Advertisement

American Journal of Cardiovascular Drugs

, Volume 7, Issue 1, pp 39–58 | Cite as

Management of Dyslipidemia in the Metabolic Syndrome

Recommendations of the Spanish HDL-Forum
  • Juan Ascaso
  • Pedro Gonzalez Santos
  • Antonio Hernandez Mijares
  • Alipio Mangas Rojas
  • Luis Masana
  • Jesus Millan
  • Luis Felipe Pallardo
  • Juan Pedro-Botet
  • Francisco Perez Jimenez
  • Xavier Pintó
  • Ignacio Plaza
  • Juan Rubiés
  • Manuel Zúñiga
Review Article

Abstract

In order to characterize the metabolic syndrome it becomes necessary to establish a number of diagnostic criteria. Because of its impact on cardiovascular morbidity/mortality, considerable attention has been focussed on the dyslipidemia accompanying the metabolic syndrome.

The aim of this review is to highlight the fundamental aspects of the pathophysiology, diagnosis, and the treatment of the metabolic syndrome dyslipidemia with recommendations to clinicians.

The clinical expression of the metabolic syndrome dyslipidemia is characterized by hypertriglyceridemia and low levels of high-density lipoprotein-cholesterol (HDL-C). In addition, metabolic syndrome dyslipidemia is associated with high levels of apolipoprotein (apo) B-100-rich particles of a particularly atherogenic phenotype (small dense low-density lipoprotein-cholesterol [LDL-C]. High levels of triglyceride-rich particles (very low-density lipoprotein) are also evident both at baseline and in overload situations (postprandial hyperlipidemia). Overall, the ‘quantitative’ dyslipidemia characterized by hypertriglyceridemia and low levels of HDL-C and the ‘qualitative’ dyslipidemia characterized by high levels of apo B-100- and triglyceride-rich particles, together with insulin resistance, constitute an atherogenic triad in patients with the metabolic syndrome.

The therapeutic management of the metabolic syndrome, regardless of the control of the bodyweight, BP, hyperglycemia or overt diabetes mellitus, aims at maintaining optimum plasma lipid levels. Therapeutic goals are similar to those for high-risk situations because of the coexistence of multiple risk factors. The primary goal in treatment should be achieving an LDL-C level of <100 mg/dL (or <70 mg/dL in cases with established ischemic heart disease or risk equivalents). A further goal is increasing the HDL-C level to ≥40 mg/dL in men or 50 mg/dL in women. A non-HDL-C goal of 130 mg/dL should also be aimed at in cases of hypertriglyceridemia.

Lifestyle interventions, such as maintaining an adequate diet, and a physical activity program, constitute an essential part of management. Nevertheless, when pharmacologic therapy becomes necessary, fibrates and HMG-CoA reductase inhibitors (statins) are the most effective drugs in controlling the metabolic syndrome hyperlipidemia, and are thus the drugs of first choice. Fibrates are effective in lowering triglycerides and increasing HDL-C levels, the two most frequent abnormalities associated with the metabolic syndrome, and statins are effective in lowering LDL-C levels, even though hypercholesterolemia occurs less frequently. In addition, the combination of fibrates and statins is highly effective in controlling abnormalities of the lipid profile in patients with the metabolic syndrome.

Keywords

Metabolic Syndrome Fenofibrate Ezetimibe Gemfibrozil Hepatic Lipase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors, members of the HDL Forum in Spain, acknowledge the Spanish Society of Atherosclerosis, the Spanish Society of Endocrinology and Nutrition, and the Spanish Society of Diabetes.

Professor Jesus Millan and Professor Juan Carlos Pedro-Botet were the coordinators of this review.

References

  1. 1.
    Desprès JP, Moorjani S, Lupien PJ, et al. Regional distribution of body fat, plasma lipoproteins and cardiovascular disease. Arteriosclerosis 1990; 10: 497–511.PubMedCrossRefGoogle Scholar
  2. 2.
    Kane JP. Structure and function of the plasma lipoproteins and their receptors. In: Fuster V, Ross R, Topol EJ, editors. Atherosclerosis and coronary artery disease. Philadelphia (PA): Lippincott-Raven Publishers, 1996: 103.Google Scholar
  3. 3.
    Gomez-Coronado D, Suárez Delgado Y, Lasunción MA. Es]Metabolismo de las lipoproteínas y su regulacion. In: Millán J, editor. Medicina cardiovascular. Barcelona: Masson, 2005: 624.Google Scholar
  4. 4.
    Van Eck M, Pennings M, Hoekstra M, et al. Scavenger receptot BI and ATP-binding cassette transporter A 1 in reverse cholesterol transport and atherosclerosis. Curr Opin Lipidol 2005; 16: 307–3.PubMedCrossRefGoogle Scholar
  5. 5.
    Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summery of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adults Treatment Panel III). JAMA 2001; 285: 2486–96.CrossRefGoogle Scholar
  6. 6.
    World Health Organization. Definition, diagnosis, and classification of diabetes mellitus and its complications: part I. Diagnosis and classification of diabetes mellitus. Geneva: Department of Noncommunicable Disease Surveillance, 1999.Google Scholar
  7. 7.
    González Santos P, González Alegre T, Valdivielso Felices P. HDL, triglicéridos y síndrome de resistencia a la insulina. Clin Invest Arterioscler 2001; 13 Suppl. 4: 27–34.CrossRefGoogle Scholar
  8. 8.
    Taskinen MR. Lipoprotein lipase in diabetes. Diabetes Metab Rev 1987; 3: 551–70.PubMedCrossRefGoogle Scholar
  9. 9.
    Gray RS, Robbins DC, Wang W, et al. Relation of LDL size to the insulin resistance syndrome and coronary heart disease in American Indians: the Strong Heart Study. Arterioscler Thromb Vasc Biol 1997; 17: 2713–20.PubMedCrossRefGoogle Scholar
  10. 10.
    Zavaroni I, Bonora E, Pagliara M, et al. Risk factors for coronary artery disease in healthy persons with hyperinsulinemia and normal glucose tolerance. N Engl J Med 1989; 320: 703–6.CrossRefGoogle Scholar
  11. 11.
    Adeli K, Taghibiglou C, Van Iderstine SC, etal. Mechanisms of hepatic very low-density lipoprotein overproduction in insulin resistance. Trends Cardiovasc Med 2001; 11: 170–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Tato F, Vega GL, Grundy SM. Determinants of plasma HDL-cholesterol in hypertriglyceridemic patients: role of cholesterol-ester-transfer protein and lecithin cholesteryl acyl transferase. Arterioscler Tromb Vasc Biol 1997; 17: 56–63.CrossRefGoogle Scholar
  13. 13.
    Reaven GM. Role of insulin resistance in human disease. Diabetes 1988; 37: 1595–607.PubMedCrossRefGoogle Scholar
  14. 14.
    DeFronzo RA, Ferrannini E. Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 1991; 14: 173–94.CrossRefGoogle Scholar
  15. 15.
    Sung KC, Hwang ST. Association between insulin resistance and apolipoprotein B in normoglycemic Koreans. Atherosclerosis 2005; 180: 161–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Taghibiglou C, Rashid-Kolvear F, Van Iderstine SC, et al. Hepatic very-low density lipoprotein-apo B overproduction in associated with attenuated hepatic insulin signalling and overexpression of protein-tyrosine phosphatase 1B in a fructose-fed hamster model of insulin resistance. J Biol Chem 2002; 277: 793–803.PubMedCrossRefGoogle Scholar
  17. 17.
    Dammerman M, Sandkujil LA, Halaas JL, et al. An apolipoprotein CIII haplotype protective against hypertriglyceridemia in specified by promoter and 3′ untranslated region polymorphisms. Proc Natl Acad Sci U S A 1993; 90: 4562–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Reaven GM. Insulin resistance and compensatory hyperinsulinemia: role in hypertension, dyslipidemia, and coronary heart disease. Am Heart J 1991; 121: 1283–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Haffner SM, Fong D, Hazuda HP, et al. Hyperinsulinemia, upper body adiposity, and cardiovascular risk factors in non-diabetics. Metabolism 1988; 37: 338–45.PubMedCrossRefGoogle Scholar
  20. 20.
    Pihlajamaki J, Gylling H, Miettinen TA, et al. Insulin resistance is associated with increased cholesterol synthesis and decreased cholesterol absorption in normoglycemic men. J Lipid Res 2004; 45: 507–12.PubMedCrossRefGoogle Scholar
  21. 21.
    Karpe F, Tornwall P, Olivecrona T, et al. Composition of human low density lipoprotein: effects of postprandial triglyceride-rich lipoproteins, lipoprotein lipase, hepatic lipase and cholesteryl ester transfer protein. Atherosclerosis 1993; 98: 33–49.PubMedCrossRefGoogle Scholar
  22. 22.
    Lamarche B, Tchernof AG, Moorjani S, et al. Small, dense low-density lipoprotein particles as a predictor of the risk of ischemic heart disease in men: prospective results from the Quebec Cardiovascular Study. Circulation 1997; 95: 69–75.PubMedCrossRefGoogle Scholar
  23. 23.
    Taskinen MR. Diabetic dyslipidemia. Atheroscler Suppl 2002; 3: 47–51.PubMedCrossRefGoogle Scholar
  24. 24.
    Golay A, Zech L, Shi MZ, et al. High density lipoprotein (HDL) metabolism in noninsulin-dependent diabetes mellitus: measurement of HDL turnover using tritiated HDL. J Clin Endocrinol Metab 1987; 65: 512–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Zavaroni I, Dall’Aglio E, Alpi O, et al. Evidence for an independent relationship between plasma insulin and concentration of high density lipoprotein cholesterol and triglyceride. Atherosclerosis 1985; 55: 259–66.PubMedCrossRefGoogle Scholar
  26. 26.
    Gotto AM. Lipid management in diabetic patients: lessons from prevention trials. Am J Med 2002 Jun; 112 Suppl. 8A: 19S–26S.PubMedCrossRefGoogle Scholar
  27. 27.
    Rubins HB, Robins SJ, Collins D, et al. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol: Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N Engl J Med 1999; 341: 410–830.PubMedCrossRefGoogle Scholar
  28. 28.
    Assmann G, Cullen P, Schulte H. Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the Prospective Cardiovascular Münster (PROCAM) Study. Circulation 2002; 105: 310–5.PubMedCrossRefGoogle Scholar
  29. 29.
    Knopp RH. Drug treatment of lipid disorders. N Engl J Med 1999; 341: 498–511.PubMedCrossRefGoogle Scholar
  30. 30.
    World Health Organization. Manual of the international statistical classification of diseases, injuries, and causes of death: based on the recommendations of the ninth revision conference, 1975, and adopted by the Twenty-ninth World Health Assembly. Geneva: World Health Organization, 1979 [online]. Available from URL: http://dosei.who.int/uhtbin/cgisirsi/wshg0Xgv6v/61570018/9 [Accessed 2007 Jan 23].
  31. 31.
    Hill JO, Bessesen D. What to do about the metabolic syndrome? Arch Intern Med 2003; 163: 395–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults. The Evidence Report: National Institutes of Health [published erratum appears in Obes Res 1998; 6 (6): 464]. Obes Res 1998; 6 Suppl. 2: 51S–209S.CrossRefGoogle Scholar
  33. 33.
    NIH. National Heart, Lung and Blood Institute: clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults. The evidence report. Bethesda (MD): National Institutes of Health, 1999.Google Scholar
  34. 34.
    Aranceta J, Foz M, Gil B, et al. Documenta de consenso: obesidad y riesgo cardiovascular. Clin Invest Arterioscler 2003; 15: 196–233.Google Scholar
  35. 35.
    Obesity: preventing and managing the global epidemic. Report of a WHO Consultation on Obesity; 1997 3–5 Jun. Geneva: World Health Organization, 1998.Google Scholar
  36. 36.
    Chobanian AV, Bakris GL, Black HR, et al. The seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 Report. JAMA 2003; 289: 2560–72.PubMedCrossRefGoogle Scholar
  37. 37.
    Van Itallie TB. Health implications of overweight and obesity in the United States. Ann Intern Med 1985; 103: 983–8.PubMedGoogle Scholar
  38. 38.
    Brown CD, Higgins M, Donato KA, et al. Body mass index and the prevalence of hypertension and dyslipidemia. Obes Res 2000; 8: 605–19.PubMedCrossRefGoogle Scholar
  39. 39.
    Eliahou HE, Laufer J, Blau A. Effect of low-calorie diets on the sympathetic nervous system, body weight, and plasma insulin in overweight hypertension. Am J Clin Nutr 1992; 56: 175S–8S.PubMedGoogle Scholar
  40. 40.
    Turner RC, Millns H, Neil HAW, et al. Risk factors for coronary heart disease in non-insulin dependent diabetes mellitus: United Kingdom prospective diabetes study (UKPDS: 23). BMJ 1998; 316: 823–8.PubMedCrossRefGoogle Scholar
  41. 41.
    American Diabetes Association. Standards of medical care in diabetes. Diabetes Care 2005; 28 Suppl. 1: S4–S36.CrossRefGoogle Scholar
  42. 42.
    De Backer G, Ambriosini E, Borch-Johnsen K, et al. European guidelines on cardiovascular disease prevention in clinical practice: Third Joint Task Force of European and other Societies on Cardiovascular Disease Prevention in Clinical Practice. Eur Heart J 2003; 24: 1601–10.PubMedCrossRefGoogle Scholar
  43. 43.
    Tuomilehto J, Lindstrom J, Eriksson JG, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with imparied glucose tolerance. N Engl J Med 2001; 344: 1343–50.PubMedCrossRefGoogle Scholar
  44. 44.
    Knowler WC, Barret-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002; 46: 393–403.Google Scholar
  45. 45.
    Buchanan TA, Xiang AH, Peters RK, et al. Preservation of pancreatic β-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk hispanic women. Diabetes 2002; 51: 2796–803.PubMedCrossRefGoogle Scholar
  46. 46.
    Chiasson JL, Josse RG, Gomis R, et al. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet 2002; 359: 2072–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Hanefeld M, Cagatay M, Petrowitsch T, et al. Acarbose reduces the risk for myocardial infarction in type 2 diabetic patients: meta-analysis of seven long-term studies. Eur Heart J 2004; 25: 10–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Chiasson JL, Josse RG, Gomis R, et al. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA 2003; 290: 486–94.PubMedCrossRefGoogle Scholar
  49. 49.
    American Diabetes Association. Standards of medical care, 2006. Diabetes Care 2006; 29 Suppl. 1: S4–S42.Google Scholar
  50. 50.
    Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 2002; 360: 7–22.CrossRefGoogle Scholar
  51. 51.
    Cannon CP, Braunwald E, McCabe CH, et al. Pravastatin or atorvastatin evaluation and infection therapy-thrombolysis in myocardial infarction 22 investigators: intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med 2004; 350: 1495–500.PubMedCrossRefGoogle Scholar
  52. 52.
    Sever PS, Dahlof B, Poulter NR, et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial—Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. Lancet 2003; 361: 1149–58.PubMedCrossRefGoogle Scholar
  53. 53.
    LaRosa JC, Grundy SM, Waters DD, et al. Intensive lipid lowering with atorvastatin in patients with stable coronary disease. N Engl J Med 2005; 352: 1425–35.CrossRefGoogle Scholar
  54. 54.
    Colhoun HM, Betteridge DJ, Durrington PN, et al. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet 2004; 364: 685–96.PubMedCrossRefGoogle Scholar
  55. 55.
    Grundy SM, Hansen B, Smith SC, et al. Clinical Management of metabolic syndrome: report of the American Heart Association/National Heart, Lung, and Blood Institute/American Diabetes Asociation conference on scientific issues related to management. Circulation 2004; 109: 551–6.PubMedCrossRefGoogle Scholar
  56. 56.
    Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Circulation 2005; 112: 2725–2734.Google Scholar
  57. 57.
    Krauss RM, Eckel RH, Howard B, et al. AHA dietary guidelines: revision 2000. A statement for healthcare professionals from the Nutrition Committee of the American Heart Association. Circulation 2000; 102: 2284–99.PubMedCrossRefGoogle Scholar
  58. 58.
    Sacks FM, Svetkey LP, Vollmer WM, et al., for the DASH-sodium Collaborative Research Group. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. N Engl J Med 2001; 344: 3–10.PubMedCrossRefGoogle Scholar
  59. 59.
    Estruch R, Martínez-González MA, Corella D, et al. Effects of a Mediterraneanstyle diet on cardiovascular risk factors: a randomized trial. Ann Intern Med 2006; 145: 1–11.PubMedGoogle Scholar
  60. 60.
    Appel LJ, Moore TJ, Obarzanek E, et al. A clinical trial of the effects of dietary patterns on blood pressure. N Engl J Med 1997; 336: 1117–24.PubMedCrossRefGoogle Scholar
  61. 61.
    Appel LJ, Sacks FM, Obarzanek E, et al. Effects of protein, monounsaturated fat and carbohydrate intake on blood pressure and serum lipids: results of the OmniHeart randomized trial. JAMA 2005; 294: 2455–64.PubMedCrossRefGoogle Scholar
  62. 62.
    Smith Jr SC, Blair SN, Bonow RO, et al. AHA/ACC guidelines for preventing heart attack and death in patients with atherosclerotic cardiovascular disease: 2001 update. A statement for healthcare professionals from the American Heart Association and the American College of Cardiology. J Am Coll Cardiol 2001; 38: 1581–3.PubMedCrossRefGoogle Scholar
  63. 63.
    Herman WH, Hoerger TJ, Brandie M, et al. The cost-effectiveness of lifestyle modification or metformin in preventing type 2 diabetes in adults with impaired glucose tolerance. Ann Intern Med 2005; 142: 323–32.PubMedGoogle Scholar
  64. 64.
    Plaza Pérez I, Garcia de Francisco S, Madero R, et al. Efecto del programa de prevención secundaria sobre el síndrome metabólico. Rev Esp Cardiol 2005; 58 Suppl. 1: 52.Google Scholar
  65. 65.
    Pintó X, Meco JF. Tratamiento de la dislipemia diabética con fármacos hipolipemiantes: nuevos conceptos. Clin Invest Arterioscler 2004; 16: 160–9.Google Scholar
  66. 66.
    Davidson MH. Emerging therapeutic strategies for the management of dyslipidemia in patients with the metabolic syndrome. Am J Cardiol 2004; 93 Suppl. 11: 3C–11C.PubMedCrossRefGoogle Scholar
  67. 67.
    Vaughan CJ, Gotto Jr AM. Update on statins: 2003. Circulation 2004; 110: 886–92.PubMedCrossRefGoogle Scholar
  68. 68.
    Ballantyne CM, Pazzucconi F, Pintó X, et al. Efficacy and tolerability of fluvastatin extended-release delivery system: a pooled analysis. Clin Ther 2001; 23: 177–92.PubMedCrossRefGoogle Scholar
  69. 69.
    Winkler K, Ablestshauser C, Hoffmann MM, et al. Effect of fluvastatin slow release on low density lipoprotein (LDL) subfractions in patients with type 2 diabetes mellitus: baseline LDL profile determines specific mode of action. J Clin Endocrinol Metab 2002; 87: 5485–90.PubMedCrossRefGoogle Scholar
  70. 70.
    Pyorala K, Ballantyne CM, Gumbinar B, et al. Reduction of cardiovascular events by simvastatin in non diabetic coronary heart disease patients with and without metabolic syndrome. Diabetes Care 2004; 27: 1735–40.PubMedCrossRefGoogle Scholar
  71. 71.
    Sattar N, Gaw A, Scherbakova O, et al. Metabolic syndrome with and without C-reactive protein as a predictor of coronary heart disease and diabetes in the West of Scotland Coronary Prevention Study. Circulation 2003; 108: 414–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Ballantyne CM, Blazing MA, Hunninghake DB, et al. Effect on high-density lipoprotein cholesterol of maximum dose simvastatin and atorvastatin in patients with hypercholesterolemia: results of the Comparative HDL Efficacy and Safety Study (CHESS). Am Heart J 2003; 146: 862–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Jones PH, Davidson MH, Stein EA, et al. Comparison of the efficacy and safety of rosuvastatin versus atorvastatin, simvastatin, and pravastatin across doses (STELLAR Trial). Am J Cardiol 2003; 92: 152–60.PubMedCrossRefGoogle Scholar
  74. 74.
    Stalenhoef AFH, Ballantyne CM, Tuomilehto J, et al. Comparative study with rosuvastatin in subjects with metabolic syndrome: results of the COMETS study. Diabetología. 2004; 47 Suppl. 1: A409–10.Google Scholar
  75. 75.
    Shepherd J, Cobbe SM, Ford I, et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia: West of Scotland Coronary Prevention Study Group. N Engl J Med 1995; 333: 1301–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Scott CL. Diagnosis, prevention, and intervention for the metabolic syndrome. Am J Cardiol 2003; 92(1A): 35i–42i.PubMedCrossRefGoogle Scholar
  77. 77.
    Snow V, Aronson MD, Hornbake ER, et al. Lipid control in the management of type 2 diabetes mellitus: a clinical practice guideline from the American College of Physicians. Ann Intern Med 2004; 140: 644–9.PubMedGoogle Scholar
  78. 78.
    Miller DB, Spence JD. Clinical pharmacokinetics of fibric acid derivatives (fibrates). Clin Pharmacokinet 1998; 34: 155–62.PubMedCrossRefGoogle Scholar
  79. 79.
    Duez H, Fruchart JC, Staels B. PPARs inflammation, atherosclerosis and thrombosis. J Cardiovasc Risk 2001; 8: 187–94.PubMedCrossRefGoogle Scholar
  80. 80.
    Steiner G. Fibrates in the metabolic syndrome and in diabetes. Endocrinol Metab Clin N Am 2004; 33: 545–55.CrossRefGoogle Scholar
  81. 81.
    Gotto Jr AM. Contemporary diagnosis and management of lipid disorders. Handbooks in health care. Newtown (PA): AMM Co., 2001.Google Scholar
  82. 82.
    Malik J, Melenovsky V, Wichterle D, et al. Both fenofibrate and atorvastatin improve vascular reactivity in combined hyperlipidaemia (Fenofibrate versus Atorvastatin Trial: FAT). Cardiovasc Res 2001; 52: 290–8.PubMedCrossRefGoogle Scholar
  83. 83.
    DAIS Investigators. Effect of fenofibrate on progression of coronary-artery disease in type 2 diabetes: the Diabetes Atherosclerosis Intervention Study, a randomised study. Lancet 2001; 357: 905–10.CrossRefGoogle Scholar
  84. 84.
    Rubins HB, Robins SJ, Collins D, et al. Diabetes, plasma insulin, and cardiovascular disease: subgroup analysis from the Department of Veterans Affairs high-density lipoprotein intervention trial (VA-HIT). Arch Intern Med 2002; 162: 2597–604.PubMedCrossRefGoogle Scholar
  85. 85.
    Robins SJ, Rubins HB, Faas FH, et al. Insulin resistance and cardiovascular events with low HDL cholesterol: the Veterans Affairs HDL Intervention Trial (VA-HIT). Diabetes Care 2003; 26: 1513–7.PubMedCrossRefGoogle Scholar
  86. 86.
    Manninen V, Elo MO, Frick MH, et al. Lipid alterations and decline in the incidence of coronary heart disease in the Helsinki Heart Study. JAMA 1988; 260: 641–51.PubMedCrossRefGoogle Scholar
  87. 87.
    Tenenbaum A, Motro M, Fisman EZ, et al. Bezafibrate for the secondary prevention of myocardial infarction in patients with metabolic syndrome. Arch Intern Med 2005; 165: 1154–60.PubMedCrossRefGoogle Scholar
  88. 88.
    Athyros VG, Papagaergiou AA, Hatzikonstandinou HA. Safety and efficacy of long-term statin-fibrate combinations in patients with refractory familial combined hyperlipidemia. Am J Cardiol 1997; 80: 608–13.PubMedCrossRefGoogle Scholar
  89. 89.
    Athyros VG, Papagaergiou AA, Athyrou VV, et al. Atorvastatin and micronized fenofibrate alone and in combination in type 2 diabetes with combined hyperlipidemia. Diabetes Care 2002; 25: 1198–202.PubMedCrossRefGoogle Scholar
  90. 90.
    Pauciullo P, Borgnino C, Paoletti R. Efficacy and safety of a combination of fluvastatin and bezafibrate in patients with mixed hyperlipidemia (FACT study). Atherosclerosis 2000; 150: 429–36.PubMedCrossRefGoogle Scholar
  91. 91.
    Farmer M, Salko T, Isaacsohn JL, et al. Effects of baseline level of triglycerides on changes in lipid levels from combined fluvastatin + fibrate (bezafibrate, fenofibrate, or gemfibrozil). Am J Cardiol 2003; 92: 794–7.CrossRefGoogle Scholar
  92. 92.
    American Diabetes Association. Standards of medical care in diabetes. Diabetes Care 2004; 27 Suppl. 1: S15–35.CrossRefGoogle Scholar
  93. 93.
    Prueksaritanont T, Tang C, Quiu Y, et al. Effects of fibrates on metabolism of statins in human hepatocytes. Drug Metab Dispos 2002; 30: 1280–7.PubMedCrossRefGoogle Scholar
  94. 94.
    Kyrklund C, Backman JT, Neuvonen M, et al. Gemfibrozil increases plasma pravastatin concentrations and reduces pravastatin renal clearance. Clin Pharmacol Ther 2003; 73: 538–44.PubMedCrossRefGoogle Scholar
  95. 95.
    Davidson MH. Combination therapy for dyslipidemia: safety and regulatory considerations. Am J Cardiol 2002; 90: 50K–60K.PubMedCrossRefGoogle Scholar
  96. 96.
    Farmer M, Freeman MW, Macdonell G, et al. Efficacy and safety of the coadministration of ezetimibe with fenofibrate in patients with mixed hyperlipidaemia. Eur Heart J 2005; 26: 897–905.CrossRefGoogle Scholar
  97. 97.
    Grundy SM, Vega GL, McGovern ME, et al. Efficacy, safety, and tolerability of once-daily niacin for the treatment of dyslipidemia associated with type 2 diabetes: results of the assessment of diabetes control and evaluation of the efficacy of niaspan trial. Arch Intern Med 2002; 162: 1568–76.PubMedCrossRefGoogle Scholar
  98. 98.
    Taylor AJ, Sullenberger LE, Lee HJ, et al. Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol (ARBITER) 2: a double-blind, placebo-controlled study of extended-release niacin on atherosclerosis progression in secondary prevention patients treated with statins. Circulation 2004; 110: 3512–7.PubMedCrossRefGoogle Scholar
  99. 99.
    Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico. Lancet 1999; 354: 447–55.Google Scholar
  100. 100.
    Moghadasian MH, Frohlich JJ. Effects of dietary phytosterols on cholesterol metabolism and atherosclerosis: clinical and experimental evidence. Am J Med 1999; 107: 588–94.PubMedCrossRefGoogle Scholar
  101. 101.
    Brousseau ME, Schaefer EJ, Wolfe ML, et al. Effects of an inhibitor of cholesteryl ester transfer protein on HDL cholesterol. N Engl J Med 2004; 350: 1505–9.PubMedCrossRefGoogle Scholar
  102. 102.
    Marcus AO. Lipid disorders in patients with type 2 diabetes: meeting the challenges of early aggressive treatment. Postgrad Med 2001; 110: 111–23.PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2007

Authors and Affiliations

  • Juan Ascaso
    • 1
  • Pedro Gonzalez Santos
    • 2
  • Antonio Hernandez Mijares
    • 3
  • Alipio Mangas Rojas
    • 4
  • Luis Masana
    • 5
  • Jesus Millan
    • 6
  • Luis Felipe Pallardo
    • 7
  • Juan Pedro-Botet
    • 8
  • Francisco Perez Jimenez
    • 9
  • Xavier Pintó
    • 10
  • Ignacio Plaza
    • 11
  • Juan Rubiés
    • 12
  • Manuel Zúñiga
    • 13
  1. 1.Endocrinolgy ServiceClinic University Hospital, University of ValenciaValenciaSpain
  2. 2.Department of Internal MedicineUniversity Hospital “Virgen de la Victoria”, University of MalagaMalagaSpain
  3. 3.Endocrinology ServiceUniversity Hospital “Peset”, University of ValenciaValenciaSpain
  4. 4.Internal Medicine ServiceUniversity Hospital “Puerta del Mar”, University of CadizCadizSpain
  5. 5.Department of MedicineUniversity of ReusTarragonaSpain
  6. 6.Department of MedicineUniversity Hospital “Gregorio Marañón”, University ComplutenseMadridSpain
  7. 7.Endocrinology and Nutrition ServiceUniversity Hospital “La Paz”, Autonomous University of MadridMadridSpain
  8. 8.Department of Internal MedicineHospital del Mar, Autonomous University of BarcelonaBarcelonaSpain
  9. 9.Lipid and Atherosclerosis Unit, Internal Medicine ServiceUniversity Hospital “Reina Sofía”, University of CórdobaCórdobaSpain
  10. 10.Lipid and Atherosclerosis Unit, Internal Medicine ServiceUniversity Hospital of BellvitgeBarcelonaSpain
  11. 11.Cardiology ServiceHospital Ramón y CajalMadridSpain
  12. 12.Department of MedicineAutonomous University of BarcelonaBarcelonaSpain
  13. 13.Department of Internal MedicineUniversity Hospital “Marqués de Valdecilla”SantanderSpain

Personalised recommendations