Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The Epidemiologic Approach to Pharmacogenomics

Abstract

The epidemiologic approach enables the systematic evaluation of potential improvements in the safety and efficacy of drug treatment which might result from targeting treatment on the basis of genomic information. The main epidemiologic designs are the randomized control trial, the cohort study, and the case-control study, and derivatives of these proposed for investigating gene-environment interactions. However, no one design is ideal for every situation, and methodological issues, notably selection bias, information bias, confounding and chance, all play a part in determining which study design is best for a given situation. There is also a need to employ a range of different designs to establish a portfolio of evidence about specific gene-drug interactions.

In view of the complexity of gene-drug interactions, pooling of data across studies is likely to be needed in order to have adequate statistical power to test hypotheses. We suggest that there may be opportunities (i) to exploit samples from trials already completed to investigate possible gene-drug interactions; (ii) to consider the use of the case-only design nested within randomized controlled trials as a possible means of reducing genotyping costs when dichotomous outcomes are being investigated; and (iii) to make use of population-based disease registries that can be linked with tissue samples, treatment information and death records, to investigate gene-treatment interactions in survival.

This is a preview of subscription content, log in to check access.

Table I
Table II
Table III

Reference

  1. 1.

    Collins FS, Green ED, Guttmacher AE, et al. A vision for the future of genomics research. Nature 2003; 422(6934): 835–47

  2. 2.

    Nebert DW, Jorge-Nebert L, Vesell ES. Pharmacogenomics and “individualized drug therapy”: high expectations and disappointing achievements. Am J Pharmacogenomics 2003; 3(6): 361–70

  3. 3.

    Collins FS, McKusick VA. Implications of the human genome project for medical science. JAMA 2001; 285(5): 540–4

  4. 4.

    Emery J, Hayflick S. The challenge of integrating genetic medicine into primary care. BMJ 2001; 322(7293): 1027–30

  5. 5.

    Ginsburg GS, McCarthy JJ. Personalized medicine: revolutionizing drug discovery and patient care. Trends Biotechnol 2001; 19(12): 491–6

  6. 6.

    Roses AD. Pharmacogenetics. Hum Mol Genet 2001; 10(20): 2261–7

  7. 7.

    Khoury MJ, McCabe LL, McCabe ER. Population screening in the age of genomic medicine. N Engl J Med 2003; 348(1): 50–8

  8. 8.

    Melzer D, Raven A, Detmer DE, et al. My very own medicine: what must I know? Information policy for pharmacogenetics. Cambridge: University of Cambridge, 2003

  9. 9.

    Guttmacher AS, Collins FS. Inheritance and drug response. N Engl J Med 2003; 348(6): 529–37

  10. 10.

    Motulsky AG. Drug reactions, enzymes and biochemical genetics. JAMA 1957; 165(7): 835–7

  11. 11.

    Vineis P, Malats N, Lang M, et al. Metabolic polymorphisms and susceptibility to cancer. Lyon: International Agency for Research on Cancer, 1999

  12. 12.

    Vogel F. Moderne probleme der humangenetik. Ergeb Inn Med Kinderheilkd 1959; 12: 52–125

  13. 13.

    Nebert DW. Pharmacogenetics and pharmacogenomics: why is this relevant to the clinical geneticist? Clin Genet 1999; 56(4): 247–58

  14. 14.

    Fagerlund TH, Braaten O. No pain relief from codeine?: an introduction to pharmacogenomics. Acta Anaesthesiol Scand 2001; 45(2): 140–9

  15. 15.

    Nebert DW, Bingham E. Pharmacogenomics: out of the lab and into the community. Trends Biotechnol 2001; 19(12): 519–23

  16. 16.

    Tsai YJ, Hoyme HE. Pharmacogenomics: the future of drug therapy. Clin Genet 2002; 62: 257–64

  17. 17.

    Omenn GS, Motulsky AG. Integration of pharmacogenomics into medical practice. In: Rothstein MA, editor. Pharmacogenomics: social, ethical, and clinical dimensions. Hoboken (NJ): John Wiley & Sons Ltd, 2003

  18. 18.

    Guttmacher AE, Collins FS. Genomic medicine: a primer. N Engl J Med 2002; 347(19): 1512–20

  19. 19.

    Vahakangas K. TP53 mutations in workers exposed to occupational carcinogens. Hum Mutat 2003; 21: 240–51

  20. 20.

    Hamadeh HK, Bushel PR, Jayadev S, et al. Prediction of compound signature using high density gene expression profiling. Toxicol Sci 2002; 67: 232–40

  21. 21.

    van de Vijver MJ, He YD, van’t Veer LJ, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002; 347: 1999–2009

  22. 22.

    Khoury MJ, Beskow L, Gwinn ML. Translation of genomic research into health care. JAMA 2001; 285(19): 2447–8

  23. 23.

    Khoury MJ, Little J, Burke W. Human genome epidemiology: scope and strategies. In: Khoury MJ, Little J, Burke W, editors. Human genome epidemiology. New York: Oxford University Press, 2004: 3–16

  24. 24.

    Veenstra DL. The interface between epidemiology and pharmacogenomics. In: Khoury MJ, Little J, Burke W, editors. Human genome epidemiology. New York: Oxford University Press, 2004: 234–46

  25. 25.

    Daly E, Vessey MP, Hawkins MM, et al. Risk of venous thromboembolism in users of hormone replacement therapy. Lancet 1996; 348(9033): 977–80

  26. 26.

    Evans WE, McLeod HL. Pharmacogenomics: drug disposition, drug targets, and side effects. N Engl J Med 2003; 348(6): 538–49

  27. 27.

    Fryer AA, Jones PW. Interactions between detoxifying enzyme polymorphisms and susceptibility to cancer. In: Vineis P, Malats N, Lang M, et al., editors. Metabolic polymorphisms and susceptibility to cancer. Lyon: IARC, 1999: 303–22

  28. 28.

    Gemignani F, Landi S, Vivant F, et al. A catalogue of polymorphisms related to xenobiotic metabolism and cancer susceptibility. Pharmacogenetics 2002; 12: 459–63

  29. 29.

    Johnson JA. Pharmacogenetics: potential for individualized drug therapy through genetics. Trends Genet 2003; 19(11): 660–6

  30. 30.

    Johnson JA, Lima JJ. Drug receptor/effector polymorphisms and pharmacogenetics: current status and challenges. Pharmacogenetics 2003; 13(9): 525–34

  31. 31.

    Sing CF, Stengard JH, Kardia SLR. Genes, environment, and cardiovascular disease. Arterioscler Thromb Vasc Biol 2003; 23(10): 1190–6

  32. 32.

    Evans WE, Relling MV. Moving towards individualized medicine with pharmacogenomics. Nature 2004; 429: 464–8

  33. 33.

    Kruglyak L, Nickerson DA. Variation is the spice of life. Nat Genet 2001; 27: 234–6

  34. 34.

    Botstein D, Risch N. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat Genet 2003; 33 Suppl.: 228–37

  35. 35.

    International HapMap Consortium. The international HapMap project. Nature 2003; 426: 789–96

  36. 36.

    Zhao LP, Li SS, Khalid N. A method for the assessment of disease associations with single-nucleotide polymorphism haplotypes and environmental variables in case-control studies. Am J Hum Genet 2003; 72: 1231–50

  37. 37.

    Daly MJ, Rioux JD, Schaffner SF, et al. High-resolution haplotype structure in the human genome. Nat Genet 2001; 29(2): 229–32

  38. 38.

    Patil N, Berno AJ, Hinds DA, et al. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 2001; 294(5547): 1719–23

  39. 39.

    Johnson GCL, Esposito L, Barratt BJ, et al. Haplotype tagging for the identification of common disease genes. Nat Genet 2001; 29: 233–7

  40. 40.

    Sebastiani P, Lazarus R, Weiss ST, et al. Minimal haplotype tagging. Proc Natl Acad Sci U S A 2003; 100(17): 9900–5

  41. 41.

    Zhang W, Collins A, Morton NE. Does haplotype diversity predict power for association mapping of disease susceptibility? Hum Genet 2004; 115: 157–64

  42. 42.

    Huang Q, Fu YX, Boerwinkle E. Comparison of strategies for selecting single nucleotide polymorphisms for case/control association studies. Hum Genet 2003; 113: 253–7

  43. 43.

    Kamatani N, Sekine A, Kitamoto T, et al. Large-scale single-nucleotide polymorphism (SNP) and haplotype analyses, using dense SNP maps, of 199 drug-related genes in 752 subjects: the analysis of the association between uncommon SNPs within haplotype blocks and the haplotypes constructed with haplotype-tagging SNPs. Am J Hum Genet 2004; 75: 190–203

  44. 44.

    Cardon LR, Abecasis GR. Using haplotype blocks to map human complex triat loci. Trends Genet 2003; 19: 135–40

  45. 45.

    Ke X, Hunt S, Tapper W, et al. The impact of SNP density on fine-scale patterns of linkage disequilibrium. Hum Mol Genet 2004; 13: 577–88

  46. 46.

    Carlson CS, Eberle MA, Rieder MJ, et al. Selecting a maximally informative set of single-nucleotide polymorphisms for association analysis using linkage disequilibrium. Am J Hum Genet 2004; 74: 106–20

  47. 47.

    van Hylckama Vlieg A, Sandkuijl LA, Rosendaal FR, et al. Candidate gene approach in association studies: would the factor V Leiden mutation have been found by this approach? Eur J Hum Genet 2004; 12: 478–82

  48. 48.

    Martinez ME, O’Brien TG, Fultz KE, et al. Pronounced reduction in adenoma recurrence associated with aspirin use and a polymorphism in the ornithine decarboxylase gene. Proc Natl Acad Sci U S A 2003; 100(13): 7859–64

  49. 49.

    Higashi MK, Veenstra DL, Kondo LM, et al. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA 2002; 287(13): 1690–8

  50. 50.

    Bartsch H, Nair U, Risch A, et al. Genetic polymorphism of CYP genes, alone or in combination, as a risk modifier of tobacco-related cancers. Cancer Epidemiol Biomarkers Prev 2000; 9: 3–28

  51. 51.

    Engel LS, Taioli E, Pfeiffer R, et al. Pooled analysis and meta-analysis of glutathione S-transferase M1 and bladder cancer: a HuGE review. Am J Epidemiol 2002; 156(2): 95–109

  52. 52.

    Marcus PM, Hayes RB, Vineis P, et al. Cigarette smoking, N-acetyltransferase 2 acetylation status, and bladder cancer risk: a case-series meta-analysis of a gene-environment interaction. Cancer Epidemiol Biomarkers Prev 2000; 9(5): 461–7

  53. 53.

    Benhamou S, Lee WJ, Alexandrie AK, et al. Meta- and pooled analyses of the effects of glutathione S-transferase M1 polymorphisms and smoking on lung cancer risk. Carcinogenesis 2002; 23: 1343–50

  54. 54.

    Brockton N, Little J, Sharp L, et al. N-acetyltransferase polymorphisms and colorectal cancer: a review. Am J Epidemiol 2000; 151(9): 846–61

  55. 55.

    Cotton SC, Sharp L, Little J, et al. Glutathione S-transferase polymorphisms and colorectal cancer. Am J Epidemiol 2000; 151(1): 7–32

  56. 56.

    Ye Z, Parry JM. Meta-analysis of 20 case-control studies on the N-acetyltransferase 2 acetylation status and colorectal cancer risk. Med Sci Monit 2002; 8(8): CR558–65

  57. 57.

    Garcia-Closas M, Wacholder S, Caporaso N, et al. Inference issues in cohort and case-control studies of genetic effects and gene-environment interactions. In: Khoury MJ, Little J, Burke W, editors. Human genome epidemiology: a scientific foundation for using genetic information to improve health and prevent disease. New York: Oxford University Press, 2004: 127–44

  58. 58.

    Ioannidis JPA, Lau J. Integrating genetics into randomized controlled trials. In: Khoury MJ, Little J, Burke W, editors. Human genome epidemiology: a scientific foundation for using genetic information to improve health and prevent disease. New York: Oxford University Press, 2004: 247–63

  59. 59.

    Koopmans RP, Insel PA, Michel MC. Pharmacogenetics of hypertension treatment: a structured review. Pharmacogenetics 2003; 13(12): 705–13

  60. 60.

    Murphy Jr GM, Kremer C, Rodrigues HE, et al. Pharmacogenetics of antidepressant medication intolerance. Am J Psychiatry 2003; 160(10): 1830–5

  61. 61.

    Hillner BE. Trends in clinical trials reports in common cancers between 1989 and 2000. J Clin Oncol 2003; 21(9): 1850–8

  62. 62.

    Haidich AB, Ioannidis JPA. Patterns of patient enrollment in randomized controlled trials. J Clin Epidemiol 2001; 54: 877–83

  63. 63.

    Hwang SJ, Beaty TH, Liang KY, et al. Minimum sample size estimation to detect gene-environment interaction in case-control designs. Am J Epidemiol 1994; 140(11): 1029–37

  64. 64.

    Foppa I, Spiegelman D. Power and sample size calculations for case-control studies of gene-environment interactions with a polytomous exposure variable. Am J Epidemiol 1997; 146(7): 596–604

  65. 65.

    Goldstein AM, Falk RT, Korczak JF, et al. Detecting gene-environment interactions using a case-control design. Genet Epidemiol 1997; 14(6): 1085–9

  66. 66.

    Garcia-Closas M, Lubin JH. Power and sample size calculations in case-control studies of gene-environment interactions: comments on different approaches. Am J Epidemiol 1999; 149(8): 689–92

  67. 67.

    Luan JA, Wong MY, Day NE, et al. Sample size determination for studies of gene-environment interaction. Int J Epidemiol 2001; 30: 1035–40

  68. 68.

    Salmen T, Heikkinen AM, Mahonen A, et al. Relation of estrogen receptor-alpha gene polymorphism and hormone replacement therapy to fall risk and muscle strength in early postmenopausal women. Ann Med 2002; 34(1): 64–72

  69. 69.

    Ray WA. Population-based studies of adverse drug effects. N Engl J Med 2003; 349(17): 1592–4

  70. 70.

    Thomas DC. Statistical issues in the design and analysis of gene-disease association studies. In: Khoury MJ, Little J, Burke W, editors. Human genome epidemiology: a scientific foundation for using genetic information to improve health and prevent disease. New York: Oxford University Press, 2004: 92–110

  71. 71.

    Singh GK, Miller BA, Hankey BF, et al. Area socioeconomic variations in US cancer incidence, mortality, stage, treatment, and survival, 1975–1999. NCI Cancer Surveillance Monograph Series, Number 4. Bethesda (MD): National Cancer Institute, 2003. NIH Publication No. 03-5417

  72. 72.

    Berrino F, Capocaccia R, Esteve J, et al. Survival of cancer patients in Europe: the EUROCARE-2 study. IARC Scientific Publications No. 151. Lyon: IARC, 1999

  73. 73.

    Hair JF, McNicol AM, Gusterson BA. Is research on human tissues at a crossroads? Eur J Cancer 2003; 39(16): 2253–5

  74. 74.

    McQuillan GM, Porter KS, Agelli M, et al. Consent for genetic research in a general population: the NHANES experience. Genet Med 2003; 5(1): 35–42

  75. 75.

    Riboli E, Hunt KJ, Slimani N, et al. European prospective investigation into cancer and nutrition (EPIC): study populations and data collection. Public Health Nutr 2002; 5(6B): 1113–24

  76. 76.

    Hakonarson H, Gulcher JR, Stefansson K. deCODE genetics, Inc. Pharmacogenetics 2003; 4(2): 209–15

  77. 77.

    Wright AF, Carothers AD, Campbell H. Gene-environment interactions: the BioBank UK study. Pharmacogenomics J 2002; 2(2): 75–82

  78. 78.

    Branum AM, Collman GW, Correa A, et al. The national children’s study of environmental effects on child health and development. Environ Health Perspect 2003; 111(4): 642–6

  79. 79.

    Hirtzlin I, Dubreuil C, Preaubert N, et al. An empirical survey on biobanking of human genetic material and data in six EU countries. Eur J Hum Genet 2003; 11(6): 475–88

  80. 80.

    Pembrey M. Genetic epidemiology: some special contributions of birth cohorts. Paediatr Perinat Epidemiol 2004; 18(1): 3–7

  81. 81.

    Breslow NE, Day NE. Statistical methods in cancer research. IARC Scientific Publication No. 32 ed. Lyon, France: International Agency for Research on Cancer, 1980

  82. 82.

    Wacholder S, Hartge P. Case-control study. In: Gail MH, Benichou J, editors. Encyclopedia of epidemiologic methods. Chichester: John Wiley & Sons Ltd, 2000: 145–55

  83. 83.

    Lang JM. Case-control study, prevalent. In: Gail MH, Benichou J, editors. Encyclopedia of epidemiologic methods. Chichester: John Wiley & Sons Ltd, 2000: 160–9

  84. 84.

    Garcia-Closas M, Rothman N, Lubin J. Misclassification in case-control studies of gene-environment interactions: assessment of bias and sample size. Cancer Epidemiol Biomarkers Prev 1999; 8(12): 1043–50

  85. 85.

    Rosendaal FR, Vessey M, Rumley A, et al. Hormonal replacement therapy, prothrombotic mutations and the risk of venous thrombosis. Br J Haematol 2002; 116(4): 851–4

  86. 86.

    Little J, Khoury MJ, Bradley L, et al. The human genome project is complete. How do we develop a handle for the pump? Am J Epidemiol 2003; 157(8): 667–73

  87. 87.

    Ioannidis JPA, Ntzani EE, Trikalinos TA, et al. Replication validity of genetic association studies. Nat Genet 2001; 29(3): 306–9

  88. 88.

    Botto LD, Yang Q. 5,10 methylenetetrahydrofolate reductase gene variants and congenital anomalies: a HuGE review. Am J Epidemiol 2000; 151(9): 862–77

  89. 89.

    Wang SS, Fernhoff PM, Hannon WH, et al. Medium chain acyl-CoA dehydrogenase deficiency human genome epidemiology review. Genet Med 1999; 1(7): 332–9

  90. 90.

    Wacholder S. Practical considerations in choosing between the case-cohort and nested case-control designs. Epidemiology 1991; 2(2): 155–8

  91. 91.

    Begg CB, Zhang ZF. Statistical analysis of molecular epidemiology studies employing case-series. Cancer Epidemiol Biomarkers Prev 1994; 3(2): 173–5

  92. 92.

    Piegorsch WW, Weinberg CR, Taylor JA. Non-hierarchical logistic models and case-only designs for assessing susceptibility in population-based case-control studies. Stat Med 1994; 13(2): 153–62

  93. 93.

    Khoury MJ, Flanders WD. Nontraditional epidemiologic approaches in the analysis of gene-environment interaction: case-control studies with no controls. Am J Epidemiol 1996; 144(3): 207–13

  94. 94.

    Yang Q, Khoury MJ. Evolving methods in genetic epidemiology: III. Gene-environment interaction in epidemiologic research. Epidemiol Rev 1997; 19(1): 33–43

  95. 95.

    Albert PS, Ratnasinghe D, Tangrea J, et al. Limitations of the case-only design for identifying gene-environment interactions. Am J Epidemiol 2001; 154(8): 687–93

  96. 96.

    Feigelson HS, McKean-Cowdin R, Pike MC, et al. Cytochrome P450cl7alpha gene (CYP17) polymorphism predicts use of hormone replacement therapy. Cancer Res 1999; 59(16): 3908–10

  97. 97.

    Sharp L, Cardy AH, Cotton SC, et al. CYP17 gene polymorphisms: prevalence and associations with hormone levels and related factors: a HuGE review. Am J Epidemiol 2004 Oct 15; 160(8): 729–40

  98. 98.

    Herrington DM, Howard TD, Hawkins GA, et al. Estrogen-receptor polymorphisms and effects of estrogen replacement on high-density lipoprotein cholesterol in women with coronary disease. N Engl J Med 2002; 346(13): 967–74

  99. 99.

    Risch N, Teng J. The relative power of family-based and case-control designs for linkage disequilibrium studies of complex human diseases 1. DNA pooling. Genome Res 1998; 8(12): 1273–88

  100. 100.

    Witte JS, Gauderman WJ, Thomas DC. Asymptotic bias and efficiency in case-control studies of candidate genes and gene-environment interactions: basic family designs. Am J Epidemiol 1999; 149(8): 693–705

  101. 101.

    Thomas DC. Statistical methods in genetic epidemiology. New York: Oxford University Press, 2004

  102. 102.

    Gauderman WJ, Witte JS, Thomas DC. Family-based association studies. J Natl Cancer Inst Monogr 1999; 26: 31–7

  103. 103.

    Gauderman WJ. Sample size requirements for matched case-control studies of gene-environment interaction. Stat Med 2002; 21(1): 35–50

  104. 104.

    Umbach DM, Weinberg CR. The use of case-parent triads to study joint effects of genotype and exposure. Am J Hum Genet 2000; 66: 251–61

  105. 105.

    Self SG, Longton G, Kopecky KJ, et al. On estimating HLA/disease association with application to a study of aplastic anemia. Biometrics 1991; 47: 53–61

  106. 106.

    Hill HA, Kleinbaum DG. Bias in observational studies. In: Gail MH, Benichou J, editors. Encyclopedia of epidemiologic methods. Chichester: John Wiley & Sons Ltd, 2000: 94–100

  107. 107.

    Wacholder S, Chatterjee N, Hartge P. Joint effects of genes and environment distorted by selection biases: implications for hospital-based case-control studies. Cancer Epidemiol Biomarkers Prev 2002; 11(9): 885–9

  108. 108.

    Little J. Reporting and review of human genome epidemiology studies. In: Khoury MJ, Little J, Burke W, editors. Human genome epidemiology: a scientific foundation for using genetic information to improve health and prevent disease. New York: Oxford University Press, 2004: 168–92

  109. 109.

    Chenevix-Trench G, Young J, Coggan M, et al. Glutathione S-transferase M1 and T1 polymorphisms: susceptibility to colon cancer and age of onset. Carcinogenesis 1995; 16(7): 1655–7

  110. 110.

    Olson SH. Reported participation in case-control studies: changes over time. Am J Epidemiol 2001; 154(6): 574–81

  111. 111.

    Madigan MP, Troisi R, Potischman N, et al. Characteristics of respondents and non-respondents from a case-control study of breast cancer in younger women. Int J Epidemiol 2000; 29(5): 793–8

  112. 112.

    McLeod A. Variation in the provision of chemotherapy for colorectal cancer. J Epidemiol Community Health 1999; 53(12): 775–81

  113. 113.

    Campbell NC, Elliott AM, Sharp L, et al. Impact of deprivation and rural residence on treatment of colorectal and lung cancer. Br J Cancer 2002; 87(6): 585–90

  114. 114.

    Rathore SS, Berger AK, Weinfurt KP, et al. Race, sex, poverty, and the medical treatment of acute myocardial infarction in the elderly. Circulation 2000; 102(6): 642–8

  115. 115.

    Brown AF, Gross AG, Gutierrez PR, et al. Income-related differences in the use of evidence-based therapies in older persons with diabetes mellitus in for-profit managed care. J Am Geriatr Soc 2003; 51(5): 665–70

  116. 116.

    Van Beijsterveldt CE, van Boxtel MP, Bosma H, et al. Predictors of attrition in a longitudinal cognitive aging study: the Maastricht aging study (MAAS). J Clin Epidemiol 2002; 55(3): 216–23

  117. 117.

    Russell C, Palmer JR, Adams-Campbell LL, et al. Follow-up of a large cohort of black women. Am J Epidemiol 2001; 154(9): 845–53

  118. 118.

    Deeg DJ, van Tilburg T, Smith JH, et al. Attrition in the longitudinal aging study Amsterdam: the effect of differential inclusion in side studies. J Clin Epidemiol 2002; 55(4): 319–28

  119. 119.

    Greenland S. The effect of misclassification in the presence of covariates. Am J Epidemiol 1980; 112(4): 564–9

  120. 120.

    Clayton D, McKeigue PM. Epidemiological methods for studying genes and environmental factors in complex diseases. Lancet 2001; 358(9290): 1356–60

  121. 121.

    Little J, Bradley L, Bray MS, et al. Reporting, appraising, and integrating data on genotype prevalence and gene-disease associations. Am J Epidemiol 2002; 156(4): 300–10

  122. 122.

    Steinberg K, Gallagher M. Assessing genotypes in human genome epidemiology studies. In: Khoury MJ, Little J, Burke W, editors. Human genome epidemiology: a scientific foundation for using genetic information to improve health and prevent disease. New York: Oxford University Press, 2004: 79–91

  123. 123.

    Armstrong BK, White E, Saracci R. Principles of exposure measurement in epidemiology. Oxford: Oxford University Press, 1992

  124. 124.

    Sjahid SI, van der Linden PD, Stricker BH. Agreement between the pharmacy medication history and patient interview for cardiovascular drugs: the Rotterdam elderly study. Br J Clin Pharmacol 1998; 45(6): 591–5

  125. 125.

    Korthuis PT, Asch S, Mancewicz M, et al. Measuring medication: do interviews agree with medical record and pharmacy data? Med Care 2002; 40(12): 1270–82

  126. 126.

    Boudreau DM, Daling JR, Malone KE, et al. A validation study of patient interview data and pharmacy records for antihypertensive, statin, and antidepressant medication use among older women. Am J Epidemiol 2004; 159(3): 308–17

  127. 127.

    Cotterchio M, Kreiger N, Darlington G, et al. Comparison of self-reported and physician-reported antidepressant medication use. Ann Epidemiol 1999; 9(5): 283–9

  128. 128.

    Paganini-Hill A, Ross RK. Reliability of recall of drug usage and other health-related information. Am J Epidemiol 1982; 116(1): 114–22

  129. 129.

    Coughlin SS. Recall bias in epidemiologic studies. J Clin Epidemiol 1990; 43(1): 87–91

  130. 130.

    Chouinard E, Walter S. Recall bias in case-control studies: an empirical analysis and theoretical framework. J Clin Epidemiol 1995; 48(2): 245–54

  131. 131.

    Drews CD, Greenland S. The impact of differential recall on the results of case-control studies. Int J Epidemiol 1990; 19(4): 1107–12

  132. 132.

    Khoury MJ. Case-parental control method in the search for disease-susceptibility genes. Am J Hum Genet 1994; 55(2): 414–5

  133. 133.

    Swan SH, Shaw GM, Schulman J. Reporting and selection bias in case-control studies of congenital malformations. Epidemiology 1992; 3(4): 356–63

  134. 134.

    Knowler WC, Williams RC, Pettitt DJ, et al. Gm3;5,13,14 and type 2 diabetes mellitus: an association in American Indians with genetic admixture. Am J Hum Genet 1988; 43(4): 520–6

  135. 135.

    Gelernter J, Goldman D, Risch N. The A1 allele at the D2 dopamine receptor gene and alcoholism: a reappraisal. JAMA 1993; 269(13): 1673–7

  136. 136.

    Kittles RA, Chen W, Panguluri RK, et al. CYP3A4-V and prostate cancer in African Americans: causal or confounding association because of population stratification? Hum Genet 2002; 110(6): 553–60

  137. 137.

    Thomas DC, Witte JS. Point: population stratification: a problem for case control studies of candidate-gene associations? Cancer Epidemiol Biomarkers Prev 2002; 11(6): 505–12

  138. 138.

    Cardon LR, Palmer LJ. Population stratification and spurious allelic association. Lancet 2003; 361(9357): 598–604

  139. 139.

    Wacholder S, Rothman N, Caporaso N. Counterpoint: bias from population stratification is not a major threat to the validity of conclusions from epidemiology studies of common polymorphisms and cancer. Cancer Epidemiol Biomarkers Prev 2002; 11(6): 513–20

  140. 140.

    Wacholder S, Rothman N, Caporaso N. Population stratification in epidemiologic studies of common genetic variants and cancer: quantification of bias. J Natl Cancer Inst 2000; 92(14): 1151–8

  141. 141.

    Ardlie KG, Lunetta KL, Scielstad M. Testing for population subdivision and association in four case-control studies. Am J Hum Genet 2002; 71(2): 304–11

  142. 142.

    Garte S. The role of ethnicity in cancer susceptibility gene polymorphisms: the example of CYP1A1. Carcinogenesis 1998; 19(8): 1329–32

  143. 143.

    Millikan RC. Re: population stratification in epidemiologic studies of common genetic variants and cancer: quantification of bias. J Natl Cancer Inst 2001; 93(2): 156–7

  144. 144.

    Wang Y, Localio R, Rebbeck TR. Evaluating bias due to population stratification in case-control association studies of admixed populations. Genet Epidemiol 2004; 27: 14–20

  145. 145.

    Marchini J, Cardon LR, Phillips MS, et al. The effects of human population structure on large genetic association studies. Nat Genet 2004; 36(5): 512–7

  146. 146.

    Freedman ML, Reich D, Penney KL, et al. Assessing the impact of population stratification on genetic association studies. Nat Genet 2004; 36(4): 388–93

  147. 147.

    Hoggart CJ, Parra EJ, Shriver MD, et al. Control of confounding of genetic associations in stratified populations. Am J Hum Genet 2003; 72(6): 1492–504

  148. 148.

    Lee WC. Case-control association studies with matching and genomic controlling. Genet Epidemiol 2004; 27: 1–13

  149. 149.

    Hirschhorn JN, Lohmueller K, Byrne E, et al. A comprehensive review of genetic association studies. Genet Med 2002; 4(2): 45–61

  150. 150.

    Ardlie KG, Kruglyak L, Scielstad M. Patterns of linkage disequilibrium in the human genome. Nat Rev Genet 2002; 3(4): 299–309

  151. 151.

    Schork NJ, Fallin D, Lanchbury JS. Single nucleotide polymorphisms and the future of genetic epidemiology. Clin Genet 2000; 58(4): 250–64

  152. 152.

    Fallin D, Cohen A, Essioux L, et al. Genetic analysis of case/control data using estimated haplotype frequencies: application to APOE locus variation and Alzheimer’s disease. Genome Res 2001; 11(1): 143–51

  153. 153.

    Goldstein DB. Pharmacogenetics in the laboratory and the clinic. N Engl J Med 2003; 348(6): 553–6

  154. 154.

    Davey Smith G, Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol 2003; 32: 1–22

  155. 155.

    Little J, Khoury MJ. Mendelian randomisation: a new spin or real progress? Lancet 2003; 362: 930–1

  156. 156.

    Feigelson HS, Coetzee GA, Kolonel LN, et al. A polymorphism in the CYP17 gene increases the risk of breast cancer. Cancer Res 1997; 57: 1063–5

  157. 157.

    Helzlsouer KJ, Huang HY, Strickland PT, et al. Association between CYP17 polymorphisms and the development of breast cancer. Cancer Epidemiol Biomarkers Prev 1998; 7(10): 945–9

  158. 158.

    Haiman CA, Hankinson SE, Spiegelman D, et al. The relationship between a polymorphism in CYP17 with plasma hormone levels and breast cancer. Cancer Res 1999; 59(5): 1015–20

  159. 159.

    Mitrunen K, Jourenkova N, Kataja V, et al. Steroid metabolism gene CYP17 polymorphism and the development of breast cancer. Cancer Epidemiol Biomarkers Prev 2000; 9: 1343–8

  160. 160.

    Ambrosone CB, Moysich KB, Furberg H, et al. CYP17 genetic polymorphism, breast cancer, and breast cancer risk factors. Breast Cancer Res 2003; 5: R45–51

  161. 161.

    Wacholder S, Chanock S, Garcia-Closas M, et al. Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst 2004; 96(6): 434–42

  162. 162.

    Smith PG, Day NE. The design of case-control studies: the influence of confounding and interaction effects. Int J Epidemiol 1984; 13(3): 356–65

  163. 163.

    Thomas DC, Clayton DG. Betting odds and genetic associations. J Natl Cancer Inst 2004; 96(6): 421–3

  164. 164.

    Colhoun HM, McKeigue PM, Davey Smith G. Problems of reporting genetic associations with complex outcomes. Lancet 2003; 361: 865–72

  165. 165.

    Sabatti C, Service S, Freimer N. False discovery rate in linkage and association genome screens for complex disorders. Genetics 2003; 164(2): 829–33

  166. 166.

    Botto LD, Khoury MJ. Commentary: facing the challenge of gene-environment interaction: the two-by-four table and beyond. Am J Epidemiol 2001; 153(10): 1016–20

  167. 167.

    Botto LD, Khoury MJ. Facing the challenge of complex genotypes and gene-environment interaction: the basic epidemiologic units in case-control and case-only designs. In: Khoury MJ, Little J, Burke W, editors. Human genome epidemiology. New York: Oxford University Press, 2004: 111–26

  168. 168.

    Miettinen OS. Proportion of disease caused or prevented by a given exposure, trait or intervention. Am J Epidemiol 1974; 99(5): 325–32

  169. 169.

    Yang Q, Khoury MJ, Botto L, et al. Improving the prediction of complex diseases by testing for multiple disease-susceptibility genes. Am J Hum Genet 2003; 72(3): 636–49

  170. 170.

    Aragaki CC, Greenland S, Probst-Hensch N, et al. Hierarchical modeling of gene-environment interactions: estimating NAT2 genotype-specific dietary effects on adenomatous polyps. Cancer Epidemiol Biomarkers Prev 1997; 6(5): 307–14

  171. 171.

    Witte JS. Genetic analysis with hierarchical models. Genet Epidemiol 1997; 14(6): 1137–42

  172. 172.

    Ioannidis JPA, Rosenberg PS, Goedert JJ, et al. Commentary: meta-analysis of individual participants’ data in genetic epidemiology. Am J Epidemiol 2002; 156: 204–10

  173. 173.

    Tu JV. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol 1996; 49(11): 1225–31

  174. 174.

    Warner B, Misra M. Understanding neural networks as statistical tools. Am Stat 1996; 50(4): 284–93

  175. 175.

    Duh MS, Walker AM, Ayanian JZ. Epidemiologic interpretation of artificial neural networks. Am J Epidemiol 1998; 147(12): 1112–22

  176. 176.

    Goldstein DB, Tate SK, Sisodiya SM. Pharmacogenetics goes genomic. Genetics 2003; 4: 937–47

  177. 177.

    Klerk M, Verhoef P, Clarke R, et al. MTHFR 677C->T polymorphism and risk of coronary heart disease. JAMA 2002; 288(16): 2023–31

  178. 178.

    Sharp L, Little J. Polymorphisms in genes involved in folate metabolism and colorectal neoplasia: a HuGE review. Am J Epidemiol 2004; 159(5): 423–43

  179. 179.

    Weiss KM, Terwilliger JD. How many diseases does it take to map a gene with SNPs? Nat Genet 2000; 26: 151–7

  180. 180.

    Challenges for the 21st century. Nat Genet 2001; 29: 353–4

  181. 181.

    Cloninger CR. The discovery of susceptibility genes for mental disorders. Proc Natl Acad Sci U S A 2002; 99: 13365–7

  182. 182.

    Glazier AM, Nadeau JH, Aitman TJ. Finding genes that underlie complex traits. Science 2002; 298: 2345–9

  183. 183.

    Khoury MJ. Commentary: epidemiology and the continuum from genetic research to genetic testing. Am J Epidemiol 2002; 156(4): 297–9

  184. 184.

    Harrison PJ, Owen MJ. Genes for schizophrenia?: recent findings and their pathophysiological implications. Lancet 2003; 361: 417–9

  185. 185.

    Page GP, George V, Go RC, et al. “Are we there yet?”: deciding when one has demonstrated specific genetic causation in complex diseases and quantitative traits. Am J Hum Genet 2003; 73: 711–9

  186. 186.

    Cardon LR, Bell JI. Association study designs for complex diseases. Nat Rev Genet 2001; 2(2): 91–9

  187. 187.

    Haddow JE, Palomaki GE. ACCE: a model process for evaluating data on emerging genetic tests. In: Khoury MJ, Little J, Burke W, editors. Human genome epidemiology. New York: Oxford University Press, 2004: 217–33

  188. 188.

    Burke W, Atkins D, Gwinn M, et al. Genetic test evaluation: information needs of clinicians, policy makers, and the public. Am J Epidemiol 2002; 156(4): 311–8

  189. 189.

    Veenstra DL, Higashi MK, Phillips KA. Assessing the cost-effectiveness of pharmacogenetics. AAPS Pharm Sci 2000; 2(3): E29

Download references

Acknowledgments

This work was in part supported by a Career Development Award from the Association of Teachers of Preventive Medicine to Julian Little.

Author information

Correspondence to Dr Julian Little.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Little, J., Sharp, L., Khoury, M.J. et al. The Epidemiologic Approach to Pharmacogenomics. Am J Pharmacogenomics 5, 1–20 (2005). https://doi.org/10.2165/00129785-200505010-00001

Download citation

Keywords

  • Hormone Replacement Therapy
  • Paroxetine
  • Population Stratification
  • Disease Etiology
  • Population Attributable Fraction