound on the transdermal absorption of indomethacin from an ointment in rats. Biol Pharm Bull 1997; 20(3): 288–91PubMedCrossRefGoogle Scholar
  73. 73.
    Fang J-Y, Hwang T-L, Huang Y-B, et al. Transdermal iontophoresis of sodium nonivamide acetate V: combined effect of physical enhancement methods. Int J Pharm 2002; 235: 95–105PubMedCrossRefGoogle Scholar
  74. 74.
    Boucaud A, Garrigue MA, Machet L, et al. Effect of sonication parameters on transdermal delivery of insulin to hairless rats. J Control Release 2002; 81: 113–9PubMedCrossRefGoogle Scholar
  75. 75.
    Levy D, Kost J, Meshulam Y, et al. Effect of ultrasound on transdermal drug delivery to rats and guinea pigs. J Clin Invest 1989; 83: 2074–8PubMedCrossRefGoogle Scholar
  76. 76.
    Miyazaki S, Mizuoka H, Kohata Y, et al. External control of drug release and penetration (VI): enhancing effect of ultrasound on the transdermal absorption of indomethacin from an ointment in rats. Chem Pharm Bull (Tokyo) 1992; 40(10): 2826–30CrossRefGoogle Scholar
  77. 77.
    Zhang I, Shung KK, Edwards DA. Hydrogels with enhanced mass transfer for transdermal drug delivery. J Pharm Sci 1996; 85(12): 1312–6PubMedCrossRefGoogle Scholar
  78. 78.
    Rapoport N, Smirnov AI, Timoshin A, et al. Factors affecting the permeability of P. aeruginosa cell walls toward lipophilic compounds: effects of ultrasound and cell age. Arch Biochem Biophys 1997; 344(1): 114–24PubMedCrossRefGoogle Scholar
  79. 79.
    Rediske AM, Rapoport N, Pitt WG. Reducing bacterial resistance to antibiotics with ultrasound. Lett Appl Microbiol 1999; 28(1): 81–4PubMedCrossRefGoogle Scholar
  80. 80.
    Williams RG, Pitt WG. In vitro response of Escerichia coli to antibiotic and ultrasound at various insonation intensities. J Biomater Appl 1997; 12: 20–30PubMedGoogle Scholar
  81. 81.
    Kruskal J, Goldberg S, Kane R. Novel in vivo use of conventional ultrasound to guide and enhance molecular delivery and uptake into solid tumors. Annual Meeting of the Radiological Society of North America; 2001 Nov 25–30; Chicago (IL): 804Google Scholar
  82. 82.
    Kwok CS, Mourad PD, Crum LA, et al. Self-assembled molecular structures as ultrasonically-responsive barrier membranes for pulsatile drug delivery. J Biomed Mater Res 2001; 57: 151–64PubMedCrossRefGoogle Scholar
  83. 83.
    Floras JD, Liang H. Acoustically assisted diffusion through membranes and bio-materials. Food Technol 1994; 48(12): 79–84Google Scholar
  84. 84.
    Incropera FP, DeWitt DP. Fundamentals of heat and mass transfer. 5th ed. New York: Wiley, 2001Google Scholar
  85. 85.
    Harris HG, Goren SL. Axial diffusion in a cylinder with pulsed flow. Chem Eng Sci 1967; 22: 1571–6CrossRefGoogle Scholar
  86. 86.
    Peterson RV, Pitt WG. The effect of frequency and power density on the ultrasonically-enhanced killing of biofilm-sequestered Escherichia coli. Colloids Surf B Biointerfaces 2000; 17: 219–27CrossRefGoogle Scholar
  87. 87.
    Li H, Ohdaira E, Ide M. Enhancement in diffusion of electrolyte through membrane using ultrasonic dialysis equipment with plane membrane. Jpn J Appl Phys 1995; 34(5B): 2725–9CrossRefGoogle Scholar
  88. 88.
    Francis CW, Onundarson PT, Carstensen EL, et al. Enhancement of fibrinolysis in vitro by ultrasound. J Clin Invest 1992; 90(11): 2063–8PubMedCrossRefGoogle Scholar
  89. 89.
    Lauer CG, Burge R, Tang DB, et al. Effect of ultrasound on tissue-type plasminogen activator-induced thrombolysis. Circulation 1992; 86: 1257–64PubMedCrossRefGoogle Scholar
  90. 90.
    Francis CW, Blinc A, Lee S, et al. Ultrasound accelerates transport of recombinant tissue plasminogen activator into clots. Ultrasound Med Biol 1995; 21(3): 419–24PubMedCrossRefGoogle Scholar
  91. 91.
    Suchkova V, Carstensen EL, Francis CW. Ultrasound enhancement of fibrinolysis at frequencies of 27 to 100 kHz. Ultrasound Med Biol 2002; 28(3): 377–82PubMedCrossRefGoogle Scholar
  92. 92.
    Siddiqi F, Blinc A, Braaten J, et al. Ultrasound increases flow through fibrin gels. Thromb Haemostasis 1995; 73(3): 495–8Google Scholar
  93. 93.
    Williams KA, Clark HA, Allison DG. Use of ultrasound to facilitate antibiotic diffusion through Pseudomonas aeruginosa alginate. J Antimicrob Chemother 1995; 36: 463–73PubMedCrossRefGoogle Scholar
  94. 94.
    Scott G, editor. Mechanisms of polymer degradation and stabilisation. London: Elsevier, 1990Google Scholar
  95. 95.
    Hamid SH, Amin MB, Maadhah AG, editors. Handbook of polymer degradation. New York: Marcel Dekker, 1992Google Scholar
  96. 96.
    Brett HHW, Jellinek HHG. Degradation of long chain molecules by ultrasonic waves, Part V: cavitation and the effect of dissolved gases. J Polym Sci 1954; 13: 441–5CrossRefGoogle Scholar
  97. 97.
    Langton NH, Vaughan P. Ultrasonic degradation of high polymers. Plastics (London) 1958; 23: 308–11Google Scholar
  98. 98.
    Clough RL, Billingham NC, Gillen KT, editors. Polymer durability: degradation, stabilization, and lifetime prediction. Washington, DC: American Chemical Society, 1996Google Scholar
  99. 99.
    Agrawal CM, Kennedy ME, Micallef DM. The effects of ultrasound irradiation on a biodegradable 50-50% copolymer of polylactic and polyglycolic acids. J Biomed Mater Res 1994; 28(9): 851–9PubMedCrossRefGoogle Scholar
  100. 100.
    Kost J, Leong K, Langer R. Ultrasound-enhanced polymer degradation and release of incorporated substances. Proc Natl Acad Sci USA 1989; 86: 7663–6PubMedCrossRefGoogle Scholar
  101. 101.
    Husseini GA, Myrup GD, Pitt WG, et al. Factors affecting acoustically-triggered release of drugs from polymeric micelles. J Control Release 2000; 69: 43–52PubMedCrossRefGoogle Scholar
  102. 102.
    Huang S, Hamilton AJ, Tiukinhoy SD, et al. Liposomes as ultrasound imaging contrast agents and as ultrasound-sensitive drug delivery agents. Cell Mol Biol Lett 2002; 7(2): 233–5PubMedGoogle Scholar
  103. 103.
    Unger EC, McCreery TP, Sweitzer RH, et al. Acoustically active lipospheres containing paclitaxel: a new therapeutic ultrasound contrast agent. Invest Radiol 1998; 33(12): 886–92PubMedCrossRefGoogle Scholar
  104. 104.
    Husseini G, Christensen DA, Pitt WG, et al. Acoustically activated delivery of doxorubicin and ruboxyl to HL-60 cells from Pluronic (P-105) micelles: a real time measurement. In: 25th Annual Meeting of the Society For Biomaterials; 1999 Apr 28-May 2; Providence (RI). Society for Biomaterials, 1999: 429Google Scholar
  105. 105.
    Ishida T, Kirchmeier MJ, Moase EH, et al. Targeted delivery and triggered release of liposomal doxorubicin enhances cytotoxicity aganst human B lymphoma cells. Biochim Biophys Acta 2001; 1515(2): 144–58PubMedCrossRefGoogle Scholar
  106. 106.
    Gabizon AA. Pegylated liposomal doxorubicin: metamorphosis of an old drug into a new form of chemotherapy. Cancer Invest 2001; 19(4): 424–36PubMedCrossRefGoogle Scholar
  107. 107.
    Tacker JR, Anderson RU. Delivery of antitumor drug to bladder cancer by use of phase transition liposomes and hyperthermia. J Ural 1982; 127: 1211–4Google Scholar
  108. 108.
    Kodama M, Miyata T, Takaichi Y. Calorimetric investigations of phase transitions of sonicated vesicles of dimyristoylphosphatidylcholine. Biochim Biophys Acta 1993; 1169(1): 90–7PubMedCrossRefGoogle Scholar
  109. 109.
    Morse R, Ma LD, Magin RL, et al. Ultrasound interaction with large unilamellar vesicles at the phospholipid phase transition: perturbation by phospholipid side chain substitution with deuterium. Chem Phys Lipids 1999; 103(1–2): 1–10PubMedCrossRefGoogle Scholar
  110. 110.
    Maynard VM, Magin RL, Dunn F. Ultrasonic absorption and permeability for liposomes near phase transition. Chem Phys Lipids 1985; 37(1): 1–12PubMedCrossRefGoogle Scholar
  111. 111.
    Ning S, Macleod K, Abra R, et al. Hyperthermia induces doxorubicin release from long-circulating liposomes and enhances their anti-tumor efficacy. Int J Radiat Oncol Biol Phys 1994; 29(4): 827–34PubMedCrossRefGoogle Scholar
  112. 112.
    Wasan EK, Reimer DL, Bally MB. Plasmid DNA is protected against ultrasonic cavitation-induced damage when complexed to cationic liposomes. J Pharm Sci 1996; 85(4): 427–33PubMedCrossRefGoogle Scholar
  113. 113.
    Rocha A, Ruiz S, Coll JM. Improvement of DNA transfection with cationic liposomes. J Physiol Biochem 2002; 58(1): 45–56PubMedCrossRefGoogle Scholar
  114. 114.
    Chuang VT, Kragh-Hansen U, Otagiri M. Pharmaceutical strategies utilizing recombinant human serum albumin. Pharm Res 2002; 19(5): 569–77PubMedCrossRefGoogle Scholar
  115. 115.
    Deng CX, Lizzi FL. A review of physical phenomena associated with ultrasonic contrast agents and illustrative clinical applications. Ultrasound Med Biol 2002; 28(3): 277–86PubMedCrossRefGoogle Scholar
  116. 116.
    Chomas JE, Dayton P, Allen J, et al. Mechanisms of contrast agent destruction. IEEE Trans Ultrason Ferroelectr Freq Control 2001; 48(1): 232–48PubMedCrossRefGoogle Scholar
  117. 117.
    Guzman HR, Nguyen DX, Kahn S, et al. Ultrasound-mediated disruption of cell membranes (I): quantification of molecular uptake and cell viability. J Acoust Soc Am 2001; 110(1): 588–96PubMedCrossRefGoogle Scholar
  118. 118.
    Guzman HR, Nguyen DX, Kahn S, et al. Ultrasound-mediated disruption of cell membranes (II): heterogeneous effects on cells. J Acoust Soc Am 2001; 110(1): 587–608Google Scholar
  119. 119.
    Song J, Chappell JC, Qi M, et al. Influence of injection site, microvascular pressure and ultrasound variables on microbubble-mediated delivery of microspheres to muscle. J Am Coll Cardiol 2002; 39(4): 726–31PubMedCrossRefGoogle Scholar
  120. 120.
    Shohet RV, Chen S, Zhou Y-T, et al. Echocardiographic destruction of albumin microbubbles directs gene delivery to the myocardium. Circulation 2000; 101: 2554–6PubMedCrossRefGoogle Scholar
  121. 121.
    Vannan M, McCreery T, Li P, et al. Ultrasound-mediated transfection of canine myocardium by intravenous administration of cationic microbubble-linked plasmid DNA. J Am Soc Echocardiogr 2002; 15(3): 214–8PubMedCrossRefGoogle Scholar
  122. 122.
    Price RJ, Skyba DM, Kaul S, et al. Delivery of colloidal particles and red blood cells to tissue through microvessel ruptures created by targeted microbubble destruction with ultrasound. Circulation 1998; 98(13): 1264–7PubMedCrossRefGoogle Scholar
  123. 123.
    Schlachetzki F, Holscher T, Koch HJ, et al. Observation on the integrity of the blood-brain barrier after microbubble destruction by diagnostic transcranial color-coded sonography. J Ultrasound Med 2002; 21(4): 419–29PubMedGoogle Scholar
  124. 124.
    Hynynen K, McDannold N, Vykhodtseva N, et al. Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology 2001; 220(3): 640–6PubMedCrossRefGoogle Scholar
  125. 125.
    Mesiwala AH, Farrell L, Wenzel HJ, et al. High-intensity focused ultrasound selectively disrupts the blood-brain barrier in vivo. Ultrasound Med Biol 2002; 28(3): 389–400PubMedCrossRefGoogle Scholar
  126. 126.
    Barbarese E, Ho S-Y, D’Arrigo JS, et al. Internalization of microbubbles by tumor cells in vivo and in vitro. J Neurooncol 1995; 26: 25–34PubMedCrossRefGoogle Scholar
  127. 127.
    Batrakova EV, Dorodnych TY, Klinskil EY, et al. Anthracycline antibiotics non-covalently incorporated into the block copolymer micelles: in vivo evaluation of anti-cancer activity. Br J Cancer 1996; 74: 1545–52PubMedCrossRefGoogle Scholar
  128. 128.
    Kwon GS, Naito M, Yokoyama M, et al. Physical entrapment of adriamicin in AB block copolymer micelles. Pharm Res 1995; 12: 192–5PubMedCrossRefGoogle Scholar
  129. 129.
    Liaw J, Aoyagi T, Kataoka K, et al. Permeation of PEO-PBLA-FITC polymeric micelles in aortic endothelial cells. Pharm Res 1999; 16(2): 213–20PubMedCrossRefGoogle Scholar
  130. 130.
    Rapoport N. Stabilization and activation of pluronic micelles for tumor-targetted drug delivery. Colloids Surf B Biointerfaces 1999; 16: 93–111CrossRefGoogle Scholar
  131. 131.
    Rapoport N, Marin A, Christensen DA. Ultrasound-activated micellar drug delivery. Drug Delivery Syst Sci 2002; 2(2): 37–46Google Scholar
  132. 132.
    Rapoport N, Marin A, Luo Y, et al. Intracellular uptake and trafficking of pluronic micelles in drug-sensitive and MDR cells: effect on the intracellular drug localization. J Pharm Sci 2002; 91(1): 157–70PubMedCrossRefGoogle Scholar
  133. 133.
    Rapoport N, Pitt WG, Smirnov AI, et al. Bioreduction of tempone and spin-labeled gentamicin by gram-negative bacteria: kinetics and effect of ultrasound. Arch Biochem Biophys 1998; 362(2): 233–41CrossRefGoogle Scholar
  134. 134.
    Rapoport NY, Herron JN, Pitt WG, et al. Micellar delivery of doxorubicin and its paramagnetic analog, ruboxyl, to HL-60 cells: effect of micelle structure and ultrasound on the intracellular drug uptake. J Control Release 1999; 58(2): 153–62PubMedCrossRefGoogle Scholar
  135. 135.
    Pruitt JD, Husseini G, Rapoport N, et al. Stabilization of pluronic P-105 micelles with an interpenetrating network of N,N-diethylacrylamide. Macromolecules 2000; 33(25): 9306–9CrossRefGoogle Scholar
  136. 136.
    Husseini GA, Christensen DA, Rapoport NY, et al. Ultrasonic release of doxorubicin from pluronic P105 micelles stabilized with an interpenetrating network of N,N-diethylacrylamide. J Control Release 2002; 83(2): 302–4CrossRefGoogle Scholar
  137. 137.
    Pruitt JD, Pitt WG. Sequestration and ultrasound-induced release of doxorubicin from stabilized pluronic P105 micelles. Drug Deliv 2002; 9(4): 253–9PubMedCrossRefGoogle Scholar
  138. 138.
    Nelson JL, Roeder BL, Carmen JC, et al. Ultrasonically activated chemotherapeutic drug delivery in a rat model. Cancer Res 2002; 62: 7280–3PubMedGoogle Scholar
  139. 139.
    Munshi N, Rapoport N, Pitt WG. Ultrasonic activated drug delivery from pluronic P-105 micelles. Cancer Lett 1997; 117: 1–7CrossRefGoogle Scholar
  140. 140.
    Husseini GA, El-Fayoumi RI, O’Neill KL, et al. DNA damage induced by micellar-delivered doxorubicin and ultrasound: comet assay study. Cancer Lett 2000; 154: 211–6PubMedCrossRefGoogle Scholar
  141. 141.
    Marin A, Muniruzzaman M, Rapoport N. Acoustic activation of drug delivery from polymeric micelles: effect of pulsed ultrasound. J Control Release 2001; 71: 239–49PubMedCrossRefGoogle Scholar
  142. 142.
    Marin A, Muniruzzaman M, Rapoport N. Mechanism of the ultrasonic activation of micellar drug delivery. J Control Release 2001; 75: 69–81PubMedCrossRefGoogle Scholar
  143. 143.
    Marin A, Sun H, Husseini GA, et al. Drug delivery in pluronic micelles: effect of high-frequency ultrasound on drug release from micelles and intracellular uptake. J Control Release 2002; 84(1): 39–47PubMedCrossRefGoogle Scholar
  144. 144.
    Husseini GA, Rapoport NY, Christensen DA, et al. Kinetics of ultrasonic release of doxorubin from pluronic P105 micelles. Colloids Surf B Biointerfaces 2002; 24: 253–64CrossRefGoogle Scholar
  145. 145.
    Rapoport N, Caldwell K. Structural transitions in micellar solutions of Pluronic P-105 and their effect on the conformation of dissolved cytochrome C: an electron paramagnetic resonance investigation. Colloid Surf B Biointerfaces 1994; 3: 217–28CrossRefGoogle Scholar
  146. 146.
    Rapoport N, Pitina L. Intracellular distribution and intracellular dynamics of a spin-labeled analog of doxorubicin. J Pharm Sci 1998; 87(3): 321–5PubMedCrossRefGoogle Scholar
  147. 147.
    Muniruzzaman MD, Marin A, Luo Y, et al. Intracellular uptake of pluronic copolymer: effects of the aggregation state. Colloids Surf B Biointerfaces 2002; 25(3): 233–41CrossRefGoogle Scholar
  148. 148.
    Larina IV, Evers BM, Bartels C, et al. Ultrasound-enhanced drug delivery for efficient cancer therapy. Joint Meeting of the IEEE Engineering in Medicine and Biology Society and the Biomedical Engineering Society; 2002 Oct 23–26; HoustonGoogle Scholar
  149. 149.
    Howard WAJ, Bayomi A, Natarajan E, et al. Sonolysis promotes indirect Co-C bond cleavage of alkylcob (III) alamin bioconjugates. Bioconjug Chem 1997; 8(4): 498–502PubMedCrossRefGoogle Scholar
  150. 150.
    Tachibana K, Tachibana S. Application of ultrasound energy as a new drug delivery system. Jpn J Appl Phys 1999; 38: 3014–9CrossRefGoogle Scholar
  151. 151.
    Takada E, Sunagawa M, Ohdaira E, et al. Ultrasonic effects on anti-cancer drugs [abstract]. Ultrasound Med Biol 1997; 23 Suppl. 1: S132CrossRefGoogle Scholar
  152. 152.
    Yumita N, Nishigaki R, Umemura K, et al. Sonochemical activation of hematoporphyrin: an ESR study. Radiat Res 1994; 138: 171–6PubMedCrossRefGoogle Scholar
  153. 153.
    Yumita N, Nishigaki R, Umemura K, et al. Synergetic effect of ultrasound and hematoporphyrin on sarcoma 180. Jpn J Cancer Res 1990; 80: 219–22CrossRefGoogle Scholar
  154. 154.
    Harrison GH, Balcerkubiczek EK, Gutierrez PL. In vitro action of continuous-wave ultrasound combined with adriamycin, x-rays or hyperthermia. Radiat Res 1996; 145(1): 98–101PubMedCrossRefGoogle Scholar
  155. 155.
    Harrison GH, Balcer-Kubiczek EK, Gutierrez PL. In-vitro mechanisms of chemopotentiation by tone-burst ultrasound. Ultrasound Med Biol 1996; 22(3): 355–62PubMedCrossRefGoogle Scholar
  156. 156.
    Harrison GH, Balcer-Kubiczek EK, Eddy HA. Potentiation of chemotherapy by low-level ultrasound. Int J Radiat Biol 1991; 59(6): 1453–66PubMedCrossRefGoogle Scholar
  157. 157.
    Saad AH, Hahn GM. Ultrasound enhanced drug toxicity on Chinese hamster ovary cells in vitro. Cancer Res 1989; 49: 5931–4PubMedGoogle Scholar
  158. 158.
    Saad AH, Hahn GM. Ultrasound enhances adriamycin toxicity in vitro. In: Chato JC, Diller TE, Diller KR, et al., editors. Heat transfer in bioengineering and medicine. New York: American Society of Mechanical Engineering Press, 1987: 28–31Google Scholar
  159. 159.
    Saad AH, Hahn GM. Ultrasound-enhanced effects of adriamycin against murine tumors. Ultrasound Med Biol 1992; 18(8): 715–23PubMedCrossRefGoogle Scholar
  160. 160.
    Loverock P, Ter Haar G, Ormerod MG, et al. The effect of ultrasound on the cytoxicity of adriamycin. Br J Radiol 1990; 63: 542–6PubMedCrossRefGoogle Scholar
  161. 161.
    Tachibana K, Uchida T, Tamura K, et al. Enhanced cytotoxic effect of Ara-C by low intensity ultrasound to HL-60 cells. Cancer Lett 2000; 149: 189–94PubMedCrossRefGoogle Scholar
  162. 162.
    Tata DB, Hahn G, Dunn F. Ultrasonic absorption frequency dependence of two widely used anti-cancer drugs: doxorubicin and daunorubicin. Ultrasonics 1993; 31(6): 447–50PubMedCrossRefGoogle Scholar
  163. 163.
    Cho C-W, Liu Y, Cobb WN, et al. Ultrasound-induced mild hyperthermia as a novel approach to increase drug uptake in brain microvessel endothelial cells. Pharm Res 2002; 19(8): 1123–9PubMedCrossRefGoogle Scholar
  164. 164.
    Yumita N, Okumura K, Nishigaki R, et al. The combination treatment of ultrasound and antitumor drugs on Yoshida sarcoma. Jpn J Hyperthermic Oncol 1987; 3: 175–82Google Scholar
  165. 165.
    Liu Y, Cho C-W, Yan X, et al. Ultrasound-induced hyperthermia increases cellular uptake and cytotoxicity of p-glycoprotein substrates in multi-drug resistant cells. Pharm Res 2001; 18(9): 1255–61PubMedCrossRefGoogle Scholar
  166. 166.
    Roberts D. Transdermal drug delivery using iontophoresis and phonophoresis. Orthop Nurs 1999; 18(3): 50–4PubMedCrossRefGoogle Scholar
  167. 167.
    Tachibana K, Tachibana S. The use of ultrasound for drug delivery. Echocardiography 2001; 18(4): 323–8PubMedCrossRefGoogle Scholar
  168. 168.
    Joshi A, Raje J. Sonicated transdermal drug transport. J Control Release 2002; 83(1): 13–22PubMedCrossRefGoogle Scholar
  169. 169.
    Sicard-Rosenbaum L, Lord D, Danoff JV, et al. Effects of continuous therapeutic ultrasound on growth and metastasis of subcutaneous murine tumors. Phys Ther 1995; 75(1): 3–13PubMedGoogle Scholar
  170. 170.
    Sicard-Rosenbaum L, Danoff JV, McGuthrie JA, et al. Effects of energy-matched pulsed and continuous ultrasound on tumor growth in mice. Physical Ther 1998; 78(3): 217–77Google Scholar
  171. 171.
    Smachlo K, Fridd CW, Child SZ, et al. Ultrasonic treatment of tumors (I): absence of metastases following treatment of a hamster fibrosarcoma. Ultrasound Med Biol 1979; 5: 45–9PubMedCrossRefGoogle Scholar
  172. 172.
    Tomizawa M, Ebara M, Saisho H, et al. Irradiation with ultrasound of low output intensity increased chemosensitivity of subcutaneous solid tumors to an anti-cancer agent. Cancer Lett 2001; 173: 31–5PubMedCrossRefGoogle Scholar
  173. 173.
    Knapp WH, Debatin J, Helus F, et al. Increased thermal response to ultrasound in the Walker carcinosarcoma treated with vasoactive drugs. Cancer Res 1989; 49(7): 1768–72PubMedGoogle Scholar
  174. 174.
    Umemura K, Yumita N, Nishigaki R, et al. Sonodynamically induced antitumor effect of pheophorbide A. Cancer Lett 1996; 102(1–2): 151–7PubMedCrossRefGoogle Scholar
  175. 175.
    Unger EC, Hersh E, Vannan M, et al. Local drug and gene delivery through microbubbles. Prog Cardiovasc Dis 2001; 44(1): 45–54PubMedCrossRefGoogle Scholar
  176. 176.
    Mukherjee D, Wong J, Griffin B, et al. Ten-fold augmentation of endothelial uptake of vascular endothelial growth factor with ultrasound after systemic administration. J Am Coll Cardiol 2000; 35(6): 1678–86PubMedCrossRefGoogle Scholar
  177. 177.
    Clement GT, Hynynen K. A non-invasive method forfocusing ultrasound through the human skull. Phys Med Biol 2002; 47(8): 1219–36PubMedCrossRefGoogle Scholar
  178. 178.
    Clement GT, Sun J, Giesecke T, et al. A hemisphere array for non-invasive ultrasound brain therapy and surgery. Phys Med Biol 2000; 45(12): 3707–19PubMedCrossRefGoogle Scholar
  179. 179.
    Zderic V, Vaezy S, Martin RW, et al. Ocular drug delivery using 20-kHz ultrasound. Invest Ophthalmol Vis Sci 2002; 43(5): 1533–9Google Scholar
  180. 180.
    Wasnich RD. A high-frequency ultrasonic nebulizer system for radioaerosol delivery. J Nucl Med 1976; 17(8): 707–10PubMedGoogle Scholar
  181. 181.
    Langenback EG, Davis JM, Robbins C, et al. Improved pulmonary distribution of recombinant human Cu/Zn Superoxide dismutase, using a modified ultrasonic nebulizer. Pediatr Pulmonol 1999; 27(2): 124–9PubMedCrossRefGoogle Scholar

Copyright information

© Adis International Limited 2003

Authors and Affiliations

  1. 1.Chemical Engineering DepartmentBrigham Young UniversityProvoUSA

Personalised recommendations