Advertisement

American Journal of Cardiovascular Drugs

, Volume 5, Issue 3, pp 141–154 | Cite as

Testosterone and Atherosclerosis in Aging Men

Purported Association and Clinical Implications
  • Richard D. Jones
  • Joanne E. Nettleship
  • Dheeraj Kapoor
  • Hugh T. Jones
  • Kevin S. Channer
Current Opinion

Abstract

Two of the strongest independent risk factors for coronary heart disease (CHD) are increasing age and male sex. Despite a wide variance in CHD mortality between countries, men are consistently twice as likely to die from CHD than their female counterparts. This sex difference has been attributed to a protective effect of female sex hormones, and a deleterious effect of male sex hormones, upon the cardiovascular system. However, little evidence suggests that testosterone exerts cardiovascular harm. In fact, serum levels of testosterone decline with age, and low testosterone is positively associated with other cardiovascular risk factors. Furthermore, testosterone exhibits a number of potential cardioprotective actions. For example, testosterone treatment is reported to reduce serum levels of the pro-inflammatory cytokines interleukin (IL)-1β and tumor necrosis factor (TNF)-α, and to increase levels of the anti-inflammatory cytokine IL-10; to reduce vascular cell adhesion molecule (VCAM)-1 expression in aortic endothelial cells; to promote vascular smooth muscle and endothelial cell proliferation; to induce vasodilatation and to improve vascular reactivity, to reduce serum levels of the pro-thrombotic factors plasminogen activator inhibitor (PAI)-1 and fibrinogen; to reduce low-density lipoprotein-cholesterol (LDL-C); to improve insulin sensitivity; and to reduce body mass index and visceral fat mass. These actions of testosterone may confer cardiovascular benefit since testosterone therapy reduces atheroma formation in cholesterol-fed animal models, and reduces myocardial ischemia in men with CHD. Consequently, an alternative hypothesis is that an age-related decline in testosterone contributes to the atherosclerotic process. This is supported by recent findings, which suggest that as many as one in four men with CHD have serum levels of testosterone within the clinically hypogonadal range. Consequently, restoration of serum levels of testosterone via testosterone replacement therapy could offer cardiovascular, as well as other, clinical advantages to these individuals.

Keywords

Testosterone Coronary Heart Disease Androgen Receptor DHEA Total Testosterone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Dr R.D. Jones is supported by the British Heart Foundation.

The author has no conflicts of interest that are directly relevant to the content of this article.

References

  1. 1.
    Rayner M, Mockford C, Boaz A. Coronary heart disease statistics, in British heart foundation statistics database. London: British Heart Foundation Education Department, 1998.Google Scholar
  2. 2.
    Simon D, Preziosi P, Barrett-Connor E, et al. The influence of aging on plasma sex hormones in men: The Telecom Study. Am J Epidemiol 1992; 135: 783–91.PubMedGoogle Scholar
  3. 3.
    English KM, Steeds R, Jones TH, et al. Testosterone and coronary heart disease: is there a link? Q J Med 1997; 90: 787–91.CrossRefGoogle Scholar
  4. 4.
    Pugh PJ, Malkin CJ, Morris PD, et al. Relation of testosterone with inflammatory cytokines in men with coronary artery disease [abstract]. J Am Coll Cardiol 2003; 41: 344.Google Scholar
  5. 5.
    Li Z, Danis V, Brooks P. Effect of gonadal steroids on the production of IL-1 and IL-6 by blood mononuclear cells in vitro. Clin Exp Rheumatol 1993; 11: 157–62.PubMedGoogle Scholar
  6. 6.
    Kanda N, Tsuchida T, Tamaki K. Testosterone inhibits immunoglobulin production by human peripheral blood mononuclear cells. Clin Exp Immunol 1996; 106: 410–5.PubMedCrossRefGoogle Scholar
  7. 7.
    Kanda N, Tsuchida T, Tamaki K. Testosterone suppresses anti-DNA antibody production in peripheral blood mononuclear cells from patients with systemic lupus erythematosus. Arthritis Rheum 1997; 40: 1703–11.PubMedCrossRefGoogle Scholar
  8. 8.
    Bebo BF, Schuster JC, Vandenbark AA, et al. Androgens alter the cytokine profile and reduce encephalitogenicity of myelin-reactive T cells. J Immunol 1999; 162: 35–40.PubMedGoogle Scholar
  9. 9.
    D’Agostino P, Milano S, Barbera C, et al. Sex hormones modulate inflammatory mediators produced by macrophages. Ann N Y Acad Sci 1999; 876: 426–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Liva SM, Voskuhl RR. Testosterone acts directly on CD4(+) T lymphocytes to increase IL-10 production. J Immunol 2001; 167: 2060–7.PubMedGoogle Scholar
  11. 11.
    Spinedi E, Suescun MO, Hadid R, et al. Effects of gonadectomy and sex hormone therapy on the endotoxin-stimulated hypothalamo-pituitary-adrenal axis: evidence for a neuroendocrine-immunological sexual dimorphism. Endocrinology 1992; 131: 2430–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Yesilova Z, Ozata M, Kocar IH, et al. The effects of gonadotropin treatment on the immunological features of male patients with idiopathic hypogonadotropic hypogonadism. J Clin Endocrinol Metab 2000; 85: 66–70.PubMedCrossRefGoogle Scholar
  13. 13.
    Khosla S, Atkinson EJ, Dunstan CR, et al. Effect of estrogen versus testosterone on circulating osteoprotegerin and other cytokine levels in normal elderly men. J Clin Endocrinol Metab 2002; 87: 1550–4.PubMedCrossRefGoogle Scholar
  14. 14.
    Malkin CJ, Pugh PJ, Morris PD, et al. Testosterone replacement in hypogonadal men with angina improves ischaemic threshold and quality of life. Heart 2004; 90: 871–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Malkin CJ, Pugh PJ, Jones RD, et al. The effect of testosterone replacement on endogenous inflammatory cytokines and lipid profiles in hypogonadal men. J Clin Endocrinol Metab 2004: 89; 3313–8.PubMedCrossRefGoogle Scholar
  16. 16.
    McCrohon JA, Jessup W, Handelsman DJ, et al. Androgen exposure increases human monocyte adhesion to vascular endothelium and endothelial cell expression of vascular cell adhesion molecule-1. Circulation 1999; 99: 2317–22.PubMedCrossRefGoogle Scholar
  17. 17.
    Death AK, McGrath CY, Sader MA, et al. Dihydrotestosterone promotes vascular cell adhesion molecule-1 expression in male human endothelial cells via a nuclear factor-κB-dependent pathway. Endocrinol 2004; 145: 1889–97.CrossRefGoogle Scholar
  18. 18.
    Zhang X, Wang LY, Jiang TY, et al. Effects of testosterone and 17-beta-estradiol on TNF-alpha-induced E-selectin and VCAM-1 expression in endothelial cells: analysis of the underlying receptor pathways. Life Sci 2002; 71: 15–29.PubMedCrossRefGoogle Scholar
  19. 19.
    Mukherjee TK, Dinh H, Chaudhuri G, et al. Testosterone attenuates expression of vascular cell adhesion molecule-1 by conversion to estradiol by aromatase in endothelial cells: implications in atherosclerosis. Proc Natl Acad Sci U S A 2002; 99: 4055–60.PubMedCrossRefGoogle Scholar
  20. 20.
    Hatakeyama H, Nishizawa M, Nakagawa A, et al. Testosterone inhibits tumor necrosis factor-alpha-induced vascular cell adhesion molecule-1 expression in human aortic endothelial cells. FEBS Lett 2002; 530: 129–32.PubMedCrossRefGoogle Scholar
  21. 21.
    Ling S, Dai A, Williams MR, et al. Testosterone (T) enhances apoptosis-related damage in human vascular endothelial cells. Endocrinology 2002; 143: 1119–25.PubMedCrossRefGoogle Scholar
  22. 22.
    Williams MRI, Dawood T, Ling S, et al. Dehydroepiandrosterone increases endothelial cell proliferation in vitro and improves endothelial function in vivo by mechanisms independent of androgen and estrogen receptors. J Clin Endocrinol Metab 2004; 89: 4708–15.PubMedCrossRefGoogle Scholar
  23. 23.
    Somjen D, Kohen F, Jaffe A, et al. Effects of gonadal steriods and their antagonists on DNA synthesis in human vascular cells. Hypertension 1998; 32: 39–45.PubMedCrossRefGoogle Scholar
  24. 24.
    Fujimoto R, Morimoto I, Morita E, et al. Androgen receptors, 5 alpha reductase activity and androgen-dependent proliferation of vascular smooth muscle cells. J Steriod Biochem Molec Biol 1994; 50: 169–74.CrossRefGoogle Scholar
  25. 25.
    Williams MI, Ling SH, Dawood T, et al. Dehydroepiandrosterone inhibits human vascular smooth muscle cell proliferation independent of ARs and ERs. J Clin Endocrinol Metab 2002; 87: 176–81.PubMedCrossRefGoogle Scholar
  26. 26.
    Bennett MR. Apoptosis of vascular smooth muscle cells in vascular remodeling and atherosclerotic plaque rupture. Cardiovasc Res 1999; 41: 361–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Braganza DM, Bennett MR. New insights into atherosclerotic plaque rupture. Postgrad Med J 2001; 77: 94–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Webb CM, McNeill JG, Hayward CS, et al. Effects of testosterone on coronary vasomotor regulation in men with coronary heart disease. Circulation 1999; 100: 1690–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Yue P, Chatterjee K, Beale C, et al. Testosterone relaxes rabbit coronary arteries and aorta. Circulation 1995; 91: 1154–60.PubMedCrossRefGoogle Scholar
  30. 30.
    Chou TM, Sudhir K, Hutchison SJ, et al. Testosterone induces dilation of canine coronary conductance and resistance arteries in vivo. Circulation 1996; 94: 2614–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Crews JK, Khalil RA. Antagonistic effects of 17 beta-estradiol, progesterone, and testosterone on Ca2+ entry mechanisms of coronary vasoconstriction. Arterioscler Thromb Vasc Biol 1999; 19: 1034–40.PubMedCrossRefGoogle Scholar
  32. 32.
    English KM, Jones RD, Jones TH, et al. Gender differences in the vasomotor effects of different steroid hormones in rat pulmonary and coronary arteries. Horm Metab Res 2001; 33: 645–52.PubMedCrossRefGoogle Scholar
  33. 33.
    Deenadayalu VP, White RE, Stallone JN, et al. Testosterone relaxes coronary arteries by opening the large-conductance, calcium-activated potassium channel. Am J Physiol Heart Circ Physiol 2001; 281: H1720–7.PubMedGoogle Scholar
  34. 34.
    English KM, Jones RD, Jones TH, et al. Testosterone acts as a coronary vasodilator by a calcium antagonistic action. J Endocrinol Invest 2002; 25: 455–8.PubMedGoogle Scholar
  35. 35.
    Pugh PJ, Jones RD, Jones TH, et al. Intrinsic responses of rat coronary arteries in vitro: influence of testosterone, calcium and effective transmural pressure. Endocrine 2002; 19: 155–62.PubMedCrossRefGoogle Scholar
  36. 36.
    Jones RD, English KM, Jones TH, et al. Testosterone-induced coronary vasodilatation occurs via a non-genomic mechanism: evidence of a direct calcium antagonistic action. Clin Sci 2004; 107: 149–58.PubMedCrossRefGoogle Scholar
  37. 37.
    English KM, Jones RD, Jones TH, et al. Aging reduces the responsiveness of coronary arteries from male Wistar rats to the vasodilatory action of testosterone. Clin Sci 2000; 99: 77–82.PubMedCrossRefGoogle Scholar
  38. 38.
    Tep-areenan P, Kendall DA, Randall MD. Testosterone-induced vasorelaxation in the rat mesenteric arterial bed is mediated predominantly via potassium channels. Br J Pharmacol 2002; 135: 735–40.PubMedCrossRefGoogle Scholar
  39. 39.
    Jones RD, English KM, Pugh PJ, et al. Pulmonary vasodilatory action of testosterone: evidence of a calcium antagonistic action. J Cardiovasc Pharmacol 2002; 39: 814–23.PubMedCrossRefGoogle Scholar
  40. 40.
    Jones RD, Pugh PJ, Hall J, et al. Altered circulating hormone levels, endothelial function and vascular reactivity in the testicular feminised mouse. Eur J Endocrinol 2003; 148: 111–20.PubMedCrossRefGoogle Scholar
  41. 41.
    Honda H, Unemoto T, Kogo H. Different mechanisms for testosterone-induced relaxation of aorta between normotensive and spontaneously hypertensive rats. Hypertension 1999; 34: 1232–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Perusquia M, Hernandez R, Morales MA, et al. Role of endothelium in the vasodilating effect of progestins and androgens on the rat thoracic aorta. Gen Pharmacol 1996; 27: 181–5.PubMedCrossRefGoogle Scholar
  43. 43.
    Perusquia M, Villalon CM. Possible role of Ca2+ channels in the vasodilating effect of 5 beta-dihydrotestosterone in rat aorta. Eur J Pharmacol 1999; 371: 169–78.PubMedCrossRefGoogle Scholar
  44. 44.
    Crews JK, Khalil RA. Gender-specific inhibition of Ca2+ entry mechanisms of arterial vasoconstriction by sex hormones. Clin Exp Pharmacol Physiol 1999; 26: 707–15.PubMedCrossRefGoogle Scholar
  45. 45.
    Murphy JG, Khalil RA. Decreased [Ca(2+)](i) during inhibition of coronary smooth muscle contraction by 17beta-estradiol, progesterone, and testosterone. J Pharmacol Exp Ther 1999; 291: 44–52.PubMedGoogle Scholar
  46. 46.
    Ding AQ, Stallone JN. Testosterone-induced relaxation of rat aorta is androgen structure specific and involves K+ channel activation. J Appl Physiol 2001; 91: 2742–50.PubMedGoogle Scholar
  47. 47.
    Jones RD, Ruban LN, Morton IE, et al. Testosterone inhibits the prostaglandin F-2-alpha mediated increase in intracellular calcium in A7r5 aortic smooth muscle cells: evidence of an antagonistic action upon store-operated calcium channels. J Endocrinol 2003; 178: 381–93.PubMedCrossRefGoogle Scholar
  48. 48.
    Jones RD, Pugh PJ, Jones TH, et al. The vasodilatory action of testosterone: a potassium channel opening or a calcium antagonistic action? Br J Pharmacol 2003; 138: 733–44.PubMedCrossRefGoogle Scholar
  49. 49.
    Scragg JL, Jones RD, Channer KS, et al. Testosterone is a potent inhibitor of L-type Ca[2+] channels. Biochem Biophys Res Commun 2004; 318: 503–6.PubMedCrossRefGoogle Scholar
  50. 50.
    Kang SM, Jang Y, Kim JY, et al. Effect of oral administration of testosterone on brachial arterial vasoreactivity in men with coronary artery disease. Am J Cardiol 2002; 89: 862–4.PubMedCrossRefGoogle Scholar
  51. 51.
    Ong PJ, Patrizi G, Chong WC, et al. Testosterone enhances flow-mediated brachial artery reactivity in men with coronary artery disease. Am J Cardiol 2000; 85: 269–72.PubMedCrossRefGoogle Scholar
  52. 52.
    Anderson TJ, Uehata A, Gerhard MD, et al. Close relation of endothelial function in the human coronary and peripheral circulations. J Am Coll Cardiol 1995; 26: 1235–41.PubMedCrossRefGoogle Scholar
  53. 53.
    Zitzmann M, Brune M, Nieschlag E. Vascular reactivity in hypogonadal men is reduced by androgen substitution. J Clin Endocrinol Metab 2002; 87: 5030–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Herman SM, Robinson JC, McCredie RJ, et al. Androgen deprivation is associated with enhanced endothelium-dependent dilatation in adult men. Arterioscler Thromb Vasc Biol 1997; 17: 2004–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Jones RD, Jones TH, Channer KS. The influence of testosterone upon vascular reactivity. Eur J Endocrinol 2004; 151: 29–37.PubMedCrossRefGoogle Scholar
  56. 56.
    Thogerson AM, Jansson JH, Boman K, et al. High plasminogen activator inhibitor and tissue plasminogen activator levels in plasma precede a first myocardial infarction in both men and women: evidence for the fibrinolytic system as an independent primary risk factor. Circulation 1998; 98: 2241–7.CrossRefGoogle Scholar
  57. 57.
    Bavenholm P, de Faire U, Landou C, et al. A progression of coronary artery disease in young male post-infarction is linked to disturbances of carbohydrate and lipoprotein metabolism and to impaired fibrinolytic function. Eur Heart J 1998; 19: 402–10.PubMedCrossRefGoogle Scholar
  58. 58.
    Phillips GB, Jing TY, Laragh JH, et al. Serum sex hormone levels and renin-sodium profile in men with hypertension. Am J Hypertens 1995; 8: 626–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Glueck CJ, Glueck HI, Stroop D, et al. Endogenous testosterone, fibrinolysis, and coronary heart disease risk in hyperlipidemic men. J Lab Clin Med 1993; 122: 412–20.PubMedGoogle Scholar
  60. 60.
    Phillips GB, Pinkernell BH, Jing TY. The association of hypotestosteronemia with coronary artery disease in men. Arterioscler Thromb 1994; 14: 701–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Pugh PJ, Channer KS, Parry H, et al. Bio-available testosterone levels fall acutely following myocardial infarction in men: association with fibrinolytic factors. Endocr Res 2002; 28: 161–73.PubMedCrossRefGoogle Scholar
  62. 62.
    Beer NA, Jakubowicz DJ, Matt DW, et al. Dehydroepiandrosterone reduces plasma plasminogen activator inhibitor type 1 and tissue plasminogen activator antigen in men. Am J Med Sci 1996; 311: 205–10.PubMedCrossRefGoogle Scholar
  63. 63.
    Caron P, Bennet A, Camare R, et al. Plasminogen activator inhibitor in plasma is related to testosterone in men. Metab Clin Exp 1989; 38: 1010–5.PubMedCrossRefGoogle Scholar
  64. 64.
    Yang XC, Jing TY, Resnick LM, et al. Relation of haemostatic risk factors to other risk factors for coronary heart disease and to sex hormones in men. Arterioscler Thromb 1993; 13: 467–71.PubMedCrossRefGoogle Scholar
  65. 65.
    De Pergola G, De Mitrio V, Sciaraffia M, et al. Lower androgenicity is associated with higher plasma levels of pro-thrombotic factors irrespective of age, obesity, body fat distribution, and related metabolic parameters in men. Metabolism 1997; 46: 1287–93.PubMedCrossRefGoogle Scholar
  66. 66.
    Anderson RA, Ludlam CA, Wu FCW. Haemostatic effects of supraphysiological levels of testosterone in normal men. Thromb Haemost 1995; 74: 693–7.PubMedGoogle Scholar
  67. 67.
    Smith AM, English KM, Malkin CJ, et al. Testosterone does not adversely affect fibrinogen or tissue plasminogen activator (tPA) and plasminogen activator inhibitor-1 (PAI-1) levels in 46 men with chronic stable angina. Eur J Endocrinol 2005; 152: 285–91.PubMedCrossRefGoogle Scholar
  68. 68.
    Lowe G, Woodward M, Vessey M, et al. Thrombotic variables and risk of idiopathic venous thromboembolism in women aged 45–64 years: relationships to hormone replacement therapy. Thromb Haemost 2000; 83: 530–5.PubMedGoogle Scholar
  69. 69.
    Acute myocardial infarction and combined oral contraceptives: results of an international multi-center case-control study: WHO collaborative study of cardiovascular disease and steriod hormone contraception. Lancet 1997; 349: 1202–9.CrossRefGoogle Scholar
  70. 70.
    Rossouw JE, Anderson GL, Prentice RL, et al. Risks and benefits of estrogen plus estrogen progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. J Am Med Assoc 2002; 288: 321–33.CrossRefGoogle Scholar
  71. 71.
    Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20 536 high-risk individuals: a randomized placebo-controlled trial. Lancet 2002; 360: 7–22.CrossRefGoogle Scholar
  72. 72.
    Barrett-Connor E, Khaw KT. Endogenous sex hormones and cardiovascular disease in men: a prospective population-based study. Circulation 1988; 78: 539–45.PubMedCrossRefGoogle Scholar
  73. 73.
    Barrett-Connor E. Lower endogenous androgen levels and dyslipidemia in men with non-insulin-dependent diabetes mellitus. Ann Intern Med 1992; 117: 807–11.PubMedGoogle Scholar
  74. 74.
    Haffner SM, Mykkanen L, Valdez RA, et al. Relationship of sex hormones to lipids and lipoproteins in non-diabetic men. J Clin Endocrinol Metab 1993; 77: 1610–5.PubMedCrossRefGoogle Scholar
  75. 75.
    Simon D, Charles MA, Nahoul K, et al. Association between plasma total testosterone and cardiovascular risk factors in healthy adult men: The Telecom Study. J Clin Endocrinol Metab 1997; 82: 682–5.PubMedCrossRefGoogle Scholar
  76. 76.
    Barud W, Palusinski R, Beltowski J, et al. Inverse relationship between total testosterone and anti-oxidised low density lipoprotein antibody levels in aging males. Atherosclerosis 2002; 164: 283–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Oppenheim DS, Greenspan SL, Zervas NT, et al. Elevated serum lipids in hypogonadal men with and without hyperprolactinaemia. Ann Intern Med 1989; 111: 288–92.PubMedGoogle Scholar
  78. 78.
    Tenover JS. Effects of testosterone in the aging male. J Clin Endocrinol Metab 1992; 75: 1092–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Zgliczynski S, Ossowski M, Slowinska-Srzednicka J, et al. Effect of testosterone replacement therapy on lipids and lipoproteins in hypogonadal and elderly men. Atherosclerosis 1996; 121: 35–43.PubMedCrossRefGoogle Scholar
  80. 80.
    Tripathy D, Shah P, Lakshmy R, et al. Effect of testosterone replacement on whole body glucose utilisation and other cardiovascular risk factors in males with idiopathic hypogonadotrophic hypogonadism. Horm Metab Res 1998; 30: 642–5.PubMedCrossRefGoogle Scholar
  81. 81.
    Howell SJ, Radford JA, Adams JE, et al. Randomized placebo-controlled trial of testosterone replacement in men with mild Leydig cell insufficiency following cytotoxic chemotherapy. Clin Endocrinol 2001; 55: 315–24.CrossRefGoogle Scholar
  82. 82.
    Ly LP, Jimenez M, Zhuang TN, et al. A double-blind, placebo-controled, randomized clinical trial of transdermal dihydrotestosterone gel on muscular strength, mobility, and quality of life in older men with partial androgen deficiency. J Clin Endocrinol Metab 2001; 86: 4078–88.PubMedCrossRefGoogle Scholar
  83. 83.
    Thompson PD, Cullinane EM, Sady SP, et al. Contrasting effects of testosterone and stanozolol on serum lipoprotein levels. JAMA 1989; 261: 1165–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Bagatell CJ, Heiman JR, Matsumoto AM, et al. Metabolic and behavioral effects of high dose exogenous testosterone in healthy men. J Clin Endocrinol Metab 1994; 79: 561–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Uyanik BS, Ari Z, Gumus B, et al. Beneficial effects of testosterone undecanoate on the lipoprotein profiles in healthy elderly men. Jpn Heart J 1997; 38: 73–82.PubMedCrossRefGoogle Scholar
  86. 86.
    Whitsel EA, Boyko EJ, Matsumoto AM, et al. Intramuscular testosterone esters and plasma lipids in hypogonadal men: a meta-analysis. Am J Med 2001; 111: 261–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Malkin CJ, Pugh PJ, Jones TH, et al. Testosterone for secondary prevention in men with ischaemic heart disease? Q J Med 2003; 96: 521–9.CrossRefGoogle Scholar
  88. 88.
    Barrett-Connor E, Khaw KT, Yen SS. Endogenous sex hormones in older men with diabetes mellitus. Am J Epidemiol 1990; 132: 895–901.PubMedGoogle Scholar
  89. 89.
    Zietz B, Cuk A, Hugl S, et al. Association of increased C-peptide serum levels and testosterone in Type 2 diabetes. Eur J Intern Med 2000; 11: 322–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Goodman-Gruen D, Barrett-Connor E. Sex differences in the association of endogenous sex hormone levels and glucose tolerance status in older men and women. Diabetes Care 2000; 23: 912–8.PubMedCrossRefGoogle Scholar
  91. 91.
    Simon D, Preziosi P, Barrett-Connor E, et al. Interrelation between plasma testosterone and plasma insulin in healthy adult men. Diabetologia 1992; 35: 173–7.PubMedCrossRefGoogle Scholar
  92. 92.
    Stellate RK, Feldman HA, Hamdy O, et al. Testosterone, sex hormone-binding globulin, and the development of diabetes in middle-aged men: prospective results from the Massachusetts male ageing study. Diabetes Care 2000; 23: 490–4.CrossRefGoogle Scholar
  93. 93.
    Haffner SM, Shaten J, Stern MP, et al. Low levels of sex hormone binding globulin and testosterone predict the development of non insulin dependent diabetes mellitus in men. Am J Epidemiol 1996; 143: 889–97.PubMedCrossRefGoogle Scholar
  94. 94.
    Smith JC, Bennett S, Evans LM, et al. The effects of induced hypogonadism on arterial stiffness, body composition and metabolic parameters in males with prostate cancer. J Clin Endocrinol Metab 2001; 6: 4261–7.CrossRefGoogle Scholar
  95. 95.
    Dockery F, Bulpitt CJ, Agarwal S, et al. Testosterone suppression in men with prostate cancer leads to an increase in arterial stiffness and hyperinsulinaemia. Clin Sci 2003; 104: 195–201.PubMedCrossRefGoogle Scholar
  96. 96.
    Xu T, Wang X, Hou S, et al. Effect of surgical castration on risk factors for arteriosclerosis of patients with prostate cancer. Chin Med J 2002; 115: 1336–40.PubMedGoogle Scholar
  97. 97.
    Simon D, Charles MA, Lahlou N, et al. Androgen therapy improves insulin sensitivity and decreases leptin level in healthy adult men with low plasma total testosterone. Diabetes Care 2001; 24: 2149–51.PubMedCrossRefGoogle Scholar
  98. 98.
    Singh AB, Hsia S, Alaupovic P, et al. The effects of varying doses of testosterone on insulin sensitivity, plasma lipids, apolipoproteins and C-reactive protein in healthy young men. J Clin Endocrinol Metab 2002; 87: 136–43.PubMedCrossRefGoogle Scholar
  99. 99.
    Friedl KE, Jones RE, Hannan CJ, et al. The administration of pharmacological doses of testosterone or 19-nortestosterone to normal men is not associated with increased insulin secretion or impaired glucose tolerance. J Clin Endocrinol Metab 1989; 68: 971–5.PubMedCrossRefGoogle Scholar
  100. 100.
    Marin P, Krotkiewski M, Bjorntrop P. Androgen treatment of middle-aged obese men: effects on metabolism muscle and adipose tissues. Eur J Med 1992; 1 (6): 329–36.PubMedGoogle Scholar
  101. 101.
    Marin P, Holmang S, Jonsson L, et al. The effects of testosterone treatment on body composition and metabolism in middle-aged obese men. Int J Obes Relat Metab Disord 1992; 16: 991–7.PubMedGoogle Scholar
  102. 102.
    Holmang A, Bjorntrop P. The effects of testosterone on insulin sensitivity in male rats. Acta Physiol Scand 1992; 146: 505–10.PubMedCrossRefGoogle Scholar
  103. 103.
    Zumoff B, Strain GW, Miller LK, et al. Plasma free and non-sex-hormone-binding-globulin-bound testosterone are decreased in obese men in proportion to their degree of obesity. J Clin Endocrinol Metab 1990; 71: 929–31.PubMedCrossRefGoogle Scholar
  104. 104.
    Pasquali R, Casimirri F, Cantobelli S, et al. Effect of obesity and body fat distribution on sex hormones and insulin in men. Metabolism 1991; 40: 101–4.PubMedCrossRefGoogle Scholar
  105. 105.
    Haffner SM, Valdez RA, Stern MP, et al. Obesity, body fat distribution and sex hormones in men. Int J Obes 1993; 17: 643–9.Google Scholar
  106. 106.
    Seidell JC, Bjorntorp P, Sjostrom L, et al. Visceral fat accumulation in men is positively associated with insulin, glucose and C-peptide levels but negatively with testosterone levels. Metabolism 1990; 39: 897–901.PubMedCrossRefGoogle Scholar
  107. 107.
    Phillips GB. Relationship between serum sex hormones and the glucose-insulin-lipid defect in men with obesity. Metabolism 1993; 42: 116–20.PubMedCrossRefGoogle Scholar
  108. 108.
    Abate N, Haffner SM, Garg A, et al. Sex steroid hormones, upper body obesity and insulin resistance. J Clin Endocrinol Metab 2002; 87: 4522–7.PubMedCrossRefGoogle Scholar
  109. 109.
    Vermeulen A, Goemaere S, Kaufman JM. Testosterone, body composition and aging. J Endocrinol Invest 1999; 22: 110–6.PubMedGoogle Scholar
  110. 110.
    Bastounis EA, Karayiannakis AJ, Syrigos K, et al. Sex hormone changes inmorbidly obese patients after vertical banded gastroplasty. Eur Surg Res 1998; 30: 43–7.PubMedCrossRefGoogle Scholar
  111. 111.
    Strain GW, Zumoff B, Miller LK, et al. Effect of massive weight loss on hypothalamic-pituitary-gonadal function in obese men. J Clin Endocrinol Metab 1988; 66: 1019–23.PubMedCrossRefGoogle Scholar
  112. 112.
    Rebuffe-Scrive M, Marin P, Bjorntrop P. Effect of testosterone on abdominal adipose tissue in men. Int J Obes 1991; 15: 791–5.PubMedGoogle Scholar
  113. 113.
    Marin P, Oden B, Bjorntrop P. Assimilation and mobilization of triglycerides in subcutaneous abdominal and femoral adipose tissue in vivo in men: effects of androgens. J Clin Endocrinol Metab 1995; 80: 239–43.PubMedCrossRefGoogle Scholar
  114. 114.
    Boyanov MA, Boneva Z, Christov VG. Testosterone supplementation in men with type 2 diabetes, visceral obesity and partial androgen deficiency. Aging Male 2003; 6: 1–7.PubMedGoogle Scholar
  115. 115.
    Marin P, Arver S. Androgens and abdominal obesity. Baillieres Clin Endocrinol Metab 1998; 12: 441–51.PubMedCrossRefGoogle Scholar
  116. 116.
    De Pergola G, Xu XF, Yang SM, et al. Upregulation of androgen receptor binding in male rat fat pad adipose precursor cells exposed to testosterone: study in a whole cell assay system. J Steroid Biochem Mol Biol 1990; 37: 553–8.PubMedCrossRefGoogle Scholar
  117. 117.
    Xu X, De Pergola G, Bjorntrop P. Testosterone increases lipolysis and the number of β adrenoceptors in male rat adipocytes. Endocrinology 1991; 128: 379–82.PubMedCrossRefGoogle Scholar
  118. 118.
    Zumoff B, Troxler RG, O’Connor J, et al. Abnormal hormone levels in men with coronary artery disease. Arteriosclerosis 1982; 2: 58–67.PubMedCrossRefGoogle Scholar
  119. 119.
    Luria MH, Johnson MW, Pego R, et al. Relationship between sex hormones, myocardial infarction, and occlusive coronary disease. Arch Intern Med 1982; 142: 42–4.PubMedCrossRefGoogle Scholar
  120. 120.
    Labropoulos B, Velonakis E, Oekonomakos P, et al. Serum sex hormones in patients with coronary disease and their relationship to known factors causing atherosclerosis. Cardiology 1982; 69: 98–103.PubMedCrossRefGoogle Scholar
  121. 121.
    Phillips GB, Castelli WP, Abbott RD, et al. Association of hyperestrogenemia and coronary heart disease in men in the Framingham cohort. Am J Med 1983; 74: 863–9.PubMedCrossRefGoogle Scholar
  122. 122.
    Heller RF, Wheeler MJ, Micallef J, et al. Relationship of high density lipoprotein cholesterol with total and free testosterone and sex hormone binding globulin. Acta Endocrinol 1983; 104: 253–6.PubMedGoogle Scholar
  123. 123.
    Mendoza SG, Zerpa A, Carrasco H, et al. Estradiol, testosterone, apolipoproteins, lipoprotein cholesterol, and lipolytic enzymes in men with premature myocardial infarction and angiographically assessed coronary occlusion. Artery 1983; 12: 1–23.PubMedGoogle Scholar
  124. 124.
    Barth JD, Jansen H, Hugenholtz PG, et al. Post-heparin lipases, lipids and related hormones in men undergoing coronary arteriography to assess atherosclerosis. Atherosclerosis 1983; 48: 235–41.PubMedCrossRefGoogle Scholar
  125. 125.
    Hromadova M, Hacik T, Riecansky I. Concentration of lipid, apoprotein-B and testosterone in patients with coronarographic findings. Klin Wochenschr 1985; 63: 1071–4.PubMedCrossRefGoogle Scholar
  126. 126.
    Breier C, Muhlberger V, Drexel H, et al. Essential role of post-heparin lipoprotein lipase activity and of plasma testosterone in coronary artery disease. Lancet 1985; I: 1242–4.CrossRefGoogle Scholar
  127. 127.
    Small M, Lowe GD, Beastall GH, et al. Serum oestradiol and ischaemic heart disease: relationship with myocardial infarction but not coronary atheroma or haemostasis. Q J Med 1985; 57: 775–82.PubMedGoogle Scholar
  128. 128.
    Franzen J, Fex G. Low serum apolipoprotein A-I in acute myocardial infarction survivors with normal HDL cholesterol. Atherosclerosis 1986; 59: 37–42.PubMedCrossRefGoogle Scholar
  129. 129.
    Aksut SV, Aksut G, Karamehmetoglu A, et al. The determination of serum estradiol, testosterone and progesterone in acute myocardial infarction. Jpn Heart J 1986; 27: 825–37.PubMedCrossRefGoogle Scholar
  130. 130.
    Sewdarsen M, Jialal I, Vythilingum S, et al. Sex hormone levels in young Indian patients with myocardial infarction. Arteriosclerosis 1986; 6: 418–21.PubMedCrossRefGoogle Scholar
  131. 131.
    Chute CG, Baron JA, Plymate SR, et al. Sex hormones and coronary artery disease. Am J Med 1987; 83: 853–9.PubMedCrossRefGoogle Scholar
  132. 132.
    Hämäläinen E, Tikkanen H, Harkonen M, et al. Serum lipoproteins, sex hormones and sex hormone binding globulin in middle-aged men of different physical fitness and risk of coronary heart disease. Atherosclerosis 1987; 67: 155–62.PubMedCrossRefGoogle Scholar
  133. 133.
    Lichtenstein MJ, Yamell JW, Elwood PC, et al. Sex hormones, insulin, lipids and prevalent ischemic heart disease. Am J Epidemiol 1987; 126: 647–57.PubMedGoogle Scholar
  134. 134.
    Swartz CM, Young MA. Low serum testosterone and myocardial infarction in geriatric male inpatients. J Am Geriatr Soc 1987; 35: 39–44.PubMedGoogle Scholar
  135. 135.
    Sewdarsen M, Jialal I, Naidu RK. The low plasma testosterone levels of young Indian infarct survivors are not due to a primary testicular defect. Postgrad Med J 1988; 64: 264–6.PubMedCrossRefGoogle Scholar
  136. 136.
    Baumann G, Reza P, Chatterton R, et al. Plasma estrogens, androgens, and von Willebrand factor in men on chronic hemodialysis. Int J Artif Organs 1988; 11: 449–53.PubMedGoogle Scholar
  137. 137.
    Slowinska-Srzednicka J, Zgliczynski S, Ciswicka-Sznajderman M, et al. Decreased plasma dehydroepiandrosterone sulfate and dihydrotestosterone concentrations in young men after myocardial infarction. Atherosclerosis 1989; 79: 197–203.PubMedCrossRefGoogle Scholar
  138. 138.
    Sewdarsen M, Vythilingum S, Jialal I, et al. Abnormalities in sex hormones are a risk factor for premature manifestation of coronary artery disease in South African Indian men. Atherosclerosis 1990; 83: 111–7.PubMedCrossRefGoogle Scholar
  139. 139.
    Gray A, Feldman HA, McKinlay JB, et al. Age, disease, and changing sex hormone levels in middle-aged men: results of the Massachusetts Male Aging Study. J Clin Endocrinol Metab 1991; 73: 1016–25.PubMedCrossRefGoogle Scholar
  140. 140.
    Cengiz K, Alvur M, Dindar U. Serum creatine phosphokinase, lactic dehydrogenase, estradiol, progesterone and testosterone levels in male patients with acute myocardial infarction and unstable angina pectoris. Mater Med Pol 1991; 23: 195–8.PubMedGoogle Scholar
  141. 141.
    Hauner H, Stangl K, Burger K, et al. Sex hormone concentrations in men with angiographically assessed coronary artery disease-relationship to obesity and body fat distribution. Klin Wochenschr 1991; 69: 664–8.PubMedCrossRefGoogle Scholar
  142. 142.
    Rice T, Sprecher DL, Borecki IB, et al. Cincinnati myocardial infarction and hormone family study: family resemblance for testosterone in random and MI families. Am J Med Genet 1993; 47: 542–9.PubMedCrossRefGoogle Scholar
  143. 143.
    Hautanen A, Manttari M, Manninen V, et al. Adrenal androgens and testosterone as coronary risk factors in the Helsinki Heart Study. Atherosclerosis 1994; 105: 191–200.PubMedCrossRefGoogle Scholar
  144. 144.
    Mitchell LE, Sprecher DL, Borecki IB, et al. Evidence for an association between dehydroepiandrosterone sulfate and non-fatal, premature myocardial infarction in males. Circulation 1994; 89: 89–93.PubMedCrossRefGoogle Scholar
  145. 145.
    Marques-Vidal P, Sie P, Cambou JP, et al. Relationships of plasminogen activator inhibitor activity and lipoprotein(a) with insulin, testosterone, 17 beta-estradiol, and testosterone binding globulin in myocardial infarction patients and healthy controls. J Clin Endocrinol Metab 1995; 80: 1794–8.PubMedCrossRefGoogle Scholar
  146. 146.
    Zhao SP, Li XP. The association of low plasma testosterone level with coronary artery disease in Chinese men. Int J Cardiol 1998; 63: 161–4.PubMedCrossRefGoogle Scholar
  147. 147.
    Feldman HA, Johannes CB, McKinlay JB, et al. Low dehydroepiandrosterone sulfate and heart disease in middle-aged men: cross-sectional results from the Massachusetts Male Aging Study. Ann Epidemiol 1998; 8: 217–28.PubMedCrossRefGoogle Scholar
  148. 148.
    Kabakci G, Yildirir A, Can I, et al. Relationship between endogenous sex hormone levels, lipoproteins and coronary atherosclerosis in men undergoing coronary angiography. Cardiology 1999; 92: 221–5.PubMedCrossRefGoogle Scholar
  149. 149.
    Schuler-Luttmann S, Monnig G, Enbergs A, et al. Insulin-like growth factor binding protein-3 is associated with the presence and extent of coronary arteriosclerosis. Arterioscler Thromb Vasc Biol 2000; 20: e10–15.PubMedCrossRefGoogle Scholar
  150. 150.
    English KM, Mandour O, Steeds RP, et al. Men with coronary artery disease have lower levels of androgens than men with normal coronary angiograms. Eur Heart J 2000; 21: 890–4.PubMedCrossRefGoogle Scholar
  151. 151.
    Cauley JA, Gutai JP, Kuller LH, et al. Usefulness of sex steroid hormone levels in predicting coronary artery disease in men. Am J Cardiol 1987; 60: 771–7.PubMedCrossRefGoogle Scholar
  152. 152.
    Phillips GB, Yano K, Stemmermann GN. Serum sex hormone levels and myocardial infarction in the Honolulu Heart Program: pitfalls in prospective studies on sex hormones. J Clin Epidemiol 1988; 41: 1151–6.PubMedCrossRefGoogle Scholar
  153. 153.
    Contoreggi CS, Blackman MR, Andres R, et al. Plasma levels of estradiol, testosterone, and DHEAS do not predict risk of coronary artery disease in men. J Androl 1990; 11: 460–70.PubMedGoogle Scholar
  154. 154.
    Yarnell JW, Beswick AD, Sweetnam PM, et al. Endogenous sex hormones and ischemic heart disease in men: the Caerphilly prospective study. Arterioscler Thromb 1993; 13: 517–20.PubMedCrossRefGoogle Scholar
  155. 155.
    Newcomer LM, Manson JE, Barbieri RL, et al. Dehydroepiandrosterone sulphate and the risk of myocardial infarction in US male physicians: a prospective study. Am J Epidemiol 1994; 140: 870–5.PubMedGoogle Scholar
  156. 156.
    Harman SM, Metter EJ, Tobin JD, et al. Longitudinal effects of aging on serum total and free testosterone levels in healthy men. J Clin Endocrinol Metab 2001; 86: 724–31.PubMedCrossRefGoogle Scholar
  157. 157.
    Pugh PJ, Malkin CJ, Morris PD, et al. Prevalence of hypogonadism in men with coronary artery disease [abstract]. J Am Coll Cardiol 2003; 41: 344.Google Scholar
  158. 158.
    Vermeulen A, Kaufman JM. Ageing of the hypothalamo-pituitary-testicular axis in men. Horm Res 1995; 43: 25–8.PubMedCrossRefGoogle Scholar
  159. 159.
    Leifke E, Gorenoi V, Wichers C, et al. Age-related changes of serum sex hormones, insulin-like growth factor-1 and sex-hormone binding globulin levels in men: cross-sectional data from a healthy male cohort. Clin Endocrinol 2000; 53: 689–95.CrossRefGoogle Scholar
  160. 160.
    Vermeulen A. Androgen replacement therapy in the aging male: a critical evaluation. J Clin Endocrinol Metab 2001; 86: 2380–90.PubMedCrossRefGoogle Scholar
  161. 161.
    Orentreich N, Brind JL, Rizer RL, et al. Age changes and sex differences in serum dehydroepiandrosterone sulfate concentrations throughout adulthood. J Clin Endocrinol Metab 1984; 59: 551–5.PubMedCrossRefGoogle Scholar
  162. 162.
    Kaufman JM, Vermeulen A. Declining gonadal function in elderly men. Clin Endocrinol Metab 1997; 11: 289–309.Google Scholar
  163. 163.
    van den Beld AW, Bots ML, Janssen JA, et al. Endogenous hormones and carotid atherosclerosis in elderly men. Am J Epidemiol 2003; 157: 25–31.PubMedCrossRefGoogle Scholar
  164. 164.
    Muller M, van den Beld AW, Bots ML, et al. Endogenous sex hormones and progression of carotid atherosclerosis in elderly men. Circulation 2004; 109: 2074–9.PubMedCrossRefGoogle Scholar
  165. 165.
    Hak AE, Witteman JCM, De Jong FH, et al. Low levels of endogenous androgens increase the risk of atherosclerosis in elderly men: the Rotterdam Study. J Clin Endocrinol Metab 2002; 87: 3632–9.PubMedCrossRefGoogle Scholar
  166. 166.
    De Pergola G, Pannacciulli N, Ciccone M, et al. Free testosterone plasma levels are negatively associated with the intima-media thickness of the common carotid artery in overweight and obese glucose-tolerant young adult men. Int J Obes 2003; 27: 803–7.CrossRefGoogle Scholar
  167. 167.
    Fukui M, Kitagawa Y, Nakamura N, et al. Association between serum testosterone concentration and carotid atherosclerosis in men with type 2 diabetes. Diabetes Care 2003; 26: 1869–73.PubMedCrossRefGoogle Scholar
  168. 168.
    Larsen BA, Nordestgaard BG, Stender S, et al. Effect of testosterone on atherogenesis in cholesterol-fed rabbits with similar plasma cholesterol levels. Atherosclerosis 1993; 99: 79–86.PubMedCrossRefGoogle Scholar
  169. 169.
    Bruck B, Brehme U, Gugel N, et al. Gender-specific differences in the effects of testosterone and estrogen on the development of atherosclerosis in rabbits. Arterioscler Thromb Vasc Biol 1997; 17: 2192–9.PubMedCrossRefGoogle Scholar
  170. 170.
    Alexandersen P, Haarbo J, Byrjalsen I, et al. Natural androgens inhibit male atherosclerosis: a study in castrated, cholesterol-fed rabbits. Circ Res 1999; 84: 813–9.PubMedCrossRefGoogle Scholar
  171. 171.
    Gordon GB, Bush DE, Weisman HF. Reduction of atherosclerosis by administration of dehydroepiandrosterone: a study in hypercholesterolaemic New Zealand white rabbits with aortic intimai injury. J Clin Invest 1988; 82: 712–20.PubMedCrossRefGoogle Scholar
  172. 172.
    Arad Y, Badimon JJ, Badimon L, et al. dehydroepiandrosterone feeding prevents aortic fatty streak formation and cholesterol accumulation in the cholesterol-fed rabbit. Arteriosclerosis 1989; 9: 159–66.PubMedCrossRefGoogle Scholar
  173. 173.
    Eich DM, Nestler JE, Johnson DE, et al. Inhibition of accelerated coronary atherosclerosis with dehydroepiandrosterone in the heterotopic rabbit model of cardiac transplantation. Circulation 1993; 87: 261–9.PubMedCrossRefGoogle Scholar
  174. 174.
    Hanke H, Lenz C, Spindler KD, et al. Effect of testosterone on plaque development and androgen receptor expression in the arterial vessel wall. Circulation 2001; 103: 1382–5.PubMedCrossRefGoogle Scholar
  175. 175.
    Nathan L, Shi WB, Dinh H, et al. Testosterone inhibits early atherogenesis by conversion to estradiol: critical role of aromatase. Proc Natl Acad Sci U S A 2001; 98: 3589–93.PubMedCrossRefGoogle Scholar
  176. 176.
    von Dehn G, von Dehn O, Volker W, et al. Atherosclerosis in apolipoprotein E-deficient mice is decreased by the suppression of endogenous sex hormones. Horm Metab Res 1902; 33: 110–4.CrossRefGoogle Scholar
  177. 177.
    Adams MR, Williams JK, Kaplan JR. Effects of androgens on coronary artery atherosclerosis and atherosclerosis-related impairment of vascular responsiveness. Arterioscler Thromb Vasc Biol 1995; 15: 562–70.PubMedCrossRefGoogle Scholar
  178. 178.
    Obasanjo IO, Clarkson TB, Weaver DS. Effects of the anabolic steroid nandrolone decanoate on plasma lipids and coronary arteries of female cynomolgus macaques. Metabolism 1996; 45: 463–8.PubMedCrossRefGoogle Scholar
  179. 179.
    Hamm L. Testosterone propionate in the treatment of angina pectoris. J Clin Endocrinol 1942; 2: 325–8.CrossRefGoogle Scholar
  180. 180.
    Walker TC. The use of testosterone propionate and estrogenic substance in the treatment of essential hypertension, angina pectoris and peripheral vascular disease. J Clin Endocrinol 1942; 2: 560–8.CrossRefGoogle Scholar
  181. 181.
    Sigler LH, Tulgan J. Treatment of angina pectoris by testosterone propionate. N Y State J Med 1943; 43: 1424–8.Google Scholar
  182. 182.
    Lesser MA. Testosterone propionate therapy in one hundred cases of angina pectoris. J Clin Endocrinol 1946; 6: 549–57.CrossRefGoogle Scholar
  183. 183.
    Jaffe MD. Effect of testosterone cypionate on postexercise ST segment depression. Br Heart J 1977; 39: 1217–22.PubMedCrossRefGoogle Scholar
  184. 184.
    Wu SZ, Weng XZ. Therapeutic effects of an androgenic preparation on myocardial ischemia and cardiac function in 62 elderly male coronary heart disease patients. Chin Med J 1993; 106: 415–8.PubMedGoogle Scholar
  185. 185.
    English KM, Steeds RP, Jones TH, et al. Low-dose transdermal testosterone therapy improves angina threshold in men with chronic stable angina: a randomized, double-blind, placebo-controlled study. Circulation 2000; 102: 1906–11.PubMedCrossRefGoogle Scholar
  186. 186.
    Rosano GM, Leonardo F, Pagnotta P, et al. Acute anti-ischemic effect of testosterone in men with coronary artery disease. Circulation 1999; 99: 1666–70.PubMedCrossRefGoogle Scholar
  187. 187.
    Webb CM, Adamson DL, de Zeigler D, et al. Effect of acute testosterone on myocardial ischemia in men with coronary artery disease. Am J Cardiol 1999; 83: 437–9.PubMedCrossRefGoogle Scholar
  188. 188.
    Thompson PD, Ahlberg AW, Moyna NM, et al. Effect of intravenous testosterone on myocardial ischemia in men with coronary artery disease. Am Heart J 2002; 143: 249–56.PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2005

Authors and Affiliations

  • Richard D. Jones
    • 1
  • Joanne E. Nettleship
    • 1
  • Dheeraj Kapoor
    • 1
    • 2
  • Hugh T. Jones
    • 1
    • 2
  • Kevin S. Channer
    • 3
    • 4
  1. 1.Academic Unit of Endocrinology, Division of Genomic Medicine, Hormone & Vascular Biology GroupThe University of Sheffield, The Medical SchoolSheffieldUK
  2. 2.Center for Diabetes and EndocrinologyBarnsley District General HospitalBarnsleyUK
  3. 3.Department of CardiologyRoyal Hallamshire HospitalSheffieldUK
  4. 4.Faculty of Health and WellbeingSheffield Hallam UniversitySheffieldUK

Personalised recommendations