American Journal of Drug Delivery

, Volume 1, Issue 1, pp 13–26 | Cite as

Brain-Targeted Drug Delivery

Experiences to Date
Healthcare Technology Review

Abstract

Because the brain is tightly segregated from the circulating blood by a unique membranous barrier, the blood-brain barrier (BBB), many pharmaceuticals cannot be efficiently delivered to, or sustained within the brain; hence, they are ineffective in treating cerebral diseases. Therefore, drug delivery methods that can provide brain delivery, or eventually preferential brain delivery (i.e. brain targeting), are of particular interest.

To achieve successful delivery, an understanding of the major structural, enzymatic, and active transport aspects related to the BBB, and of the issues related to lipophilicity and its role in CNS entry, is critical. During the last years, considerable effort was focused in the field of brain-targeted drug delivery. Various more or less sophisticated approaches, such as intracerebral delivery, intracerebroventricular delivery, intranasal delivery, BBB disruption, nanoparticles, receptor mediated transport (vector-mediated transport or ‘chimeric’ peptides), cell-penetrating peptides, prodrugs, and chemical delivery systems, have been attempted. These approaches may offer many intriguing possibilities for brain delivery and targeting, but only some have reached the phase where they can provide safe and effective human applications. Site-target indexing and the use of targeting enhancement factors can be used to quantitatively assess the site-targeting effectiveness from a pharmacokinetic perspective of chemical delivery systems.

References

  1. 1.
    Miller G. Breaking down barriers. Science 2002; 297: 1116–8PubMedCrossRefGoogle Scholar
  2. 2.
    Regier DA, Boyd JH, Burke Jr JD, et al. One-month prevalence of mental disorders in the United States. Arch Gen Psychiatry 1988; 45: 977–86PubMedCrossRefGoogle Scholar
  3. 3.
    Crone C, Thompson AM. Permeability of brain capillaries. In: Crone C, Lassen NA, editors. Capillary permeability: the transfer of molecules and ions between capillary blood and tissue. Copenhagen: Munksgaard, 1970: 447–53Google Scholar
  4. 4.
    Oldendorf WH. Lipid solubility and drug penetration of the blood-brain barrier. Proc Soc Exp Biol Med 1974; 147: 813–6PubMedGoogle Scholar
  5. 5.
    Rapoport SI. Blood-brain barrier in physiology and medicine. New York: Raven Press, 1976Google Scholar
  6. 6.
    Bradbury M. The concept of a blood-brain barrier. New York: Wiley, 1979Google Scholar
  7. 7.
    Bodor N, Brewster ME. Problems of delivery of drugs to the brain. Pharmacol Ther 1983; 19: 337–86CrossRefGoogle Scholar
  8. 8.
    Fenstermacher JD, Rapoport SI. Blood-brain barrier. In: Renkin EM, Michel CC, editors. Microcirculation. Part 2. Bethesda (MD): American Physiology Society, 1984: 969–1000Google Scholar
  9. 9.
    Goldstein GW, Betz AL. The blood-brain barrier. Sci Am 1986; 255(3): 74–83PubMedCrossRefGoogle Scholar
  10. 10.
    Bradbury MWB, editor. Physiology and pharmacology of the blood-brain barrier. Berlin: Springer-Verlag, 1992Google Scholar
  11. 11.
    Begley DJ. The blood-brain barrier: principles for targeting peptides and drugs to the central nervous system. J Pharm Pharmacol 1996; 48: 136–46PubMedCrossRefGoogle Scholar
  12. 12.
    Schlossauer B, Steuer H. Comparative anatomy, physiology and in vitro models of the blood-brain and blood-retina barrier. Curr Med Chem 2002; 2: 175–86Google Scholar
  13. 13.
    Betz AL, Goldstein GW. Brain capillaries: structure and function. In: Lajtha A, editor. Structural elements of the nervous system. New York: Plenum Press, 1984: 465–84Google Scholar
  14. 14.
    Pardridge WM. Peptide drug delivery to the brain. New York: Raven Press, 1991Google Scholar
  15. 15.
    Abbott NJ, Bundgaard M, Cserr HF. Comparative physiology of the blood-brain barrier. In: Suckling AJ, Rumsby MG, Bradbury MWB, editors. The blood-brain barrier in health and disease. Chichester: Ellis Horwood, 1986: 52–72Google Scholar
  16. 16.
    Lo EH, Singhai AB, Torchilin VP, et al. Drug delivery to damaged brain. Brain Res Rev 2001; 38: 140–8PubMedCrossRefGoogle Scholar
  17. 17.
    Smith QR. Quantitation of blood-brain barrier permeability. In: Neuwelt EA, editor. Implications of the blood-brain barrier and its manipulation. New York: Plenum Press, 1989:85–113CrossRefGoogle Scholar
  18. 18.
    Stewart PA, Tuor UI. Blood-eye barriers in the rat: correlation of ultrastructure with function. J Comp Neurol 1994; 340: 566–76PubMedCrossRefGoogle Scholar
  19. 19.
    Siegal T, Zylber-Katz E. Strategies for increasing drug delivery to the brain: focus on brain lymphoma. Clin Pharmacokinet 2002; 41: 171–86PubMedCrossRefGoogle Scholar
  20. 20.
    Ehrlich P. Das Sauerstoff bediirfnis des Organismus: eine farbenanalytische Studie. Berlin: Hirschwald, 1885Google Scholar
  21. 21.
    Janzer RC, Raff MC. Astrocytes induce blood-brain-barrier properties in endothelial-cells. Nature 1987; 325: 253–7PubMedCrossRefGoogle Scholar
  22. 22.
    Spatz H. Die bedeutung der vitalen farbung für die lehre vom stoffaustasch zwischen dem Zentralnervensystem und dem übrigen korper. Arch Psychiat Nervenkrank 1933; 101: 267–358CrossRefGoogle Scholar
  23. 23.
    Crone C. The diffusion of some organic nonelectrolytes from blood to brain tissue [in Danish, English summary]. Copenhagen: Munksgaard, 1961Google Scholar
  24. 24.
    Reese TS, Karnovsky MJ. Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 1967; 34: 207–17PubMedCrossRefGoogle Scholar
  25. 25.
    Brightman MW, Reese TS. Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 1969; 40: 648–77PubMedCrossRefGoogle Scholar
  26. 26.
    Crone C. The blood-brain barrier: a modified tight epithelium. In: Suckling AJ, Rumsby MG, Bradbury MWB, editors. The blood-brain barrier in health and disease. Chichester: Ellis Horwood, 1986: 17–40Google Scholar
  27. 27.
    Minn A, Ghersi-Egea JF, Perrin R, et al. Drug metabolizing enzymes in the brain and cerebral microvessels. Brain Res Brain Res Rev 1991; 16: 65–82PubMedCrossRefGoogle Scholar
  28. 28.
    Ghersi-Egea JF, Leninger-Muller B, Suleman G, et al. Localization of drug-metabolizing enzyme activities to blood-brain interfaces and circumventricular organs. J Neurochem 1994; 62: 1089–96PubMedCrossRefGoogle Scholar
  29. 29.
    Brownlees J, Williams CH. Peptidases, peptides, and the mammalian blood-brain barrier. J Neurochem 1993; 60: 793–803PubMedCrossRefGoogle Scholar
  30. 30.
    Witt KA, Gillespie TJ, Huber JD, et al. Peptide drug modifications to enhance bioavailability and blood-brain barrier permeability. Peptides 2001; 22: 2329–43PubMedCrossRefGoogle Scholar
  31. 31.
    Krogh A. The active and passive exchanges of inorganic ions through the surfaces of living cells and through living membranes generally. Proc R Soc B 1946; 133: 140–200CrossRefGoogle Scholar
  32. 32.
    Crone C. Facilitated transport of glucose from blood into brain. J Physiol 1965; 181: 103–13PubMedGoogle Scholar
  33. 33.
    Lund-Andersen H. Transport of glucose from blood to brain. Physiol Rev 1979; 59: 305–52PubMedGoogle Scholar
  34. 34.
    Audus KL, Chikhale PJ, Miller DW, et al. Brain uptake of drugs: the influence of chemical and biological factors. Adv Drug Res 1992; 23: 1–64Google Scholar
  35. 35.
    Tamai I, Tsuji A. Transporter-mediated permeation of drugs across the blood-brain barrier. J Pharm Sci 2000; 89: 1371–88PubMedCrossRefGoogle Scholar
  36. 36.
    Taylor EM. The impact of efflux transporters in the brain on the development of drugs for CNS disorders. Clin Pharmacokinet 2002; 41: 81–92PubMedCrossRefGoogle Scholar
  37. 37.
    Barza M. Anatomical barriers for antimicrobial agents. Eur J Clin Microbiol Infect Dis 1993; 12 Suppl. 1: S31–5PubMedCrossRefGoogle Scholar
  38. 38.
    Deguchi Y, Nozawa K, Yamada S, et al. Quantitative evaluation of brain distribution and blood-brain barrier efflux transport of probenecid in rats by microdialysis: possible involvement of the monocarboxylic acid transport system. J Pharmacol Exp Ther 1997; 280: 551–60PubMedGoogle Scholar
  39. 39.
    Suzuki H, Terasaki T, Sugiyama Y. Role of efflux transport across the blood-brain barrier and blood-cerebrospinal fluid barrier on the disposition of xenobiotics in the central nervous system. Adv Drug Deliv Rev 1997; 25: 257–85CrossRefGoogle Scholar
  40. 40.
    Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 1976; 455: 152–62PubMedCrossRefGoogle Scholar
  41. 41.
    Cordon-Cardo C, O’Brien JP, Casals D, et al. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci USA 1989; 86: 695–8PubMedCrossRefGoogle Scholar
  42. 42.
    Tsuji A, Tamai I, Sakata A, et al. Restricted transport of cyclosporin A across the blood-brain barrier by a multidrug transporter, P-glycoprotein. Biochem Pharmacol 1993; 46: 1096–9PubMedCrossRefGoogle Scholar
  43. 43.
    Schinkel AH, Smit JJM, van Tellingen O, et al. Disruption of the mouse mdrla P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 1994; 77: 491–502PubMedCrossRefGoogle Scholar
  44. 44.
    Schinkel AH, Wagenaar E, Mol CAAM, et al. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest 1996; 97: 2517–24PubMedCrossRefGoogle Scholar
  45. 45.
    Tsuji A, Tamai I. Blood-brain barrier function of P-glycoprotein. Adv Drug Deliv Rev 1997; 25: 287–98CrossRefGoogle Scholar
  46. 46.
    van Asperen J, Mayer U, van Tellingen O, et al. The functional role of P-glycoprotein in the blood-brain barrier. J Pharm Sci 1997; 86: 881–4PubMedCrossRefGoogle Scholar
  47. 47.
    Schinkel AH. P-glycoprotein, a gatekeeper in the blood-brain barrier. Adv Drug Deliv Rev 1999; 36: 179–94PubMedCrossRefGoogle Scholar
  48. 48.
    Stein WD. Kinetics of multidrug transporter (P-glycoprotein) and its reversal. Physiol Rev 1997; 77: 545–90PubMedGoogle Scholar
  49. 49.
    Habgood MD, Begley DJ, Abbott NJ. Determinants of passive drug entry into the central nervous system. Cell Mol Neurobiol 2000; 20: 231–53PubMedCrossRefGoogle Scholar
  50. 50.
    Thorne RG, Frey II WH. Delivery of neurotrophic factors to the central nervous system: pharmacokinetic considerations. Clin Pharmacokinet 2001; 40:907–46PubMedCrossRefGoogle Scholar
  51. 51.
    Filmore D. Breeching the blood-brain barrier. Modern Drug Discov 2002; 5(6): 22–7Google Scholar
  52. 52.
    Mertsch K, Maas J. Blood-brain barrier penetration and drug development from an industrial point of view. Curr Med Chem 2002; 2: 187–201Google Scholar
  53. 53.
    Overton E. Über die osmotischen eigenschaften der zelle in ihrer bedeutung für die toxikologie und pharmakologie. Z Phys Chem 1897; 22: 189–209Google Scholar
  54. 54.
    Overton E. Studien über die narkose, zugleich ein beitrag zur allgemeiner Pharmakologie. Jena: Gustav Fischer, 1901Google Scholar
  55. 55.
    Meyer H. Zur theorie der alkoholnarkose (I): Welche eigenschaft der anästhetica bedingt ihre narkotische Wirkung. Arch Exp Pathol Pharmakol 1899; 42: 109–18CrossRefGoogle Scholar
  56. 56.
    Meyer H. Zur theorie der alkoholnarkose (III): der einfluss wechselnder temperatur auf wirkungstärke und theilungscoefficient der narcotica. Arch Exp Pathol Pharmakol 1901; 46: 338–46CrossRefGoogle Scholar
  57. 57.
    Collander R. The partition of organic compounds between high alcohols and water. Acta Chem Scand 1951; 5: 774–80CrossRefGoogle Scholar
  58. 58.
    Buchwald P, Bodor N. Octanol-water partition: searching for predictive models. Curr Med Chem 1998; 5: 353–80PubMedGoogle Scholar
  59. 59.
    Franks NP, Lieb WR. Where do general anaesthetics act. Nature 1978; 274:339–42PubMedCrossRefGoogle Scholar
  60. 60.
    Young RC, Mitchell RC, Brown TH, et al. Development of a new physicochemical model for brain penetration and its application to the design of centrally acting H2 receptor histamine antagonists. J Med Chem 1988; 31: 656–71PubMedCrossRefGoogle Scholar
  61. 61.
    Abraham MH, Chadha HS, Mitchell RC. Hydrogen bonding: 33 factors that influence the distribution of solutes between blood and brain. J Pharm Sci 1994; 83:1257–68PubMedCrossRefGoogle Scholar
  62. 62.
    Lombardo F, Blake JF, Curatolo WJ. Computation of brain-blood partitioning of organic solutes via free energy calculations. J Med Chem 1996; 39: 4750–5PubMedCrossRefGoogle Scholar
  63. 63.
    Crivori P, Cruciani G, Carrupt P-A, et al. Predicting blood-brain barrier permeation from three-dimensional molecular structure. J Med Chem 2000; 43: 2204–16PubMedCrossRefGoogle Scholar
  64. 64.
    Iyer M, Mishra R, Han Y, et al. Predicting blood-brain barrier partitioning of organic molecules using membrane-interaction QSAR analysis. Pharm Res 2002; 19:1611–21PubMedCrossRefGoogle Scholar
  65. 65.
    Bodor N, Buchwald P. Recent advances in the brain targeting of neuropharmaceuticals by chemical delivery systems. Adv Drug Deliv Rev 1999; 36: 229–54PubMedCrossRefGoogle Scholar
  66. 66.
    van de Waterbeemd H, Smith DA, Beaumont K, et al. Property-based design: optimization of drug absorption and pharmacokinetics. J Med Chem 2001;44:1313–33CrossRefGoogle Scholar
  67. 67.
    Lewis DFV, Dickins M. Substrate SARs in human P450s. Drug Discov Today 2002; 7: 918–25PubMedCrossRefGoogle Scholar
  68. 68.
    Lin JH, Lu AY. Role of pharmacokinetics and metabolism in drug discovery and development. Pharmacol Rev 1997; 49: 403–49PubMedGoogle Scholar
  69. 69.
    Buchwald P, Bodor N. Computer-aided drug design: the role of quantitative structure-property, structure-activity, and structure-metabolism relationships (QSPR, QSAR, QSMR). Drugs Future 2002; 27: 577–88CrossRefGoogle Scholar
  70. 70.
    King LA, Moffat AC. Hypnotics and sedatives: an index of fatal toxicity. Lancet 1981; I: 387–8CrossRefGoogle Scholar
  71. 71.
    Hansch C, Björkroth JP, Leo A. Hydrophobicity and central nervous system agents: on the principle of minimal hydrophobicity in drug design. J Pharm Sci 1987; 76: 663–87PubMedCrossRefGoogle Scholar
  72. 72.
    O’Neil MJ, Smith A, Heckelman PE, editors. Merck index. 13th ed. CD-ROM edition. Cambridge (MA); CambridgeSoft, 2001Google Scholar
  73. 73.
    Mahar Doan KM, Humphreys JE, Webster LO, et al. Passive permeability and P-glycoprotein-mediated efflux differentiate central nervous system (CNS) and non-CNS marketed drugs. J Pharmacol Exp Ther 2002; 303: 1029–37PubMedCrossRefGoogle Scholar
  74. 74.
    Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development setting. Adv Drug Deliv Rev 1997; 23: 3–25CrossRefGoogle Scholar
  75. 75.
    Veber DF, Johnson SR, Cheng H-Y, et al. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 2002; 45: 2615–23PubMedCrossRefGoogle Scholar
  76. 76.
    Sippl W. Computational approaches for the prediction of blood-brain barrier permeation. Curr Med Chem 2002; 2: 212–27Google Scholar
  77. 77.
    de Boer AG, Gaillard PJ. In vitro models of the blood-brain barrier: when to use which. Curr Med Chem 2002; 2: 203–9Google Scholar
  78. 78.
    Kerns EH. High throughput physicochemical profiling for drug discovery. J Pharm Sci 2001; 90: 1838–58PubMedCrossRefGoogle Scholar
  79. 79.
    Golden PL, Pollack GM. Rationale for influx enhancement versus efflux blockade to increase drug exposure to the brain. Biopharm Drug Dispos 1998; 19: 263–72PubMedCrossRefGoogle Scholar
  80. 80.
    Sadeque AJ, Wandel C, He H, et al. Increased drug delivery to the brain by P-glycoprotein inhibition. Clin Pharmacol Ther 2000; 68: 231–7PubMedCrossRefGoogle Scholar
  81. 81.
    Savolainen J, Edwards JE, Morgan ME, et al. Effects of a P-glycoprotein inhibitor on brain and plasma concentrations of anti-human immunodeficiency virus drugs administered in combination in rats. Drug Metab Dispos 2002; 30:479–82PubMedCrossRefGoogle Scholar
  82. 82.
    Fellner S, Bauer B, Miller DS, et al. Transport of paclitaxel (Taxol) across the blood-brain barrier in vitro and in vivo. J Clin Invest 2002; 110: 1309–18PubMedGoogle Scholar
  83. 83.
    Bodor N, Buchwald P. Retrometabolism-based drug design and targeting. In: Abraham D, editor. Burger’s medicinal chemistry and drug discovery. Vol. 2: drug discovery and drug development. 6th ed. New York: Wiley, 2003. In pressGoogle Scholar
  84. 84.
    Chu CK, Bhadti VS, Doshi KJ, et al. Brain targeting of anti-HIV nucleosides: synthesis and in vitro and in vivo studies of dihydropyridine derivatives of 3’-azido-2’,3’-dideoxyuridine and 3’-azido-3’deoxythimidine. J Med Chem 1990; 33: 2188–92PubMedCrossRefGoogle Scholar
  85. 85.
    Mizrachi Y, Rubinstein A, Harish Z, et al. Improved delivery and in vitro activity of zidovudine through the use of a redox chemical delivery system. AIDS 1995; 9: 153–8PubMedGoogle Scholar
  86. 86.
    Brewster ME, Anderson W, Bodor N. Brain, blood, and cerebrospinal fluid distribution of a zidovudine chemical delivery system in rabbits. J Pharm Sci 1991; 80: 843–5PubMedCrossRefGoogle Scholar
  87. 87.
    Brewster ME, Raghavan K, Pop E, et al. Enhanced delivery of ganciclovir to the brain through the use of redox targeting. Antimicrob Agents Chemother 1994; 38: 817–23PubMedCrossRefGoogle Scholar
  88. 88.
    Wu W-M, Pop E, Shek E, et al. Brain-specific chemical delivery systems for ß-lactam antibiotics: in vitro and in vivo studies of some dihydropyridine and dihydroiso-quinoline derivatives of benzylpenicillin in rats. J Med Chem 1989; 32: 1782–8PubMedCrossRefGoogle Scholar
  89. 89.
    Wu W-M, Pop E, Shek E, et al. Brain and CSF specific chemical delivery systems for ß-lactam antibiotics: study of two dihydropyridine derivatives of benzylpenicillin in rabbits and dogs. Drug Des Deliv 1990; 7: 33–43PubMedGoogle Scholar
  90. 90.
    Anderson WR, Simpkins JW, Brewster ME, et al. Evidence for prolonged suppression of stress-induced release of adrenocortopic hormone and corticosterone with a brain-enhanced dexamethasone-redox delivery system. Neuroendocrinology 1989; 50: 9–16PubMedCrossRefGoogle Scholar
  91. 91.
    Hunt CA, MacGregor RD, Siegel RA. Engineering targeted in vivo drug delivery (I): the physiological and physicochemical principles governing opportunities and limitations. Pharm Res 1986; 3: 333–44CrossRefGoogle Scholar
  92. 92.
    Langer R. Polymer implants for drug delivery in the brain. J Control Release 1991; 16: 53–60CrossRefGoogle Scholar
  93. 93.
    Brem H, Gabikian P. Biodegradable polymer implants to treat brain tumors. J Control Release 2001; 74: 63–7PubMedCrossRefGoogle Scholar
  94. 94.
    Benoit JP, Faisant N, Venier-Julienne MC, et al. Development of microspheres for neurological disorders: from basics to clinical applications. J Control Release 2000; 65: 285–96PubMedCrossRefGoogle Scholar
  95. 95.
    Chang PL, Van Raamsdonk JM, Hortelano G, et al. The in vivo delivery of heterologous proteins by microencapsulated recombinant cells. Trends Biotechnol 1999; 17: 78–83PubMedCrossRefGoogle Scholar
  96. 96.
    Huang TY, Arita N, Hayakawa T, et al. ACNU, MTX and 5-FU penetration of rat brain tissue and tumors. J Neurooncol 1999; 45: 9–17PubMedCrossRefGoogle Scholar
  97. 97.
    Buchwald P, Bodor N. A simple, predictive, structure-based skin permeability model. J Pharm Pharmacol 2001; 53: 1087–98PubMedCrossRefGoogle Scholar
  98. 98.
    Silbey RJ, Alberty RA. Physical chemistry. New York: Wiley, 2001Google Scholar
  99. 99.
    Newcomb R, Abbruscato TJ, Singh T, et al. Bioavailability of ziconotide in brain: influx from blood, stability, and diffusion. Peptides 2000; 21: 491–501PubMedCrossRefGoogle Scholar
  100. 100.
    Krewson CE, Klarman ML, Saltzman WM. Distribution of nerve growth factor following direct delivery to brain interstitium. Brain Res 1995; 680: 196–206PubMedCrossRefGoogle Scholar
  101. 101.
    Offering hope in the treatment of brain cancer [online]. Available from URL: http://www.gliadel.com [Accessed 2003 Feb 19]
  102. 102.
    Alessandrini A, Namura S, Moskowitz MA, et al. MEK1 protein kinase inhibition protects against damage resulting from focal cerebral ischemia. Proc Natl Acad Sci USA 1999; 96: 12866–9PubMedCrossRefGoogle Scholar
  103. 103.
    Yan Q, Matheson C, Sun J, et al. Distribution of intracerebral ventricularly administered neurotrophins in rat brain and its correlation with Trk receptor expression. Exp Neurol 1994; 127: 23–36PubMedCrossRefGoogle Scholar
  104. 104.
    Hussain AA. Intranasal drug delivery. Adv Drug Deliv Rev 1998; 29: 39–49PubMedCrossRefGoogle Scholar
  105. 105.
    Ilium L. Nasal drug delivery: new development strategies. Drug Discov Today 2002; 7: 1184–9CrossRefGoogle Scholar
  106. 106.
    Born J, Lange T, Kern W, et al. Sniffing neuropeptides: a transnasal approach to the human brain. Nat Neurosci 2002; 5: 514–6PubMedCrossRefGoogle Scholar
  107. 107.
    Kroll RA, Neuwelt EA. Outwitting the blood-brain barrier for therapeutic purposes: osmotic opening and other means. Neurosurgery 1998; 42: 1083–99PubMedCrossRefGoogle Scholar
  108. 108.
    Rapoport SI. Osmotic opening of the blood-brain barrier: principles, mechanism, and therapeutic applications. Cell Mol Neurobiol 2000; 20: 217–30PubMedCrossRefGoogle Scholar
  109. 109.
    Emerich DF, Dean RL, Osborn C, et al. The development of the bradykinin agonist labradimil as a means to increase the permeability of the blood-brain barrier: from concept to clinical evaluation. Clin Pharmacokinet 2001; 40: 105–23PubMedCrossRefGoogle Scholar
  110. 110.
    Shivers RR, Wijsman JA. Blood-brain barrier permeability during hyperthermia. Prog Brain Res 1998; 115: 413–24PubMedCrossRefGoogle Scholar
  111. 111.
    Cho C-W, Liu Y, Cobb WN, et al. Ultrasound-induced mild hyperthermia as a novel approach to increase drug uptake in brain microvessel endothelial cells. Pharm Res 2002; 19: 1123–9PubMedCrossRefGoogle Scholar
  112. 112.
    Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 2001; 47: 65–81PubMedCrossRefGoogle Scholar
  113. 113.
    Kreuter J. Transport of drugs across the blood-brain barrier by nanoparticles. Curr Med Chem 2002; 2: 241–9Google Scholar
  114. 114.
    Olivier J-C, Fenart L, Chauvet R, et al. Indirect evidence that drug brain targeting using polysorbate 80-coated polybutylcyanoacrylate nanoparticles is related to toxicity. Pharm Res 1999; 16: 1836–42PubMedCrossRefGoogle Scholar
  115. 115.
    Pardridge WM. Drug and gene targeting to the brain with molecular trojan horses. Nat Rev Drug Discov 2002; 1: 131–9PubMedCrossRefGoogle Scholar
  116. 116.
    Bodor N, Prokai L. Molecular packaging: peptide delivery to the central nervous system by sequential metabolism. In: Taylor M, Amidon G, editors. Peptide-based drug design: controlling transport and metabolism. Washington, DC: American Chemical Society, 1995: 317–37Google Scholar
  117. 117.
    Lindgren M, Hällbrink M, Prochiantz A, et al. Cell-penetrating peptides. Trends Pharmacol Sci 2000; 21: 99–103PubMedCrossRefGoogle Scholar
  118. 118.
    Wender PA, Mitchell DJ, Pattabiraman K, et al. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci USA 2000; 97: 13003–8PubMedCrossRefGoogle Scholar
  119. 119.
    Rothbard JB, Kreider E, VanDeusen CL, et al. Arginine-rich molecular transporters for drug delivery: role of backbone spacing in cellular uptake. J Med Chem 2002; 45: 3612–818PubMedCrossRefGoogle Scholar
  120. 120.
    Schwarze SR, Ho A, Vocero-Akbani A, et al. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 1999; 285: 1569–72PubMedCrossRefGoogle Scholar
  121. 121.
    Rousselle C, Clair P, Lefauconnier J-M, et al. New advances in the transport of doxorubicin through the blood-brain barrier by a peptide vector-mediated strategy. Mol Pharmacol 2000; 57: 679–86PubMedGoogle Scholar
  122. 122.
    Aarts M, Liu Y, Liu L, et al. Treatment of ischemie brain damage by perturbing NMDA receptor-PSD-95 protein interactions. Science 2002; 298: 846–50PubMedCrossRefGoogle Scholar
  123. 123.
    Stella VJ. Prodrugs: an overview and definition. In: Higuchi T, Stella VJ, editors. Prodrugs as novel drug delivery systems. Washington, DC: American Chemical Society, 1975: 1–115CrossRefGoogle Scholar
  124. 124.
    Bundgaard H, editor. Design of prodrugs. Amsterdam: Elsevier Science, 1985Google Scholar
  125. 125.
    Bodor N, Kaminski JJ. Prodrugs and site-specific chemical delivery systems. Annu Rep Med Chem 1987; 22: 303–13CrossRefGoogle Scholar
  126. 126.
    Balant LP, Doelker E. Metabolic considerations in prodrug design. In: Wolff ME, editor. Burger’s medicinal chemistry and drug discovery. New York: Wiley Interscience, 1995: 949–82Google Scholar
  127. 127.
    Wermuth CG, Gaignault J-C, Marchandeau C. Designing prodrugs and bioprecursors (I): carrier prodrugs. In: Wermuth CG, editor. The practice of medicinal chemistry. London: Academic Press, 1996: 671–96Google Scholar
  128. 128.
    Stella VJ, editor. Themed issue: low molecular weight prodrugs. Adv Drug Deliv Rev 1996; 19: 111–330Google Scholar
  129. 129.
    Albert A. Chemical aspects of selective toxicity. Nature 1958; 182: 421–7PubMedCrossRefGoogle Scholar
  130. 130.
    Bundgaard H. Design of bioreversible drug derivatives and the utility of the double prodrug concept. In: Roche EB, editor. Bioreversible carriers in drug design: theory and application. New York: Pergamon, 1987: 13–95Google Scholar
  131. 131.
    Niculescu-Duvaz I, Friedlos F, Niculescu-Duvaz D, et al. Prodrugs for antibody- and gene-directed enzyme prodrug therapies (ADEPT and GDEPT). Anticancer Drug Des 1999; 14: 517–38PubMedGoogle Scholar
  132. 132.
    Wagner CR, Iyer VV, McIntee EJ. Pronucleotides: toward the in vivo delivery of antiviral and anticancer nucleotides. Med Res Rev 2000; 20: 417–51PubMedCrossRefGoogle Scholar
  133. 133.
    Anderson BD. Prodrugs for improved CNS delivery. Adv Drug Deliv Rev 1996; 19: 171–202CrossRefGoogle Scholar
  134. 134.
    Oldendorf WH, Hyman S, Braun L, et al. Blood-brain barrier: penetration of morphine, codeine, heroin, and methadone after carotid injection. Science 1972; 178: 984–6PubMedCrossRefGoogle Scholar
  135. 135.
    Han H-K, Amidon GL. Targeted prodrug design to optimize drug delivery. AAPS PharmSci 2000; 2(1): E6PubMedGoogle Scholar
  136. 136.
    Buchwald P, Bodor N. Quantitative structure-metabolism relationships: steric and nonsteric effects in the enzymatic hydrolysis of noncongener carboxylic esters. J Med Chem 1999; 42: 5160–8PubMedCrossRefGoogle Scholar
  137. 137.
    Buchwald P, Bodor N. Structure-based estimation of enzymatic hydrolysis rates and its application in computer-aided retrometabolic drug design. Pharmazie 2000; 55: 210–7PubMedGoogle Scholar
  138. 138.
    Lambert DM. Rationale and applications of lipids as prodrug carriers. Eur J Pharm Sci 2000; 11 Suppl. 2: S15–27PubMedCrossRefGoogle Scholar
  139. 139.
    Bodor N, Brewster ME. Chemical delivery systems. In: Juliano RL, editor. Targeted drug delivery. Berlin: Springer-Verlag, 1991: 231–84CrossRefGoogle Scholar
  140. 140.
    Bodor N, Prokai L, Wu W-M, et al. A strategy for delivering peptides into the central nervous system by sequential metabolism. Science 1992; 257:1698–700PubMedCrossRefGoogle Scholar
  141. 141.
    Chen P, Bodor N, Wu W-M, et al. Strategies to target kyotorphin analogues to the brain. J Med Chem 1998; 41: 3773–81PubMedCrossRefGoogle Scholar
  142. 142.
    Wu J, Yoon S-H, Wu W-M, et al. Synthesis and biological evaluation of a brain-targeted chemical delivery system of [Nva2]-TRH. J Pharm Pharmacol 2002; 54: 945–50PubMedCrossRefGoogle Scholar
  143. 143.
    Prokai-Tatrai K, Perjési P, Zharikova AD, et al. Design, synthesis, and biological evaluation of novel, centrally-acting thyrotropin-releasing hormone analogues. Bioorg Med Chem Lett 2002; 12: 2171–4PubMedCrossRefGoogle Scholar

Copyright information

© Adis International Limited 2003

Authors and Affiliations

  1. 1.IVAX Research IncMiamiUSA
  2. 2.Center for Drug DiscoveryUniversity of FloridaGainesvilleUSA

Personalised recommendations