American Journal of Cardiovascular Drugs

, Volume 8, Issue 5, pp 315–326 | Cite as

Therapeutic Potential of Adult Progenitor Cells in the Management of Chronic Myocardial Ischemia

Review Article


Refractory angina as a result of chronic myocardial ischemia is a common and disabling condition. Adult progenitor cells have emerged as a potential revolutionary treatment for cardiovascular disease. Locally administered adult progenitor cells with particular vasculogenic potential may offer treatment hope for those with chronic ischemia; however, the optimal cell type, dose, delivery mode, and target patient population has not been defined. Preclinical cell therapy studies have shown safety and efficacy sufficient to warrant human trials. Early, small-scale human trials exploring various cell types and delivery modes have shown that most approaches are safe, with modest early efficacy. This overview discusses the rationale and early results for ongoing larger cardiovascular disease trials, with a special emphasis on refractory angina and chronic myocardial ischemia.


  1. 1.
    Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275 (5302): 964–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Strauer BE, Brehm M, Zeus T, et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 2002; 106 (15): 1913–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Assmus B, Schachinger V, Teupe C, et al. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation 2002; 106 (24): 3009–17.PubMedCrossRefGoogle Scholar
  4. 4.
    Jolicoeur EM, Granger CB, Fakunding JL, et al. Bringing cardiovascular cell-based therapy to clinical application: perspectives based on a National Heart, Lung, and Blood Institute Cell Therapy Working Group meeting. Am Heart J 2007; 153 (5): 732–42.PubMedCrossRefGoogle Scholar
  5. 5.
    Boyle AJ, Schulman SP, Hare JM, et al. Is stem cell therapy ready for patients? Stem cell therapy for cardiac repair: ready for the next step. Circulation 2006; 114 (4): 339–52.PubMedCrossRefGoogle Scholar
  6. 6.
    Yang EH, Bareness GW, Gersh BJ, et al. Current and future treatment strategies for refractory angina. Mayo Clin Proc 2004; 79 (10): 1284–92.PubMedCrossRefGoogle Scholar
  7. 7.
    Mukherjee D, Bhatt DL, Roe MT, et al. Direct myocardial revascularization and angiogenesis: how many patients might be eligible? [abstract no. A8]. Am J Cardiol 1999; 84 (5): 598–600.PubMedCrossRefGoogle Scholar
  8. 8.
    Mannheimer C, Camici P, Chester MR, et al. The problem of chronic refractory angina; report from the ESC Joint Study Group on the Treatment of Refractory Angina. Eur Heart J 2002; 23 (5): 355–70.PubMedCrossRefGoogle Scholar
  9. 9.
    Siddiqui MA, Keam SJ. Ranolazine: a review of its use in chronic stable angina pectoris. Drugs 2006; 66 (5): 693–710.PubMedCrossRefGoogle Scholar
  10. 10.
    Morrow DA, Scirica BM, Karwatowska-Prokopczuk E, et al. Effects of ranolazine on recurrent cardiovascular events in patients with non-ST-elevation acute coronary syndromes: the MERLIN-TIMI 36 randomized trial. JAMA 2007; 297 (16): 1775–83.PubMedCrossRefGoogle Scholar
  11. 11.
    Gibbons RJ, Abrams J, Chatterjee K, et al. ACC/AHA 2002 guideline update for the management of patients with chronic stable angina: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on the Management of Patients With Chronic Stable Angina). Circulation 2003; 107 (1): 149–58.PubMedCrossRefGoogle Scholar
  12. 12.
    Fam NP, Verma S, Kutryk M, et al. Clinician guide to angiogenesis. Circulation 2003; 108 (21): 2613–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Raval AN, Kamp TJ, Hogle LF. Cellular therapies for heart disease: unveiling the ethical and public policy challenges. J Mol Cell Cardiol. Epub 2007 Nov 22.Google Scholar
  14. 14.
    Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318 (5858): 1917–20.PubMedCrossRefGoogle Scholar
  15. 15.
    Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 2003; 114 (6): 763–76.PubMedCrossRefGoogle Scholar
  16. 16.
    Martin CM, Meeson AP, Robertson SM, et al. Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol 2004; 265 (1): 262–75.PubMedCrossRefGoogle Scholar
  17. 17.
    Oh H, Bradfute SB, Gallardo TD, et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci U S A 2003; 100 (21): 12313–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Laugwitz KL, Moretti A, Lam J, et al. Postnatal is 11+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 2005; 433 (7026): 647–53.PubMedCrossRefGoogle Scholar
  19. 19.
    Ferrari G, Cusella-De Angelis G, Coletta M, et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 1998; 279 (5356): 1528–30.PubMedCrossRefGoogle Scholar
  20. 20.
    Liechty KW, MacKenzie TC, Shaaban AF, et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 2000; 6 (11): 1282–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284 (5411): 143–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Duan HX, Cheng LM, Jian W, et al. Angiogenic potential difference between two types of endothelial progenitor cells from human umbilical cord blood. Cell Biol Int 2006; 30 (12): 1018–27.PubMedCrossRefGoogle Scholar
  23. 23.
    Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 2001; 7 (4): 430–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Kinnaird T, Stabile E, Burnett MS, et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 2004; 109 (12): 1543–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Dimmeler S, Zeiher AM, Schneider MD. Unchain my heart: the scientific foundations of cardiac repair. J Clin Invest 2005; 115 (3): 572–83.PubMedGoogle Scholar
  26. 26.
    Shi Q, Rafii S, Wu MH, et al. Evidence for circulating bone marrow-derived endothelial cells. Blood 1998; 92 (2): 362–7.PubMedGoogle Scholar
  27. 27.
    Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 1999; 85 (3): 221–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001; 410 (6829): 701–5.PubMedCrossRefGoogle Scholar
  29. 29.
    Kajstura J, Rota M, Whang B, et al. Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circ Res 2005; 96 (1): 127–37.PubMedCrossRefGoogle Scholar
  30. 30.
    Balsam LB, Wagers AJ, Christensen JL, et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 2004; 428 (6983): 668–73.PubMedCrossRefGoogle Scholar
  31. 31.
    Nygren JM, Jovinge S, Breitbach M, et al. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med 2004; 10 (5): 494–501.PubMedCrossRefGoogle Scholar
  32. 32.
    Murry CE, Soonpaa MH, Reinecke H, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 2004; 428 (6983): 664–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Jackson KA, Majka SM, Wang H, et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 2001; 107 (11): 1395–402.PubMedCrossRefGoogle Scholar
  34. 34.
    Ross R. Atherosclerosis: an inflammatory disease. N Engl J Med 1999; 340: 115–26.PubMedCrossRefGoogle Scholar
  35. 35.
    Thum T, Bauersachs J, Poole-Wilson PA, et al. The dying stem cell hypothesis: immune modulation as a novel mechanism for progenitor cell therapy in cardiac muscle. J Am Coll Card 2005; 46 (10): 1799–802.CrossRefGoogle Scholar
  36. 36.
    Rasmusson I, Ringden O, Sundberg B, et al. Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms. Exp Cell Res 2005; 305: 33–41.PubMedCrossRefGoogle Scholar
  37. 37.
    Rasmusson I, Ringden O, Sundberg B, et al. Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation 2003; 76: 1208–13.PubMedCrossRefGoogle Scholar
  38. 38.
    Plumas J, Chaperot L, Richard MJ, et al. Mesenchymal stem cells induce apoptosis of activated T cells. Leukemia 2005; 19: 1597–604.PubMedCrossRefGoogle Scholar
  39. 39.
    Hatzopoulos AK, Folkman J, Vasile E, et al. Isolation and characterization of endothelial progenitor cells from mouse embryos. Development 1998; 125 (8): 1457–68.PubMedGoogle Scholar
  40. 40.
    Yin AH, Miraglia S, Zanjani ED, et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 1997; 90 (12): 5002–12.PubMedGoogle Scholar
  41. 41.
    Peichev M, Naiyer AJ, Pereira D, et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 2000; 95 (3): 952–8.PubMedGoogle Scholar
  42. 42.
    Stamm C, Westphal B, Kleine HD, et al. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 2003; 361 (9351): 45–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Kalka C, Masuda H, Takahashi T, et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci U S A 2000; 97 (7): 3422–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Kawamoto A, Gwon HC, Iwaguro H, et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 2001; 103 (5): 634–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Iwasaki H, Kawamoto A, Ishikawa M, et al. Dose-dependent contribution of CD34-positive cell transplantation to concurrent vasculogenesis and cardiomyogenesis for functional regenerative recovery after myocardial infarction. Circulation 2006; 113 (10): 1311–25.PubMedCrossRefGoogle Scholar
  46. 46.
    Kawamoto A, Iwasaki H, Kusano, K et al. CD34-positive cells exhibit increased potency and safety for therapeutic neovascularization after myocardial infarction compared with total mononuclear cells. Circulation 2006; 114 (20): 2163–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Kawamoto A, Tkebuchava T, Yamaguchi J, et al. Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation 2003; 107 (3): 461–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Hofmann M, Wollert KC, Meyer GP, et al. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 2005; 111 (17): 2198–202.PubMedCrossRefGoogle Scholar
  49. 49.
    Kang HJ, Kim HS, Zhang SY, et al. Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet 2004; 363 (9411): 751–6.PubMedCrossRefGoogle Scholar
  50. 50.
    Vulliet PR, Greeley M, Halloran SM, et al. Intra-coronary arterial injection of mesenchymal stromal cells and microinfarction in dogs. Lancet 2004; 363 (9411): 783–4.PubMedCrossRefGoogle Scholar
  51. 51.
    Chen SL, Fang WW, Qian J, et al. Improvement of cardiac function after transplantation of autologous bone marrow mesenchymal stem cells in patients with acute myocardial infarction. Chin Med J (Engl) 2004; 117 (10): 1443–8.Google Scholar
  52. 52.
    Hou D, Youssef EA, Brinton TJ, et al. Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation 2005; 112(9 Suppl.): 1150–6.Google Scholar
  53. 53.
    Kamihata H, Matsubara H, Nishiue T, et al. Improvement of collateral perfusion and regional function by implantation of peripheral blood mononuclear cells into ischemic hibernating myocardium. Arterioscler Thromb Vasc Biol 2002; 22 (11): 1804–10.PubMedCrossRefGoogle Scholar
  54. 54.
    Fuchs S, Baffour R, Zhou YF, et al. Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. J Am Coll Cardiol 2001; 37 (6): 1726–32.PubMedCrossRefGoogle Scholar
  55. 55.
    Amado LC, Saliaris AP, Schuleri KH, et al. Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci U S A 2005; 102 (32): 11474–9.PubMedCrossRefGoogle Scholar
  56. 56.
    de Silva R, Gutierrez LF, Raval AN, et al. X-ray fused with magnetic resonance imaging (XFM) to target endomyocardial injections: validation in a swine model of myocardial infarction. Circulation 2006; 114 (22): 2342–50.PubMedCrossRefGoogle Scholar
  57. 57.
    Fuchs S, Satler LF, Kornowski R, et al. Catheter-based autologous bone marrow myocardial injection in no-option patients with advanced coronary artery disease: a feasibility study. J Am Coll Cardiol 2003; 41 (10): 1721–4.PubMedCrossRefGoogle Scholar
  58. 58.
    Perin EC, Dohmann HF, Borojevic R, et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 2003; 107 (18): 2294–302.PubMedCrossRefGoogle Scholar
  59. 59.
    Lederman RJ, Guttman MA, Peters DC, et al. Catheter-based endomyocardial injection with real-time magnetic resonance imaging. Circulation 2002; 105 (11): 1282–4.PubMedGoogle Scholar
  60. 60.
    Dick AJ, Guttman MA, Raman VK, et al. Magnetic resonance fluoroscopy allows targeted delivery of mesenchymal stem cells to infarct borders in Swine. Circulation 2003; 108 (23): 2899–904.PubMedCrossRefGoogle Scholar
  61. 61.
    Hill JM, Syed MA, Arai AE, et al. Outcomes and risks of granulocyte colonystimulating factor in patients with coronary artery disease. J Am Coll Cardiol 2005; 46 (9): 1643–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Ince H, Petzsch M, Kleine HD, et al. Prevention of left ventricular remodeling with granulocyte colony-stimulating factor after acute myocardial infarction: final 1-year results of the Front-Integrated Revascularization and Stem Cell Liberation in Evolving Acute Myocardial Infarction by Granulocyte Colony-Stimulating Factor (FIRSTLINE-AMI) Trial. Circulation 2005; 112(9 Suppl.): 173–80.Google Scholar
  63. 63.
    Engelmann MG, Theiss HD, Hennig-Theiss C, et al. Autologous bone marrow stem cell mobilization induced by granulocyte colony-stimulating factor after subacute ST-segment elevation myocardial infarction undergoing late revascularization: final results from the G-CSF-STEMI (Granulocyte Colony-Stimulating Factor ST-Segment Elevation Myocardial Infarction) trial. J Am Coll Cardiol 2006; 48 (8): 1712–21.PubMedCrossRefGoogle Scholar
  64. 64.
    Ripa RS, Jorgensen E, Wang Y, et al. Stem cell mobilization induced by subcutaneous granulocyte-colony stimulating factor to improve cardiac regeneration after acute ST-elevation myocardial infarction: result of the double-blind, randomized, placebo-controlled stem cells in myocardial infarction (STEMMI) trial. Circulation 2006; 113 (16): 1983–92.PubMedCrossRefGoogle Scholar
  65. 65.
    Zohlnhofer D, Ott I, Mehilli J, et al. Stem cell mobilization by granulocyte colonystimulating factor in patients with acute myocardial infarction: a randomized controlled trial. JAMA 2006; 295 (9): 1003–10.PubMedCrossRefGoogle Scholar
  66. 66.
    Tse HF, Kwong YL, Chan JK, et al. Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet 2003; 361 (9351): 47–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Wollert KC, Meyer GP, Lotz J, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 2004; 364 (9429): 141–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Kuethe F, Richartz BM, Sayer HG, et al. Lack of regeneration of myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans with large anterior myocardial infarctions. Int J Cardiol 2004; 97 (1): 123–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Strauer BE, Brehm M, Zeus T, et al. Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: the IACT Study. J Am Coll Cardiol 2005; 46 (9): 1651–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Fernandez-Aviles F, San Roman JA, Garcia-Frade J, et al. Experimental and clinical regenerative capability of human bone marrow cells after myocardial infarction. Circ Res 2004; 95 (7): 742–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Lunde K, Solheim S, Aakhus S, et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med 2006; 355 (12): 1199–209.PubMedCrossRefGoogle Scholar
  72. 72.
    Schachinger V, Erbs S, Elsasser A, et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 2006; 355 (12): 1210–21.PubMedCrossRefGoogle Scholar
  73. 73.
    Roche R, Hoareau L, Mounet F, et al. Adult stem cells for cardiovascular diseases: the adipose tissue potential. Expert Opin Biol Ther 2007; 7 (6): 791–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Werner N, Kosiol S, Schiegl T, et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 2005; 353 (10): 999–1007.PubMedCrossRefGoogle Scholar
  75. 75.
    Tepper OM, Galiano RD, Capla JM, et al. Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 2002; 106 (22): 2781–6.PubMedCrossRefGoogle Scholar
  76. 76.
    Sherman JA, Hall A, Malenka DJ, et al. Humoral and cellular factors responsible for coronary collateral formation. Am J Cardiol 2006; 98 (9): 1194–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Schultz A, Lavie L, Hochberg I, et al. Interindividual heterogeneity in the hypoxic regulation of VEGF: significance for the development of the coronary artery collateral circulation. Circulation 1999; 100 (5): 547–52.PubMedCrossRefGoogle Scholar
  78. 78.
    Olshansky B. Placebo and nocebo in cardiovascular health: implications for healthcare, research, and the doctor-patient relationship. J Am Coll Cardiol 2007; 49 (4): 415–21.PubMedCrossRefGoogle Scholar
  79. 79.
    Beeres SL, Bax JJ, Dibbets-Schneider P, et al. Sustained effect of autologous bone marrow mononuclear cell injection in patients with refractory angina pectoris and chronic myocardial ischemia: twelve-month follow-up results. Am Heart J 2006; 152(4): 684 e11–6.CrossRefGoogle Scholar
  80. 80.
    de la Fuente LM, Stertzer SH, Argentieri J, et al. Transendocardial autologous bone marrow in chronic myocardial infarction using a helical needle catheter: 1-year follow-up in an open-label, nonrandomized, single-center pilot study (the TABMMI study). Am Heart J 2007; 154 (1): 79 e1–7.Google Scholar
  81. 81.
    Hamano K, Nishida M, Hirata K, et al. Local implantation of autologous bone marrow cells for therapeutic angiogenesis in patients with ischemic heart disease: clinical trial and preliminary results. Jpn Circ J 2001; 65 (9): 845–7.PubMedCrossRefGoogle Scholar
  82. 82.
    Tse HF, Thambar S, Kwong YL, et al. Safety of catheter-based intramyocardial autologous bone marrow cells implantation for therapeutic angiogenesis. Am J Cardiol 2006; 98 (1): 60–2.PubMedCrossRefGoogle Scholar
  83. 83.
    Briguori C, Reimers B, Sarais C, et al. Direct intramyocardial percutaneous delivery of autologous bone marrow in patients with refractory myocardial angina. Am Heart J 2006; 151 (3): 674–80.PubMedCrossRefGoogle Scholar
  84. 84.
    Boyle AJ, Whitbourn R, Schlicht S, et al. Intra-coronary high-dose CD34+ stem cells in patients with chronic ischemic heart disease: a 12-month follow-up. Int J Cardiol 2006; 109 (1): 21–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Klein HM, Ghodsizad A, Marktanner R, et al. Intramyocardial implantation of CD133+ stem cells improved cardiac function without bypass surgery. Heart Surg Forum 2007; 10(1): E66–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Mangi AA, Noiseux N, Kong D, et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med 2003; 9 (9): 1195–201.PubMedCrossRefGoogle Scholar
  87. 87.
    Losordo DW, Schatz RA, White CJ, et al. Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: a phase I/IIa double-blind, randomized controlled trial. Circulation 2007; 115 (25): 3165–72.PubMedCrossRefGoogle Scholar
  88. 88.
    Erbs S, Linke A, Adams V, et al. Transplantation of blood-derived progenitor cells after recanalization of chronic coronary artery occlusion: first randomized and placebo-controlled study. Circ Res 2005; 97 (8): 756–62.PubMedCrossRefGoogle Scholar
  89. 89.
    Tse HF. Prospective randomized trial of direct endomyocardial implantation of bone marrow cells for therapeutic angiogenesis in severe coronary artery disease: PROTECT-CAD trial. Late-breaking clinical trial. American College of Cardiology Meeting; 2006 Mar 14; Atlanta (GA): American College of Cardiology, 2006.Google Scholar

Copyright information

© Adis Data Information BV 2008

Authors and Affiliations

  1. 1.Division of Cardiovascular MedicineUniversity of Wisconsin School of Medicine and Public Health, H6/321 Clinical Sciences CenterMadisonUSA

Personalised recommendations