Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Mechanisms of Clinical Resistance to Small Molecule Tyrosine Kinase Inhibitors Targeting Oncogenic Tyrosine Kinases

  • 21 Accesses

  • 10 Citations

Abstract

A number of highly specific small molecule inhibitors of oncogenic tyrosine kinases have been developed and may potentially improve the treatment of different malignant diseases. However, it became rapidly evident that multiple resistance mechanisms compromise the successful clinical application of these inhibitors, particularly in advanced solid tumors.

To develop efficient therapeutic strategies with small molecule inhibitors, one must understand the causes for treatment failure. Three different types of resistance to small molecule inhibitors of oncogenic tyrosine kinases have been observed. The malignant phenotype may be independent of the activity of the target kinase (target-independent resistance). Alternatively, overexpression or mutation of the target kinase can counteract the inhibition of oncogenic tyrosine kinases (target-dependent resistance). Finally, alterations of drug transporters or drug-metabolizing pathways may block the bioavailability of the tyrosine kinase inhibitors (drug-dependent resistance). This article reviews the current knowledge of clinical resistance to small molecule inhibitors approved for treatment of cancer patients.

This is a preview of subscription content, log in to check access.

Fig. 1
Table I
Table II
Table III
Fig. 2

Notes

  1. 1.

    1The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. 1.

    Gschwind A, Fischer OM, Ullrich A. The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat Rev Cancer 2004 May; 4(5): 361–70

  2. 2.

    Hubbard SR, Till JH. Protein tyrosine kinase structure and function. Annu Rev Biochem 2000; 69: 373–98

  3. 3.

    Robinson DR, Wu YM, Lin SF. The protein tyrosine kinase family of the human genome. Oncogene 2000 Nov 20; 19(49): 5548–57

  4. 4.

    Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell 1990 Apr 20; 61(2): 203–12

  5. 5.

    Hubbard SR. Structural analysis of receptor tyrosine kinases. Prog Biophys Mol Biol 1999; 71(3–4): 343–58

  6. 6.

    Taylor SS, Radzio-Andzelm E. Three protein kinase structures define a common motif. Structure 1994 May 15; 2(5): 345–55

  7. 7.

    Hubbard SR. Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J 1997 Sep 15; 16(18): 5572–81

  8. 8.

    Gotoh N, Tojo A, Hino M, et al. A highly conserved tyrosine residue at codon 845 within the kinase domain is not required for the transforming activity of human epidermal growth factor receptor. Biochem Biophys Res Commun 1992 Jul 31; 186(2): 768–74

  9. 9.

    Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001 Feb; 2(2): 127–37

  10. 10.

    Williams JC, Weijland A, Gonfloni S, et al. The 2.35 A crystal structure of the inactivated form of chicken Src: a dynamic molecule with multiple regulatory interactions. J Mol Biol 1997 Dec 19; 274(5): 757–75

  11. 11.

    Gonfloni S, Weijland A, Kretzschmar J, et al. Crosstalk between the catalytic and regulatory domains allows bidirectional regulation of Src. Nat Struct Biol 2000 Apr; 7(4): 281–6

  12. 12.

    Hantschel O, Nagar B, Guettler S, et al. A myristoyl/phosphotyrosine switch regulates c-Abl. Cell 2003 Mar 21; 112(6): 845–57

  13. 13.

    Nagar B, Hantschel O, Young MA, et al. Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell 2003 Mar 21; 112(6): 859–71

  14. 14.

    Brasher BB, Van Etten RA. c-Abl has high intrinsic tyrosine kinase activity that is stimulated by mutation of the Src homology 3 domain and by autophosphorylation at two distinct regulatory tyrosines. J Biol Chem 2000 Nov 10; 275(45): 35631–7

  15. 15.

    Rowinsky EK. The erbB family: targets for therapeutic development against cancer and therapeutic strategies using monoclonal antibodies and tyrosine kinase inhibitors. Annu Rev Med 2004; 55: 433–57

  16. 16.

    Rusch V, Baselga J, Cordon-Cardo C, et al. Differential expression of the epidermal growth factor receptor and its ligands in primary non-small cell lung cancers and adjacent benign lung. Cancer Res 1993 May 15; 53(10 Suppl.): 2379–85

  17. 17.

    Hendler FJ, Ozanne BW. Human squamous cell lung cancers express increased epidermal growth factor receptors. J Clin Invest 1984 Aug; 74(2): 647–51

  18. 18.

    Rikimaru K, Tadokoro K, Yamamoto T, et al. Gene amplification and overexpression of epidermal growth factor receptor in squamous cell carcinoma of the head and neck. Head Neck 1992 Jan–Feb; 14(1): 8–13

  19. 19.

    Kersting C, Tidow N, Schmidt H, et al. Gene dosage PCR and fluorescence in situ hybridization reveal low frequency of egfr amplifications despite protein overexpression in invasive breast carcinoma. Lab Invest 2004 May; 84(5): 582–7

  20. 20.

    Lebeau A, Unholzer A, Amann G, et al. EGFR, HER-2/neu, cyclin D1, p21 and p53 in correlation to cell proliferation and steroid hormone receptor status in ductal carcinoma in situ of the breast. Breast Cancer Res Treat 2003 May; 79(2): 187–98

  21. 21.

    Layfield LJ, Bernard PS, Goldstein NS. Color multiplex polymerase chain reaction for quantitative analysis of epidermal growth factor receptor genes in colorectal adenocarcinoma. J Surg Oncol 2003 Aug; 83(4): 227–31

  22. 22.

    Ishikawa J, Maeda S, Umezu K, et al. Amplification and overexpression of the epidermal growth factor receptor gene in human renal-cell carcinoma. Int J Cancer 1990 Jun 15; 45(6): 1018–21

  23. 23.

    Gullick WJ. Prevalence of aberrant expression of the epidermal growth factor receptor in human cancers. Br Med Bull 1991 Jan; 47(1): 87–98

  24. 24.

    Saranath D, Panchal RG, Nair R, et al. Amplification and overexpression of epidermal growth factor receptor gene in human oropharyngeal cancer. Eur J Cancer B Oral Oncol 1992 Oct; 28B(2): 139–43

  25. 25.

    Chaffanet M, Chauvin C, Laine M, et al. EGF receptor amplification and expression in human brain tumours. Eur J Cancer 1992; 28(1): 11–7

  26. 26.

    Nishikawa R, Ji XD, Harmon RC, et al. A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity. Proc Natl Acad Sci U S A 1994 Aug 2; 91(16): 7727–31

  27. 27.

    Batra SK, Castelino-Prabhu S, Wikstrand CJ, et al. Epidermal growth factor ligand-independent, unregulated, cell-transforming potential of a naturally occurring human mutant EGFRvIII gene. Cell Growth Differ 1995 Oct; 6(10): 1251–9

  28. 28.

    Wikstrand CJ, Hale LP, Batra SK, et al. Monoclonal antibodies against EGFRvIII are tumor specific and react with breast and lung carcinomas and malignant gliomas. Cancer Res 1995 Jul 15; 55(14): 3140–8

  29. 29.

    Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004 Jun 4; 304(5676): 1497–500

  30. 30.

    Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004 May 20; 350(21): 2129–39

  31. 31.

    Kitamura Y, Hirota S, Nishida T. Gastrointestinal stromal tumors (GIST): a model for molecule-based diagnosis and treatment of solid tumors. Cancer Sci 2003 Apr; 94(4): 315–20

  32. 32.

    Camilleri-Broet S, Hardy-Bessard AC, Le Tourneau A, et al. HER-2 overexpression is an independent marker of poor prognosis of advanced primary ovarian carcinoma: a multicenter study of the GINECO group. Ann Oncol 2004 Jan; 15(1): 104–12

  33. 33.

    Lebeau A, Deimling D, Kaltz C, et al. Her-2/neu analysis in archival tissue samples of human breast cancer: comparison of immunohistochemistry and fluorescence in situ hybridization. J Clin Oncol 2001 Jan 15; 19(2): 354–63

  34. 34.

    Tan D, Deeb G, Wang J, et al. HER-2/neu protein expression and gene alteration in stage I-IIIA non-small-cell lung cancer: a study of 140 cases using a combination of high throughput tissue microarray, immunohistochemistry, and fluorescent in situ hybridization. Diagn Mol Pathol 2003 Dec; 12(4): 201–11

  35. 35.

    Press MF, Slamon DJ, Flom KJ, et al. Evaluation of HER-2/neu gene amplification and overexpression: comparison of frequently used assay methods in a molecularly characterized cohort of breast cancer specimens. J Clin Oncol 2002 Jul 15; 20(14): 3095–105

  36. 36.

    Hammock L, Lewis M, Phillips C, et al. Strong HER-2/neu protein overexpression by immunohistochemistry often does not predict oncogene amplification by fluorescence in situ hybridization. Hum Pathol 2003 Oct; 34(10): 1043–7

  37. 37.

    Lassus H, Leminen A, Vayrynen A, et al. ERBB2 amplification is superior to protein expression status in predicting patient outcome in serous ovarian carcinoma. Gynecol Oncol 2004 Jan; 92(1): 31–9

  38. 38.

    Osako T, Miyahara M, Uchino S, et al. Immunohistochemical study of c-erbB-2 protein in colorectal cancer and the correlation with patient survival. Oncology 1998 Nov–Dec; 55(6): 548–55

  39. 39.

    Ma Y, Zeng S, Metcalfe DD, et al. The c-KIT mutation causing human mastocytosis is resistant to STI571 and other KIT kinase inhibitors; kinases with enzymatic site mutations show different inhibitor sensitivity profiles than wildtype kinases and those with regulatory-type mutations. Blood 2002 Mar 1; 99(5): 1741–4

  40. 40.

    Wozniak J, Kopec-Szlezak J. c-Kit receptor (CD117) expression on myeloblasts and white blood cell counts in acute myeloid leukemia. Cytometry 2004 Mar; 58B(1): 9–16

  41. 41.

    Kemmer K, Corless CL, Fletcher JA, et al. KIT mutations are common in testicular seminomas. Am J Pathol 2004 Jan; 164(1): 305–13

  42. 42.

    Pan CC, Chen PC, Chiang H. KIT (CD117) is frequently overexpressed in thymic carcinomas but is absent in thymomas. J Pathol 2004 Mar; 202(3): 375–81

  43. 43.

    Raspollini MR, Amunni G, Villanucci A, et al. c-KIT expression and correlation with chemotherapy resistance in ovarian carcinoma: an immunocytochemical study. Ann Oncol 2004 Apr; 15(4): 594–7

  44. 44.

    Miliaras D, Karasavvidou F, Papanikolaou A, et al. KIT expression in fetal, normal adult, and neoplastic renal tissues. J Clin Pathol 2004 May; 57(5): 463–6

  45. 45.

    Boldrini L, Ursino S, Gisfredi S, et al. Expression and mutational status of c-kit in small-cell lung cancer: prognostic relevance. Clin Cancer Res 2004 Jun 15; 10 (12 Pt 1): 4101–8

  46. 46.

    Sarlomo-Rikala M, Kovatich AJ, Barusevicius A, et al. CD117: a sensitive marker for gastrointestinal stromal tumors that is more specific than CD34. Mod Pathol 1998 Aug; 11(8): 728–34

  47. 47.

    Singer S, Rubin BP, Lux ML, et al. Prognostic value of KIT mutation type, mitotic activity, and histologic subtype in gastrointestinal stromal tumors. J Clin Oncol 2002 Sep 15; 20(18): 3898–905

  48. 48.

    Casteran N, De Sepulveda P, Beslu N, et al. Signal transduction by several KIT juxtamembrane domain mutations. Oncogene 2003 Jul 24; 22(30): 4710–22

  49. 49.

    Rubin BP, Singer S, Tsao C, et al. KIT activation is a ubiquitous feature of gastrointestinal stromal tumors. Cancer Res 2001 Nov 15; 61(22): 8118–21

  50. 50.

    Lux ML, Rubin BP, Biase TL, et al. KIT extracellular and kinase domain mutations in gastrointestinal stromal tumors. Am J Pathol 2000 Mar; 156(3): 791–5

  51. 51.

    Hirota S, Isozaki K, Moriyama Y, et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 1998 Jan 23; 279(5350): 577–80

  52. 52.

    Strobel P, Hartmann M, Jakob A, et al. Thymic carcinoma with overexpression of mutated KIT and the response to imatinib. N Engl J Med 2004 Jun 17; 350(25): 2625–6

  53. 53.

    Longley Jr BJ, Metcalfe DD, Tharp M, et al. Activating and dominant inactivating c-KIT catalytic domain mutations in distinct clinical forms of human mastocytosis. Proc Natl Acad Sci U S A 1999 Feb 16; 96(4): 1609–14

  54. 54.

    Kindler T, Breitenbuecher F, Marx A, et al. Efficacy and safety of imatinib in adult patients with c-kit-positive acute myeloid leukemia. Blood 2004 May 15; 103(10): 3644–54

  55. 55.

    Hongyo T, Li T, Syaifudin M, et al. Specific c-kit mutations in sinonasal natural killer/T-cell lymphoma in China and Japan. Cancer Res 2000 May 1; 60(9): 2345–7

  56. 56.

    Puil L, Liu J, Gish G, et al. Bcr-Abl oncoproteins bind directly to activators of the Ras signalling pathway. EMBO J 1994 Feb 15; 13(4): 764–73

  57. 57.

    Jiang Y, Zhao RC, Verfaillie CM. Abnormal integrin-mediated regulation of chronic myelogenous leukemia CD34+ cell proliferation: BCR/ABL up-regulates the cyclin-dependent kinase inhibitor, p27Kip, which is relocated to the cell cytoplasm and incapable of regulating cdk2 activity. Proc Natl Acad Sci U S A 2000 Sep 12; 97(19): 10538–43

  58. 58.

    McGahon A, Bissonnette R, Schmitt M, et al. BCR-ABL maintains resistance of chronic myelogenous leukemia cells to apoptotic cell death. Blood 1994 Mar 1; 83(5): 1179–87

  59. 59.

    Bedi A, Zehnbauer BA, Barber JP, et al. Inhibition of apoptosis by BCR-ABL in chronic myeloid leukemia. Blood 1994 Apr 15; 83(8): 2038–44

  60. 60.

    Bazzoni G, Carlesso N, Griffin JD, et al. Bcr/Abl expression stimulates integrin function in hematopoietic cell lines. J Clin Invest 1996 Jul 15; 98(2): 521–8

  61. 61.

    Gordon MY, Dowding CR, Riley GP, et al. Altered adhesive interactions with marrow stroma of haematopoietic progenitor cells in chronic myeloid leukaemia. Nature 1987 Jul 23–29; 328(6128): 342–4

  62. 62.

    Bhatia R, Munthe HA, Verfaillie CM. Role of abnormal integrin-cytoskeletal interactions in impaired beta1 integrin function in chronic myelogenous leukemia hematopoietic progenitors. Exp Hematol 1999 Sep; 27(9): 1384–96

  63. 63.

    van der Kuip H, Moehring A, Wohlbold L, et al. Imatinib mesylate (STI571) prevents the mutator phenotype of Bcr-Abl in hematopoietic cell lines. Leuk Res 2004 Apr; 28(4): 405–8

  64. 64.

    McWhirter JR, Galasso DL, Wang JY. A coiled-coil oligomerization domain of Bcr is essential for the transforming function of Bcr-Abl oncoproteins. Mol Cell Biol 1993 Dec; 13(12): 7587–95

  65. 65.

    Smith KM, Van Etten RA. Activation of c-Abl kinase activity and transformation by a chemical inducer of dimerization. J Biol Chem 2001 Jun 29; 276(26): 24372–9

  66. 66.

    Muller AJ, Young JC, Pendergast AM, et al. BCR first exon sequences specifically activate the BCR/ABL tyrosine kinase oncogene of Philadelphia chromosome-positive human leukemias. Mol Cell Biol 1991 Apr; 11(4): 1785–92

  67. 67.

    Pendergast AM, Muller AJ, Havlik MH, et al. BCR sequences essential for transformation by the BCR-ABL oncogene bind to the ABL SH2 regulatory domain in a non-phosphotyrosine-dependent manner. Cell 1991 Jul 12; 66(1): 161–71

  68. 68.

    Ward WH, Cook PN, Slater AM, et al. Epidermal growth factor receptor tyrosine kinase. Investigation of catalytic mechanism, structure-based searching and discovery of a potent inhibitor. Biochem Pharmacol 1994 Aug 17; 48(4): 659–66

  69. 69.

    Wakeling AE, Barker AJ, Davies DH, et al. Specific inhibition of epidermal growth factor receptor tyrosine kinase by 4-anilinoquinazolines. Breast Cancer Res Treat 1996; 38(1): 67–73

  70. 70.

    Barker AJ, Gibson KH, Grundy W, et al. Studies leading to the identification of ZD1839 (IRESSA): an orally active, selective epidermal growth factor receptor tyrosine kinase inhibitor targeted to the treatment of cancer. Bioorg Med Chem Lett 2001 Jul 23; 11(14): 1911–4

  71. 71.

    Woodburn JR, Kendrew J, Fennell M, et al. ZD1839 (“Iressa”) a selective epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI): Inhibition of c-fos mRNA, an intermediate marker of EGFR activation, correlates with tumor growth inhibition. Proc Am Assoc Cancer Res 2001; 41: 402

  72. 72.

    Moulder SL, Yakes FM, Muthuswamy SK, et al. Epidermal growth factor receptor (HER1) tyrosine kinase inhibitor ZD1839 (Iressa) inhibits HER2/neu (erbB2)-overexpressing breast cancer cells in vitro and in vivo. Cancer Res 2001 Dec 15; 61(24): 8887–95

  73. 73.

    Wakeling AE, Guy SP, Woodburn JR, et al. ZD1839 (Iressa): an orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res 2002 Oct 15; 62(20): 5749–54

  74. 74.

    Moyer JD, Barbacci EG, Iwata KK, et al. Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer Res 1997 Nov 1; 57(21): 4838–48

  75. 75.

    Stamos J, Sliwkowski MX, Eigenbrot C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J Biol Chem 2002 Nov 29; 277(48): 46265–72

  76. 76.

    Traxler P, Bold G, Buchdunger E, et al. Tyrosine kinase inhibitors: from rational design to clinical trials. Med Res Rev 2001 Nov; 21(6): 499–512

  77. 77.

    Wissner A, Brawner Floyd MB, Rabindran SK, et al. Syntheses and EGFR and HER-2 kinase inhibitory activities of 4-anilinoquinoline-3-carbonitriles: analogues of three important 4-anilinoquinazolines currently undergoing clinical evaluation as therapeutic antitumor agents. Bioorg Med Chem Lett 2002 Oct 21; 12(20): 2893–7

  78. 78.

    Buchdunger E, Zimmermann J, Mett H, et al. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res 1996 Jan 1; 56(1): 100–4

  79. 79.

    Buchdunger E, Cioffi CL, Law N, et al. Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. J Pharmacol Exp Ther 2000 Oct; 295(1): 139–45

  80. 80.

    Okuda K, Weisberg E, Gilliland DG, et al. ARG tyrosine kinase activity is inhibited by STI571. Blood 2001 Apr 15; 97(8): 2440–8

  81. 81.

    Schindler T, Bornmann W, Pellicena P, et al. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 2000 Sep 15; 289(5486): 1938–42

  82. 82.

    Nagar B, Bornmann WG, Pellicena P, et al. Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571). Cancer Res 2002 Aug 1; 62(15): 4236–43

  83. 83.

    Manley PW, Cowan-Jacob SW, Buchdunger E, et al. Imatinib: a selective tyrosine kinase inhibitor. Eur J Cancer 2002 Sep; 38Suppl. 5: 19–27

  84. 84.

    Wisniewski D, Lambek CL, Liu C, et al. Characterization of potent inhibitors of the Bcr-Abl and the c-kit receptor tyrosine kinases. Cancer Res 2002 Aug 1; 62(15): 4244–55

  85. 85.

    Huang M, Dorsey JF, Epling-Burnette PK, et al. Inhibition of Bcr-Abl kinase activity by PD180970 blocks constitutive activation of Stat5 and growth of CML cells. Oncogene 2002 Dec 12; 21(57): 8804–16

  86. 86.

    Huron DR, Gorre ME, Kraker AJ, et al. A novel pyridopyrimidine inhibitor of abl kinase is a picomolar inhibitor of Bcr-abl-driven K562 cells and is effective against STI571-resistant Bcr-abl mutants. Clin Cancer Res 2003 Apr; 9(4): 1267–73

  87. 87.

    Tipping AJ, Deininger MW, Goldman JM, et al. Comparative gene expression profile of chronic myeloid leukemia cells innately resistant to imatinib mesylate. Exp Hematol 2003 Nov; 31(11): 1073–80

  88. 88.

    Morel F, Bris MJ, Herry A, et al. Double minutes containing amplified bcr-abl fusion gene in a case of chronic myeloid leukemia treated by imatinib. Eur J Haematol 2003 Apr; 70(4): 235–9

  89. 89.

    Hochhaus A. Cytogenetic and molecular mechanisms of resistance to imatinib. Semin Hematol 2003 Apr; 40 (2 Suppl. 2): 69–79

  90. 90.

    Branford S, Rudzki Z, Walsh S, et al. High frequency of point mutations clustered within the adenosine triphosphate-binding region of BCR/ABL in patients with chronic myeloid leukaemia or Ph-positive acute lymphoblastic leukemia who develop imatinib (STI571) resistance. Blood 2002 May 1; 99(9): 3472–5

  91. 91.

    Branford S, Rudzki Z, Walsh S, et al. Detection of BCR-ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and mutations in the ATP phosphate-binding loop (P-loop) are associated with a poor prognosis. Blood 2003 Jul 1; 102(1): 276–83

  92. 92.

    von Bubnoff N, Schneller F, Peschel C, et al. BCR-ABL gene mutations in relation to clinical resistance of Philadelphia-chromosome-positive leukaemia to STI571: a prospective study. Lancet 2002 Feb 9; 359(9305): 487–91

  93. 93.

    Illmer T, Schaich M, Platzbecker U, et al. P-glycoprotein-mediated drug efflux is a resistance mechanism of chronic myelogenous leukemia cells to treatment with imatinib mesylate. Leukemia 2004 Mar; 18(3): 401–8

  94. 94.

    O’Brien SG, Guilhot F, Larson RA, et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 2003 Mar 13; 348(11): 994–1004

  95. 95.

    Kantarjian H, Sawyers C, Hochhaus A, et al. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med 2002 Feb 28; 346(9): 645–52

  96. 96.

    Kantarjian H, Talpaz M, O’Brien S, et al. High-dose imatinib mesylate therapy in newly diagnosed Philadelphia chromosome-positive chronic phase chronic myeloid leukemia. Blood 2004 Apr 15; 103(8): 2873–8

  97. 97.

    Cortes J, Giles F, O’Brien S, et al. Result of high-dose imatinib mesylate in patients with Philadelphia chromosome-positive chronic myeloid leukemia after failure of interferon-alpha. Blood 2003 Jul 1; 102(1): 83–6

  98. 98.

    Talpaz M, Silver RT, Druker BJ, et al. Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study. Blood 2002 Mar 15; 99(6): 1928–37

  99. 99.

    Kantarjian HM, Cortes J, O’Brien S, et al. Imatinib mesylate (STI571) therapy for Philadelphia chromosome-positive chronic myelogenous leukaemia in blast phase. Blood 2002; 99: 3547–53

  100. 100.

    Ottmann OG, Druker BJ, Sawyers CL, et al. A phase 2 study of imatinib in patients with relapsed or refractory Philadelphia chromosome-positive acute lymphoid leukemias. Blood 2002 Sep 15; 100(6): 1965–71

  101. 101.

    Al-Ali HK, Heinrich MC, Lange T, et al. High incidence of BCR-ABL kinase domain mutations and absence of mutations of the PDGFR and KIT activation loops in CML patients with secondary resistance to imatinib. Hematol J 2004; 5(1): 55–60

  102. 102.

    Hofmann WK, de Vos S, Elashoff D, et al. Relation between resistance of Philadelphia-chromosome-positive acute lymphoblastic leukaemia to the tyrosine kinase inhibitor STI571 and gene-expression profiles: a gene-expression study. Lancet 2002 Feb 9; 359(9305): 481–6

  103. 103.

    Donato NJ, Wu JY, Stapley J, et al. BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood 2003 Jan 15; 101(2): 690–8

  104. 104.

    Heinrich MC, Corless CL, Demetri GD, et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 2003 Dec 1; 21(23): 4342–9

  105. 105.

    Demetri GD, Desai J, Fletcher JA, et al. SU11248, a multi-targeted tyrosine kinase inhibitor, can overcome imatinib (IM) resistance caused by diverse genomic mechanisms in patients (pts) with metastatic gastrointestinal stromal tumor (GIST). 2004 ASCO Annual Meeting Proceedings. J Clin Oncol 2004 Jul 15; 22(14 Suppl.): 3001

  106. 106.

    Argiris A, Mittal N. Gefitinib as first-line, compassionate use therapy in patients with advanced non-small-cell lung cancer. Lung Cancer 2004 Mar; 43(3): 317–22

  107. 107.

    Soulieres D, Senzer NN, Vokes EE, et al. Multicenter phase II study of erlotinib, an oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with recurrent or metastatic squamous cell cancer of the head and neck. J Clin Oncol 2004 Jan 1; 22(1): 77–85

  108. 108.

    Verweij J, van Oosterom A, Blay JY, et al. Imatinib mesylate (STI-571 Glivec, Gleevec) is an active agent for gastrointestinal stromal tumours, but does not yield responses in other soft-tissue sarcomas that are unselected for a molecular target: results from an EORTC Soft Tissue and Bone Sarcoma Group phase II study. Eur J Cancer 2003 Sep; 39(14): 2006–11

  109. 109.

    Fukuoka M, Yano S, Giaccone G, et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer. J Clin Oncol 2003 Jun 15; 21(12): 2237–46

  110. 110.

    Miller VA, Kris MG, Shah N, et al. Bronchioloalveolar pathologic subtype and smoking history predict sensitivity to gefitinib in advanced non-small-cell lung cancer. J Clin Oncol 2004 Mar 15; 22(6): 1103–9

  111. 111.

    Gambacorti-Passerini CB, Gunby RH, Piazza R, et al. Molecular mechanisms of resistance to imatinib in Philadelphia-chromosome-positive leukaemias. Lancet Oncol 2003 Feb; 4(2): 75–85

  112. 112.

    Hofmann WK, Jones LC, Lemp NA, et al. Ph (+) acute lymphoblastic leukemia resistant to the tyrosine kinase inhibitor STI571 has a unique BCR-ABL gene mutation. Blood 2002 Mar 1; 99(5): 1860–2

  113. 113.

    Roumiantsev S, Shah NP, Gorre ME, et al. Clinical resistance to the kinase inhibitor STI-571 in chronic myeloid leukaemia by mutation of Tyr-253 in the Abl kinase domain P-loop. Proc Natl Acad Sci U S A 2002 Aug 6; 99(16): 10700–5

  114. 114.

    Corbin AS, La Rosee P, Stoffregen EP, et al. Several Bcr-Abl kinase domain mutants associated with imatinib mesylate resistance remain sensitive to imatinib. Blood 2003 Jun 1; 101(11): 4611–4

  115. 115.

    Yamamoto M, Kurosu T, Kakihana K, et al. The two major imatinib resistance mutations E255K and T315I enhance the activity of BCR/ABL fusion kinase. Biochem Biophys Res Commun 2004 Jul 9; 319(4): 1272–5

  116. 116.

    Roche-Lestienne C, Preudhomme C. Mutations in the ABL kinase domain preexist the onset of imatinib treatment. Semin Hematol 2003 Apr; 40 (2 Suppl. 2): 80–2

  117. 117.

    Hofmann WK, Komor M, Wassmann B, et al. Presence of the BCR-ABL mutation Glu255Lys prior to STI571 (imatinib) treatment in patients with Ph+ acute lymphoblastic leukemia. Blood 2003 Jul 15; 102(2): 659–61

  118. 118.

    Cowan-Jacob SW, Guez V, Fendrich G, et al. Imatinib (STI571) resistance in chronic myelogenous leukemia: molecular basis of the underlying mechanisms and potential strategies for treatment. Mini Rev Med Chem 2004 Mar; 4(3): 285–99

  119. 119.

    Desai J, Shankar S, Heinrich MC, et al. Clonal evolution of resistance to imatinib (IM) in patients (pts) with gastrointestinal stromal tumor (GIST): molecular and radiologic evaluation of new lesions. 2004 ASCO Annual Meeting Proceedings. J Clin Oncol, 2004 July 15; 22(14 Suppl.): 3010

  120. 120.

    Kobayashi S, Boggon TJ, Dayaram T, et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 2005 Feb 24; 352(8):786–92

  121. 121.

    Thomas J, Wang L, Clark RE, et al. Active transport of imatinib into and out of cells: implications for drug resistance. Blood 2004 Dec 1; 104(12) Epub 2004 Aug 17

  122. 122.

    Dai H, Marbach P, Lemaire M, et al. Distribution of STI-571 to the brain is limited by P-glycoprotein-mediated efflux. J Pharmacol Exp Ther 2003 Mar; 304(3): 1085–92

  123. 123.

    Mahon FX, Belloc F, Lagarde V, et al. MDR1 gene overexpression confers resistance to imatinib mesylate in leukaemia cell line models. Blood 2003 Mar 15; 101(6): 2368–73

  124. 124.

    Hamada A, Miyano H, Watanabe H, et al. Interaction of imatinib mesilate with human P-glycoprotein. J Pharmacol Exp Ther 2003 Nov; 307(2): 824–8

  125. 125.

    Burger H, Van Tol H, Boersma AW, et al. Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP) / ABCG2 drug pump. Blood 2004 Nov 1; 104(9) Epub 2004 Jul 13

  126. 126.

    Mukai M, Che XF, Furukawa T, et al. Reversal of the resistance to STI571 in human chronic myelogenous leukemia K562 cells. Cancer Sci 2003 Jun; 94(6): 557–63

  127. 127.

    Schwab M, Eichelbaum M, Fromm MF. Genetic polymorphisms of the human MDR1 drug transporter. Annu Rev Pharmacol Toxicol 2003; 43: 285–307

  128. 128.

    Kerb R, Brinkmann U, Chatskaia N, et al. Identification of genetic variations of the human organic cation transporter hOCT1 and their functional consequences. Pharmacogenetics 2002 Nov; 12(8): 591–5

  129. 129.

    Gambacorti-Passerini C, Barni R, le Coutre P, et al. Role of alpha1 acid glycoprotein in the in vivo resistance of human BCR-ABL (+)leukemic cells to the abl inhibitor STI571. J Natl Cancer Inst 2000 Oct 18; 92(20): 1641–50

  130. 130.

    le Coutre P, Kreuzer KA, Na IK, et al. Determination of alpha-1 acid glycoprotein in patients with Ph+ chronic myeloid leukemia during the first 13 weeks of therapy with STI571. Blood Cells Mol Dis 2002 Jan–Feb; 28(1): 75–85

  131. 131.

    Topaly J, Zeller WJ, Fruehauf S. Synergistic activity of the new ABL-specific tyrosine kinase inhibitor STI571 and chemotherapeutic drugs on BCR-ABL-positive chronic myelogenous leukaemia cells. Leukemia 2001 Mar; 15(3): 342–7

  132. 132.

    Koizumi F, Kanzawa F, Ueda Y, et al. Synergistic interaction between the EGFR tyrosine kinase inhibitor gefitinib ([“Iressa”) and the DNA topoisomerase I inhibitor CPT-11 (irinotecan) in human colorectal cancer cells. Int J Cancer 2004 Jan 20; 108(3): 464–72

  133. 133.

    Kurebayashi J, Okubo S, Yamamoto Y, et al. Inhibition of HER1 signaling pathway enhances antitumor effect of endocrine therapy in breast cancer. Breast Cancer 2004; 11(1): 38–41

  134. 134.

    Fan QW, Specht KM, Zhang C, et al. Combinatorial efficacy achieved through two-point blockade within a signalling pathway-a chemical genetic approach. Cancer Res 2003 Dec 15; 63(24): 8930–8

  135. 135.

    Wassmann B, Scheuring U, Pfeifer H, et al. Efficacy and safety of imatinib mesylate (Glivec) in combination with interferon-alpha (IFN-alpha) in Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ALL). Leukemia 2003 Oct; 17(10): 1919–24

  136. 136.

    Fruehauf S, Topaly J, Buss EC, et al. Combination of imatinib and established antileukemic treatment modalities for otherwise refractory BCR-ABL positive lymphoblastic leukemia. Haematologica 2002 Dec; 87(12): ECR38

  137. 137.

    Kim DW, Choy H. Potential role for epidermal growth factor receptor inhibitors in combined-modality therapy for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2004; 59(2 Suppl.): 11–20

  138. 138.

    Sawyers CL, Hochhaus A, Feldman E, et al. Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood 2002 May 15; 99(10): 3530–9

  139. 139.

    Kantarjian HM, Talpaz M, O’Brien S, et al. Dose escalation of imatinib mesylate can overcome resistance to standard-dose therapy in patients with chronic myelogenous leukemia. Blood 2003 Jan 15; 101(2): 473–5

  140. 140.

    von Bubnoff N, Veach DR, Miller WT, et al. Inhibition of wild-type and mutant Bcr-Abl by pyrido-pyrimidine-type small molecule kinase inhibitors. Cancer Res 2003 Oct 1; 63(19): 6395–404

  141. 141.

    von Bubnoff N, Veach DR, van der Kuip H, et al. A cell-based screen for resistance of Bcr-Abl positive leukemia identifies the mutation pattern for PD166326, an alternative Abl kinase inhibitor. Blood. 2004 Sep 30, [Epub ahead of print]

  142. 142.

    Scherr M, Battmer K, Winkler T, et al. Specific inhibition of bcr-abl gene expression by small interfering RNA. Blood 2003 Feb 15; 101(4): 1566–9

  143. 143.

    Wilda M, Fuchs U, Wossmann W, et al. Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference (RNAi). Oncogene 2002 Aug 22; 21(37): 5716–24

  144. 144.

    Wohlbold L, van der Kuip H, Miething C, et al. Inhibition of bcr-abl gene expression by small interfering RNA sensitizes for imatinib mesylate (STI571). Blood 2003 Sep 15; 102(6): 2236–9

  145. 145.

    Li MJ, McMahon R, Snyder DS, et al. Specific killing of Ph+ chronic myeloid leukemia cells by a lentiviral vector-delivered anti-bcr/abl small hairpin RNA. Oligonucleotides 2003; 13(5): 401–9

  146. 146.

    Chen J, Wall NR, Kocher K, et al. Stable expression of small interfering RNA sensitizes TEL-PDGFbetaR to inhibition with imatinib or rapamycin. J Clin Invest 2004 Jun; 113(12): 1784–91

  147. 147.

    Yang G, Cai KQ, Thompson-Lanza JA, et al. Inhibition of breast and ovarian tumor growth through multiple signalling pathways by using retrovirus-mediated small interfering RNA against Her-2/neu gene expression. J Biol Chem 2004 Feb 6; 279(6): 4339–45

  148. 148.

    Choudhury A, Charo J, Parapuram SK, et al. Small interfering RNA (siRNA) inhibits the expression of the Her2/neu gene, upregulates HLA class I and induces apoptosis of Her2/neu positive tumor cell lines. Int J Cancer 2004 Jan 1; 108(1): 71–7

  149. 149.

    Nagy P, Arndt-Jovin DJ, Jovin TM. Small interfering RNAs suppress the expression of endogenous and GFP-fused epidermal growth factor receptor (erbB1) and induce apoptosis in erbB1-overexpressing cells. Exp Cell Res 2003 Apr 15; 285(1): 39–49

  150. 150.

    Zhang Y, Zhang YF, Bryant J, et al. Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin Cancer Res 2004 Jun 1; 10(11): 3667–77

  151. 151.

    Zembutsu H, Ohnishi Y, Daigo Y, et al. Gene-expression profiles of human tumor xenografts in nude mice treated orally with the EGFR tyrosine kinase inhibitor ZD1839. Int J Oncol 2003 Jul; 23(1): 29–39

Download references

Acknowledgements

The authors are supported by the Robert Bosch Foundation and the HW & J Hector Foundation. The authors declare that they have no conflicts of interest.

Author information

Correspondence to Dr Walter E. Aulitzky.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

van der Kuip, H., Wohlbold, L., Oetzel, C. et al. Mechanisms of Clinical Resistance to Small Molecule Tyrosine Kinase Inhibitors Targeting Oncogenic Tyrosine Kinases. Am J Pharmacogenomics 5, 101–112 (2005). https://doi.org/10.2165/00129785-200505020-00003

Download citation

Keywords

  • Epidermal Growth Factor Receptor
  • Imatinib
  • Acute Lymphoblastic Leukemia
  • Gefitinib
  • Chronic Myelogenous Leukemia