Paediatric Drugs

, Volume 3, Issue 12, pp 863–881 | Cite as

Pharmacogenetic Tactics and Strategies

Implications for Paediatrics
Leading Article

Abstract

Genetic diversity exerts profound effects on variation in human drug response in adults, but comparatively little research that specifically relates to genetically abnormal responses in infancy and childhood has been reported. Specific genetic changes in human enzymes, receptors and other proteins that are implicated in drug response and their associated phenotypic correlates provide needed data for construction of profiles individualised to predict susceptibility to adverse drug reactions. If therapy adheres to such guidelines, failure to respond to drug therapy and drug toxicity among genetically susceptible persons can be greatly minimised or averted.

References

  1. 1.
    Cohen SN, Weber WW. Pharmacogenetics. Pediatr Clin North Am 1972; 19: 21–36PubMedGoogle Scholar
  2. 2.
    Fulginiti VA. Genetics: the quiet revolution in science and medicine. Am J Dis Child 1993; 147: 1139–41PubMedGoogle Scholar
  3. 3.
    Leeder JS, Kearns GL. Pharmacogenetics in pediatrics: implications for practice. Pediatr Clin North Am 1997; 44: 55–77PubMedCrossRefGoogle Scholar
  4. 4.
    Rane A. Phenotyping of drug metabolism in infants and children: potentials and problems. Pediatrics 1999; 104: 640–3PubMedGoogle Scholar
  5. 5.
    Evans WE, Relling MV. Pharmacogenomics: translating functional genomics into rational therapeutics. Science 1999; 286: 487–91PubMedCrossRefGoogle Scholar
  6. 6.
    Wolf C, Smith G, Smith RL. Pharmacogenetics. BMJ 2000; 320: 987–90PubMedCrossRefGoogle Scholar
  7. 7.
    Van Dyke DC, Ellingrod VL, Berg MJ, et al. Pharmacogenetic for susceptibility to fetal malformations in women. Ann Pharmacother 2000; 34: 639–45PubMedCrossRefGoogle Scholar
  8. 8.
    Meyer UA. Pharmacogenetics and adverse drug reactions. Lancet 2000; 356: 1667–71PubMedCrossRefGoogle Scholar
  9. 9.
    Roses AD. Idiosyncratic reactions to drugs: can medicine response profiles provide a dynamic drug surveillance system? Clin Chem Lab Med 2000; 38: 815–8PubMedCrossRefGoogle Scholar
  10. 10.
    Rana BK, Shiina T, Insel PA. Genetic variations and polymorphisms of G-protein-coupled receptors: functional and therapeutic implications. Annu Rev Pharmacol Toxicol 2001; 41: 593–624PubMedCrossRefGoogle Scholar
  11. 11.
    McLeod HL, Evans WE. Pharmacogenomics: unlocking the human genome for better drug therapy. Annu Rev Pharmacol Toxicol 2001; 41: 101–21PubMedCrossRefGoogle Scholar
  12. 12.
    Xie HG, Kim RB, Wood AJ, et al. Molecular basis of ethnic differences in drug disposition and response. Annu Rev Pharmacol Toxicol 2001; 41: 815–50PubMedCrossRefGoogle Scholar
  13. 13.
    Evans DAP. Genetic factors in drug therapy: clinical and molecular phemacogenetics. Cambridge: Cambridge University Press, 1993Google Scholar
  14. 14.
    Weber WW. Pharmacogenetics. New York: Oxford University Press, 1997Google Scholar
  15. 15.
    Kalow W, Meyer UA, Tyndale R, editors. Pharmacogenomics. New York: Marcel Dekker, 2001Google Scholar
  16. 16.
    Weber WW, Smith RL. New directions in pharmacogenetics and ecogenetics. Drug Metab Dispos 2001; 29: 467–614Google Scholar
  17. 17.
    Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science 2001; 291: 1304–51PubMedCrossRefGoogle Scholar
  18. 18.
    Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature 2001; 409: 860–921PubMedCrossRefGoogle Scholar
  19. 19.
    Sachidanandam R, Weissman D, Schmidt SC, et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 2001; 409: 928–33PubMedCrossRefGoogle Scholar
  20. 20.
    Lander ES, Weinberg RA. Genomics: journey to the center of biology. Science 2000; 287: 1777–82PubMedCrossRefGoogle Scholar
  21. 21.
    Weber WW. History of pharmacogenetics. Pharm News 2000; 7: 13–8Google Scholar
  22. 22.
    Weber WW. The legacy of pharmacogenetics and potential applications. Mutat Res 2001; 479: 1–18PubMedCrossRefGoogle Scholar
  23. 23.
    Schafer AJ, Hawkins JR. DNA variation and the future of human genetics. Nat Biotechnol 1998; 16: 33–9PubMedCrossRefGoogle Scholar
  24. 24.
    Shi MM. Enabling large-scale pharmacogenetic studies by high-throughput mutation detection and genotyping technologies. Clin Chem 2001; 47: 164–72PubMedGoogle Scholar
  25. 25.
    Weber WW, Cronin MT. Pharmacogenetic testing. In: Meyers RA, editor. Encyclopedia of analytical chemistry. Chichester: Wiley, 2000: 1506–31Google Scholar
  26. 26.
    Kwiatowski RW, Lyamichev V, de Arruda M, et al. Clinical genetic, and pharmacogenetic applications of the Invader assay. Mol Diagn 1999; 4: 353–64CrossRefGoogle Scholar
  27. 27.
    Lizardi P, Huang X, Zhu Z, et al. Mutation detection and single-molecule counting using isothermal rolling circle amplification. Nat Genet 1998; 19: 225–32PubMedCrossRefGoogle Scholar
  28. 28.
    Baner J, Nilsson M, Mendel-Hartwig M, et al. Signal amplification of padlock probes by rolling circle replication. Nucleic Acids Res 1998; 26: 5073–8PubMedCrossRefGoogle Scholar
  29. 29.
    Hanash S. Operomics: molecular analysis of tissues from DNA to RNA to protein. Clin Chem Lab Med 2000; 38: 805–13PubMedCrossRefGoogle Scholar
  30. 30.
    Dixon AK, Richardson PJ, Pinnock RD, et al. Gene-expression analysis at the single-cell level. Trends Pharmacol Sci 2000; 21: 65–70PubMedCrossRefGoogle Scholar
  31. 31.
    Jung R, Soondrum K, Neumaier M. Quantitative PCR. Clin Chem Lab Med 2000; 38: 833–6PubMedGoogle Scholar
  32. 32.
    Nebert DW, Weber WW. Pharmacogenetics. In: Pratt WB, Taylor P, editors. Principles of drug action. 3rd rev. ed. New York: Churchill & Livingston, 1990: 469–531Google Scholar
  33. 33.
    Ingelman-Sundberg M. Implications of polymorphic cytochrome P450-dependent drug metabolism for drug development. Drug Metab Dispos 2001; 29: 570–3PubMedGoogle Scholar
  34. 34.
    Ingelman-Sundberg M, Daly AK, Nebert DW, editors. The Institute of Environmental Medicine (IMM), Karolinska Institute, Stockholm. Human cytochrome P450 (CYP) allele nomenclature committee [online]. Available from URL: http://www.imm.ki.se/CYPalleles [Accessed 2001 Jun 11]
  35. 35.
    Gonzalez FJ, Skoda RC, Kimura S, et al. Characterization of the common genetic defect in humans deficient in debrisoquine metabolism. Nature 1988; 331: 442–6PubMedCrossRefGoogle Scholar
  36. 36.
    Shibuya A, Yoshida A. Genotypes of alcohol-metabolizing enzymes in Japanese with alcoholic liver diseases: a strong association of the usual Caucasian-type aldehyde dehydrogenase gene (ALDH2) with the disease. Am J Hum Genet 1988; 43: 744–8PubMedGoogle Scholar
  37. 37.
    Cross NC, Tolan DR, Cox TM. Catalytic deficiency of human aldolase B in hereditary fructose intolerance caused by a common missense mutation. Cell 1988; 53: 881–5PubMedCrossRefGoogle Scholar
  38. 38.
    Lifton RP, Dluhy RG, Powers M, et al. A chimeric 11 β-hydroxy-lase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature 1992; 355: 262–5PubMedCrossRefGoogle Scholar
  39. 39.
    Johansson I, Lundqvist E, Bertilsson L, et al. Inherited amplification of an active gene in the cytochrome P450 CYP2D locus as a cause of ultrarapid metabolism of debrisoquine. Proc Natl Acad Sci USA 1993; 90: 11825–9PubMedCrossRefGoogle Scholar
  40. 40.
    Rettie AE, Wienkers LC, Gonzalez FJ, et al. Impaired (S)-war-farin metabolism catalysed by the R144C allelic variant. Pharmacogenetics 1994; 4: 39–42PubMedCrossRefGoogle Scholar
  41. 41.
    Wang SL, Huang JD, Lai MD, et al. Detection of CYP2C9 polymorphism based on the polymerase chain reaction in Chinese. Pharmacogenetics 1995; 5: 37–42PubMedCrossRefGoogle Scholar
  42. 42.
    Cox TC, Bottomley SS, Wiley JS, et al. X-linked pyridoxine-responsive sideroblastic anemia due to Thr388-to-Ser substitution in erythroid 5-aminolevulinate synthase. N Engl J Med 1994; 330: 675–9PubMedCrossRefGoogle Scholar
  43. 43.
    Krynetski EY, Evans WE. Genetic polymorphism of thiopurine S-methyltransferase: molecular mechanisms and clinical importance. Pharmacology 2000; 61: 136–46PubMedCrossRefGoogle Scholar
  44. 44.
    Bosma PJ, Goldhoorn B, Oude Elferink RP, et al. A mutation in bilirubin uridine 5′-diphosphate-glucuronosyltransferase iso-form 1 causing Crigler-Najjar syndrome type II. Gastroenterology 1993; 105: 216–20PubMedGoogle Scholar
  45. 45.
    Monaghan N, Povey S, Burchell B, et al. Localization of a bile acid UDP-glucuronosyltransferase gene (UGT2B) to chromosome 4 using the polymerase chain reaction. Genomics 1992; 13: 908–9PubMedCrossRefGoogle Scholar
  46. 46.
    Dolphin CT, Janmohamed A, Smith RL, et al. Missense mutation in flavin-containing mono-oxygenase 3 gene, FMO3, underlies fish-odour syndrome. Nat Genet 1997; 17: 491–4PubMedCrossRefGoogle Scholar
  47. 47.
    McCarver DG, Thomasson HR, Martier SS, et al. Alcohol de-hydrogenase-2’3 allele protects against alcohol-related birth defects among African Americans. J Pharmacol Exp Ther 1997; 283: 1095–101PubMedGoogle Scholar
  48. 48.
    Drazen JM, Yandava CN, Dube L, et al. Pharmacogenetic association between ALOX5 promoter genotype and the response to anti-asthma treatment. Nat Genet 1999; 22: 168–70PubMedCrossRefGoogle Scholar
  49. 49.
    Billecke S, Draganov D, Counsell R, et al. Human serum para-oxonase (PON1) isozymes Q and R hydrolyze lactones and cyclic carbonate esters. Drug Metab Dispos 2000; 28: 1335–42PubMedGoogle Scholar
  50. 50.
    Draganov DI, Stetson PL, Watson CE, et al. Rabbit serum para-oxonase 3 (PON3) is a high density lipoprotein-associated lactonase and protects low density lipoprotein against oxidation. J Biol Chem 2000; 275: 33435–42PubMedCrossRefGoogle Scholar
  51. 51.
    La Du BN. Is paraoxonase-3 another HDL-associated protein protective against atherosclerosis? Arterioscler Thromb Vasc Biol 2001; 21: 467–8PubMedCrossRefGoogle Scholar
  52. 52.
    Mitchell SC, Smith RL. Trimethylaminuria: the fish malodour syndrome. Drug Metab Dispos 2001; 29: 517–21PubMedGoogle Scholar
  53. 53.
    Swallow DM, Poulter M, Hollox EJ. Intolerance to lactose and other dietary sugars. Drug Metab Dispos 2001; 29: 513–6PubMedGoogle Scholar
  54. 54.
    Weber WW. Pharmacogenetics: receptors. In: Kalow W, Meyer UA, Tyndale R, editors. Pharmacogenomics. New York: Marcel Dekker, 2001: 51–80Google Scholar
  55. 55.
    Weber WW. Populations and genetic polymorphisms. Mol Diagn 1999; 4: 299–307PubMedCrossRefGoogle Scholar
  56. 56.
    Kalow W. Interethnic differences in drug response. In: Kalow W, Meyer UA, Tyndale R, editors. Pharmacogenomics. New York: Marcel Dekker, 2001: 109–34Google Scholar
  57. 57.
    Lovlie R, Daly AK, Matre GE, et al. Polymorphisms in CYP2D6 duplication-negative individuals with ultrarapid metabolizer phenotype: a role for the CYP2D6*35 allele in ultrarapid metabolism. Pharmacogenetics 2001; 11: 45–55PubMedCrossRefGoogle Scholar
  58. 58.
    Wedlund PJ. The CYP2C19 enzyme polymorphism. Pharmacology 2000; 61: 174–83PubMedCrossRefGoogle Scholar
  59. 59.
    Kaneko A, Kaneko O, Taleo G, et al. High frequencies of CYP2C 19 mutations and poor metabolism of proguanil in Vanuatu. Lancet 1997; 349: 921–2PubMedCrossRefGoogle Scholar
  60. 60.
    Kaneko A, Bergvist Y, Takechi M, et al. Intrinsic efficacy of proguanil against falciparum and vivax malaria independent of the metabolite cycloguanil. J Infect Dis 1999; 179: 974–9PubMedCrossRefGoogle Scholar
  61. 61.
    Miners JO, Birkett DJ. Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol 1998; 45: 525–38PubMedCrossRefGoogle Scholar
  62. 62.
    Tukey RH, Strassburg CP. Genetic multiplicity of the human UDP-glucuronosyltransferases and regulation in the gastrointestinal tract. Mol Pharmacol 2001; 59: 405–14PubMedGoogle Scholar
  63. 63.
    Innocenti F, Iyer L, Ratain MJ. Pharmacogenetics of anticancer agents: lessons from amonafide and irinotecan. Drug Metab Dispos 2001; 29: 596–600PubMedGoogle Scholar
  64. 64.
    Weinshilboum RW. Thiopurine pharmacogenetics. Clinical and molecular studies of thiopurine methyltransferase. Drug Metab Dispos 2001; 29: 601–5PubMedGoogle Scholar
  65. 65.
    Lennard L. Therapeutic drug monitoring of antimetabolic cytotoxic drugs. Br J Clin Pharmacol 1999; 47: 131–43PubMedCrossRefGoogle Scholar
  66. 66.
    Dubinsky MC, Lamothe S, Yang HY, et al. Pharmacogenomics and metabolite measurement for 6-mercaptopurine therapy in inflammatory bowel disease. Gastroenterology 2000; 118: 705–13PubMedCrossRefGoogle Scholar
  67. 67.
    Seidman EG. Recent advances in the diagnosis and treatment of pediatric inflammatory bowel disease. Curr Gastroenterol Rep 2000; 2: 248–52PubMedCrossRefGoogle Scholar
  68. 68.
    Hughes MR, Malloy PJ, Kieback DG, et al. Point mutations in the human vitamin D receptor gene associated with hypocalcemic rickets. Science 1988; 242: 1702–5PubMedCrossRefGoogle Scholar
  69. 69.
    Kodawaki T, Bevins CL, Cama A, et al. Two mutant alleles of the insulin receptor gene in a patient with extreme insulin resistance. Science 1988; 240: 787–90CrossRefGoogle Scholar
  70. 70.
    Yoshimasa Y, Seino S, Whittaker J, et al. Insulin-resistant diabetes due to a point mutation that prevents insulin proreceptor processing. Science 1988; 240: 784–7PubMedCrossRefGoogle Scholar
  71. 71.
    Riordan RJ, Rommens JM, Kerem B, et al. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 1989; 245: 1066–73PubMedCrossRefGoogle Scholar
  72. 72.
    Li C, Ramjeesingh M, Reyes E, et al. The cystic fibrosis mutation (Δ508) does not influence the chloride channel activity of CFTR. Nat Genet 1993; 3: 311–6PubMedCrossRefGoogle Scholar
  73. 73.
    Towbin JA, Wang Z, Hua L. Genotype and severity of long QT syndrome. Drug Metab Dispos 2001; 29: 574–9PubMedGoogle Scholar
  74. 74.
    MacLennan DH, Phillips MS. Malignant hyperthermia. Science 1992; 256: 789–94PubMedCrossRefGoogle Scholar
  75. 75.
    Reihsaus E, Innis M, Maclntyre N, et al. Mutations in the gene encoding for the β2-adrenergic receptor in normal and asthmatic subjects. Am J Respir Cell Mol Biol 1993; 8: 334–9PubMedGoogle Scholar
  76. 76.
    Green SA, Turki J, Innis M, et al. Amino-terminal polymorphisms of the human β2-adrenergic receptor impart distinct agonist-promoted regulatory properties. Biochemistry 1994; 33: 9414–9PubMedCrossRefGoogle Scholar
  77. 77.
    Smith EP, Boyd J, Frank GR, et al. Estrogen resistance caused by a mutation in the estrogen receptor gene in man. N Engl J Med 1994; 331: 1056–61PubMedCrossRefGoogle Scholar
  78. 78.
    Thomas PM, Cote GC, Wohlik N, et al. Mutations in the sulfonylurea receptor gene in familial hyperinsulinemia of infancy. Science 1995; 268: 426–9PubMedCrossRefGoogle Scholar
  79. 79.
    Liu R, Paxton WA, Choe S, et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 1996; 86: 367–77PubMedCrossRefGoogle Scholar
  80. 80.
    Samson M, Libert F, Doranz BJ, et al. Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 1996; 382: 722–5PubMedCrossRefGoogle Scholar
  81. 81.
    Dean M, Carrington M, Winller C, et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Science 1996; 273: 1856–62PubMedCrossRefGoogle Scholar
  82. 82.
    Macchia PE. Recent advances in understanding the molecular basis of primary congenital hypothyroidism. Mol Med Today 2000; 6: 36–42PubMedCrossRefGoogle Scholar
  83. 83.
    Gwinn MR, Sharma A, De Nardin E. Single nucleotide polymorphisms of the N-formyl peptide receptor in localized juvenile periodontitis. J Periodontol 1999; 70: 1194–201PubMedCrossRefGoogle Scholar
  84. 84.
    Geller DS, Farhi A, Pinkerton N, et al. Activating mineralocor-ticoid receptor mutation in hypertension exacerbated by pregnancy. Science 2000; 289: 119–23PubMedCrossRefGoogle Scholar
  85. 85.
    Hoffmeyer S, Burk O, von Richter O, et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci USA 2000; 97: 3473–8PubMedCrossRefGoogle Scholar
  86. 86.
    Brown RL, Pollock AN, Couchman KG, et al. A novel ryanodine receptor mutation and genotype-phenotype correlation in a large malignant hyperthermia New Zealand Maori pedigree. Hum Mol Genet 2000; 9: 1515–24PubMedCrossRefGoogle Scholar
  87. 87.
    Mohammed-Panah R, Demolombe S, Neyroud N, et al. Mutations in a dominant-negative isoform correlate with phenotype in inherited cardiac arrhythmias. Am J Hum Genet 1999; 64: 1015–23CrossRefGoogle Scholar
  88. 88.
    Fauci A. Host factors and the pathogenesis of HIV-induced disease. Nature 1996; 384: 529–34PubMedCrossRefGoogle Scholar
  89. 89.
    Ansari-Lari MA, Liu XM, Metzker ML, et al. The extent of genetic variation in the CCR5 gene. Nat Genet 1997; 16: 221–2PubMedCrossRefGoogle Scholar
  90. 90.
    Stephen JC, Reich DE, Goldstein DB, et al. Dating the origin of the CCR5-Δ32 AIDS-resistance allele by the coalescence of haplotypes. Am J Hum Genet 1998; 62: 1507–15CrossRefGoogle Scholar
  91. 91.
    Mangano A, Kopka J, Batalla M, et al. Protective effect of CCR2-641 and not of CCR5-delta 32 and SDFl-3′A in pediatrie HIV-1 infection. J Acquir Immune Defic Syndr 2000; 23: 52–7PubMedGoogle Scholar
  92. 92.
    Nogee LM, Dunbar AE, Wert SE, et al. A mutation in the surfactant protein C gene associated with familial interstitial lung disease. N Engl J Med 2001; 344: 573–9PubMedCrossRefGoogle Scholar
  93. 93.
    Lifton RP. Molecular genetics of human blood pressure variation. Science 1996; 272: 676–80PubMedCrossRefGoogle Scholar
  94. 94.
    Luft FC. Molecular genetics of salt-sensitivity and hypertension. Drug Metab Dispos 2001; 29: 500–4PubMedGoogle Scholar
  95. 95.
    Ulbrecht M, Hergeth MT, Wist M, et al. Association of β2-adrenoceptor variants with bronchial hyperresponsiveness. Am J Respir Crit Care Med 2000; 161: 469–74PubMedGoogle Scholar
  96. 96.
    Drysdale CM, McGraw DW, Stack CB, et al. Complex promoter and coding region β2-adrenergic receptor haplotypes alter receptor expression and predict in vivo responsiveness. Proc Natl Acad Sci USA 2000; 7: 10483–8CrossRefGoogle Scholar
  97. 97.
    Turki J, Pak J, Green SA, et al. Genetic polymorphisms of the β2-adrenergic receptor in nocturnal and nonnocturnal asthma. J Clin Invest 1995; 95: 1635–41PubMedCrossRefGoogle Scholar
  98. 98.
    Liggett SB. Pharmacogenetic applications of the human genome project. Nat Med 2001; 7: 281–3PubMedCrossRefGoogle Scholar
  99. 99.
    Cookson W The alliance of genes and environment in asthma and allergy. Nature 1999; 402Suppl. B: 5–11CrossRefGoogle Scholar
  100. 100.
    Weisberg SC. Pharmacotherapy of asthma in children, with special reference to leukotriene receptor antagonists. Pediatr Pulmonol 1999; 29: 46–61CrossRefGoogle Scholar
  101. 101.
    Ryan D, Nuccie B, Arvan D. Non-PCR-dependent detection of the factor V Leiden mutation from genomic DNA using a homogeneous Invader microtiter plate assay. Mol Diagn 1999; 4: 135–44PubMedCrossRefGoogle Scholar
  102. 102.
    Gerhardt A, Scharf RE, Beckmann MW, et al. Prothrombin and factor V mutations in women with a history of thrombosis during pregnancy and the puerperium. N Engl J Med 2000; 342: 374–80PubMedCrossRefGoogle Scholar
  103. 103.
    Ridker PM, Miletich JP, Hennekens CH, et al. Ethnic distribution of factor V Leiden in 4047 men and women. JAMA 1997; 277: 1305–7PubMedCrossRefGoogle Scholar
  104. 104.
    De Stefano V, Martinelli I, Mannucci PM, et al. The risk of recurrent deep venous thrombosis among heterozygous carriers of both factor V Leiden and the G20210A prothrombin mutation. N Engl J Med 1999; 341: 801–6PubMedCrossRefGoogle Scholar
  105. 105.
    Fischel-Ghodsian N, Prezant TR, Bu X, et al. Mitochondrial ribosomal RNA gene mutation in a patient with sporadic aminoglycoside ototoxicity. Am J Otolaryngol 1993; 14: 399–403PubMedCrossRefGoogle Scholar
  106. 106.
    Guan MX, Fischel-Ghodsian N, Attardi G. A biochemical basis for the inherited susceptibility to aminoglycoside. Hum Mol Genet 2000; 9: 1787–93PubMedCrossRefGoogle Scholar
  107. 107.
    Price Evans DA, McLeod HL, Pritchard S, et al. Interethnic variability in human drug responses. Drug Metab Dispos 2001; 29: 606–10Google Scholar
  108. 108.
    McCarver DG. ADH2 and CYP2E1 genetic polymorphisms: risk factors for alcohol-related birth defects. Drug Metab Dispos 2001; 29: 562–5PubMedGoogle Scholar
  109. 109.
    Bertilsson L, Dahl ML, Sjöqvist F, et al. Molecular basis for rational megaprescribing in ultrarapid hydroxylators of debrisoquine [letter]. Lancet 1993; 341: 63PubMedCrossRefGoogle Scholar
  110. 110.
    Dalen P, Frengell C, Dahl ML, et al. Quick onset of severe abdominal pain after codeine in an ultrarapid metabolizer of debrisoquine. Ther Drug Monit 1997; 19: 543–4PubMedCrossRefGoogle Scholar
  111. 111.
    Alvan G, Bertilsson L, Dahl ML, et al. Moving toward genetic profiling in patient care: the scope and rationale of pharmacogenetic/ecogenetic investigation. Drug Metab Dispos 2001; 29: 580–5PubMedGoogle Scholar

Copyright information

© Adis International Limited 2001

Authors and Affiliations

  1. 1.Room 1301b MSRB III, Department of PharmacologyUniversity of MichiganAnn ArborUSA

Personalised recommendations