American Journal of Clinical Dermatology

, Volume 7, Issue 5, pp 273–279 | Cite as

Role of Bacterial Superantigens in Atopic Dermatitis

Implications for Future Therapeutic Strategies
  • Ivan D. Cardona
  • Sang Hyun Cho
  • Donald Y.M. Leung
Therapy in Practice


The role of staphylococcal superantigens in the pathophysiology of atopic dermatitis (AD) has been the focus of intense interest during the past decade. Although the increased prevalence of Staphylococcus aureus and its bacterial toxins in AD skin is well established, exploitation of the known mechanisms of superantigens in this disease for the development of novel therapies remains an active area of research. With the emergence of multi-drug resistant S. aureus, the need for a better understanding of the pathophysiology of bacterial superantigens in AD has become increasingly important. This review examines the mechanisms of S. aureus colonization and infection, of which the most important are defective skin barrier function, increased S. aureus adherence, and the decreased innate immune responses found in AD skin. The contribution of superantigens to the pathophysiology of AD is then discussed. Important immunologic mechanisms in this context include the role of superantigens in promoting T helper-2 skin inflammation, IgE production, T-regulatory cell subversion, expansion and migration of skin-homing T cells, and IgE anti-superantigen production. Lastly, these findings are discussed with reference to current therapeutic approaches, of which the most important include anti-inflammatory and antimicrobial medications, and future strategies, which are expected to consist of immune-modulators and synthetic antibacterials.


Atopic Dermatitis Stratum Corneum Skin Inflammation Triclosan Mupirocin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by grants AR41256, HL-36577, HL37260, and 3M01 RR00051 from the US National Institutes of Health, the University of Colorado Health Sciences Center Cancer Center, the American Academy of Allergy, Asthma & Immunology Fujisawa Skin Disease Award, and The Edelstein Family Chair in Pediatric Allergy-Immunology. We especially thank Maureen Sandoval for her assistance in the preparation of this manuscript. The authors have no potential conflicts of interest that are directly relevant to the content of this article.


  1. 1.
    Leung DY, Meissner HC, Fulton DR, et al. Toxic shock syndrome toxin-secreting Staphylococcus aureus in Kawasaki syndrome. Lancet. 1993 Dec 4; 342 (8884): 1385–8PubMedCrossRefGoogle Scholar
  2. 2.
    Leyden JJ, Marples RR, Kligman AM. Staphylococcus aureus in the lesions of atopic dermatitis. Br J Dermatol. 1974 May; 90 (5): 525–30PubMedCrossRefGoogle Scholar
  3. 3.
    Dahl MV. Staphylococcus aureus and atopic dermatitis. Arch Dermatol. 1983 Oct; 119 (10): 840–6PubMedCrossRefGoogle Scholar
  4. 4.
    Aly R, Maibach HI, Shinefield HR. Microbial flora of atopic dermatitis. Arch Dermatol. 1977 Jun; 113 (6): 780–2PubMedCrossRefGoogle Scholar
  5. 5.
    Marrack P, Kappler J. The staphylococcal enterotoxins and their relatives. Science. 1990 Jun 1; 248 (4959): 1066PubMedGoogle Scholar
  6. 6.
    Hank PJ, Hamid QA, Chrousos GP, et al. Induction of corticosteroid insensitivity in human PBMCs by microbial superantigens. J Allergy Clin Immunol. 2000 Apr; 105 (4): 782–7CrossRefGoogle Scholar
  7. 7.
    Hank PJ, Leung DY. Tacrolimus (FK506): new treatment approach in superantigen-associated diseases like atopic dermatitis?. J Allergy Clin Immunol. 2001 Feb; 107 (2): 391–2CrossRefGoogle Scholar
  8. 8.
    Bax R, Bywater R, Cornaglia G, et al. Surveillance of antimicrobial resistance: what, how and whither?. Clin Microbiol Infect. 2001 Jun; 7 (6): 316–25PubMedCrossRefGoogle Scholar
  9. 9.
    Heritage J, Wilcox M, Sandoe J. Antimicrobial resistance potential. Lancet. 2001 Sep 29; 358 (9287): 1099–100PubMedCrossRefGoogle Scholar
  10. 10.
    Zetola N, Francis JS, Nuermberger EL, et al. Community-acquired methicillin-resistant Staphylococcus aureus: an emerging threat. Lancet Infect Dis. 2005 May; 5 (5): 275–86PubMedCrossRefGoogle Scholar
  11. 11.
    Fridkin SK, Hageman JC, Morrison M, et al. Methicillin-resistant Staphylococcus aureus disease in three communities. N Engl J Med. 2005 Apr 7; 352 (14): 1436–44PubMedCrossRefGoogle Scholar
  12. 12.
    Leung DY. Infection in atopic dermatitis. Curr Opin Pediatr. 2003 Aug; 15 (4): 399–404PubMedCrossRefGoogle Scholar
  13. 13.
    Chu D, Haake A, Holbrook K, et al. The structure and development of skin. In: Freedberg IM, Eisen AZ, Wolff K, et al., editors. Fitzpatrick’s dermatology in general medicine. New York: McGraw-Hill, 2003: 58–88Google Scholar
  14. 14.
    Leung DY. Atopic dermatitis and the immune system: the role of superantigens and bacteria. J Am Acad Dermatol. 2001 Jul; 45 (1 Suppl.): S13–6PubMedCrossRefGoogle Scholar
  15. 15.
    Cho SH, Strickland I, Boguniewicz M, et al. Fibronectin and fibrinogen contribute to the enhanced binding of Staphylococcus aureus to atopic skin. J Allergy Clin Immunol. 2001 Aug; 108 (2): 269–74PubMedCrossRefGoogle Scholar
  16. 16.
    Akiyama H, Hamada T, Huh WK, et al. Confocal laser scanning microscopic observation of glycocalyx production by Staphylococcus aureus in skin lesions of buttons impetigo, atopic dermatitis and pemphigus foliaceus. Br J Dermatol. 2003 Mar; 148 (3): 526–32PubMedCrossRefGoogle Scholar
  17. 17.
    Morishita Y, Tada J, Sato A, et al. Possible influences of Staphylococcus aureus on atopic dermatitis: the colonizing features and the effects of staphylococcal enterotoxins. Clin Exp Allergy. 1999 Aug; 29 (8): 1110–7PubMedCrossRefGoogle Scholar
  18. 18.
    Arikawa J, Ishibashi M, Kawashima M, et al. Decreased levels of sphingosine, a natural antimicrobial agent, may be associated with vulnerability of the stratum comeum from patients with atopic dermatitis to colonization by Staphylococcus aureus. J Invest Dermatol. 2002 Aug; 119 (2): 433–9PubMedCrossRefGoogle Scholar
  19. 19.
    Mempel M, Schmidt T, Weidinger S, et al. Role of Staphylococcus aureus surface-associated proteins in the attachment to cultured HaCaT keratinocytes in a new adhesion assay. J Invest Dermatol. 1998 Sep; 111 (3): 452–6PubMedCrossRefGoogle Scholar
  20. 20.
    Postlethwaite AE, Hotness MA, Katai H, et al. Human fibroblasts synthesize elevated levels of extracellular matrix proteins in response to interleukin 4. J Clin Invest. 1992 Oct; 90 (4): 1479–85PubMedCrossRefGoogle Scholar
  21. 21.
    Christophers E, Henseler T. Contrasting disease patterns in psoriasis and atopic dermatitis. Arch Dermatol Res. 1987; 279 Suppl.: S48–51PubMedCrossRefGoogle Scholar
  22. 22.
    Grice K, Sattar H, Baker H, et al. The relationship of transepidermal water loss to skin temperature in psoriasis and eczema. J Invest Dermatol. 1975 May; 64 (5): 313–5PubMedCrossRefGoogle Scholar
  23. 23.
    Nomura I, Goleva E, Howell MD, et al. Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J Immunol. 2003 Sep 15; 171 (6): 3262–9PubMedGoogle Scholar
  24. 24.
    Ong PY, Ohtake T, Brandt C, et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med. 2002 Oct 10; 347 (15): 1151–60PubMedCrossRefGoogle Scholar
  25. 25.
    Gallo RL, Murakamt M, Ohtake T, et al. Biology and clinical relevance of naturally occurring antimicrobial peptides. J Allergy Clin Immunol. 2002 Dec; 110 (6): 823–31PubMedCrossRefGoogle Scholar
  26. 26.
    Howell MD, Novak N, Bieber T, et al. Interleukin-10 downregulates anti-microbial peptide expression in atopic dermatitis. J Invest Dermatol. 2005 Oct; 125 (4): 738–45PubMedCrossRefGoogle Scholar
  27. 27.
    Laouini D, Kawamoto S, Yalcindag A, et al. Epicutaneous sensitization with superantigen induces allergic skin inflammation. J Allergy Clin Immunol. 2003 Nov; 112 (5): 981–7PubMedCrossRefGoogle Scholar
  28. 28.
    Lin YT, Wang CT, Hsu CT, et al. Differential susceptibility to staphylococcal superantigen (SsAg)-induced apoptosis of CD4+ T cells from atopic dermatitis patients and healthy subjects: the inhibitory effect of IL-4 on SsAg-induced apoptosis. J Immunol. 2003 Jul 15; 171 (2): 1102–8PubMedGoogle Scholar
  29. 29.
    Leung DY, Soler NA. Cellular and immunologic mechanisms in atopic dermatitis. J Am Acad Dermatol. 2001 Jan; 44 (1 Suppl.): S1–12PubMedCrossRefGoogle Scholar
  30. 30.
    Travers JB, Norris DA, Leung DY. The keratinocyte as a target for staphylococcal bacterial toxins. J Investig Dermatol Symp Proc. 2001 Dec; 6 (3): 225–30PubMedCrossRefGoogle Scholar
  31. 31.
    Yarwood JM, Leung DY, Schlievert PM. Evidence for the involvement of bacterial superantigens in psoriasis, atopic dermatitis, and Kawasaki syndrome. FEMS Microbiol Lett. 2000 Nov 1; 192 (1): 1–7PubMedCrossRefGoogle Scholar
  32. 32.
    Zollner TM, Wichelhaus TA, Hartung A, et al. Colonization with superantigen-producing Staphylococcus aureus is associated with increased severity of atopic dermatitis. Clin Exp Allergy. 2000 Jul; 30 (7): 994–1000PubMedCrossRefGoogle Scholar
  33. 33.
    Taskapan MO, Kumar P. Role of staphylococcal superantigens in atopic dermatitis: from colonization to inflammation. Ann Allergy Asthma Immunol. 2000 Jan; 84 (1): 3–10PubMedCrossRefGoogle Scholar
  34. 34.
    Strickland I, Hauk PJ, Trumble AE, et al. Evidence for superantigen involvement in skin homing of T cells in atopic dermatitis. J Invest Dermatol. 1999 Feb; 112 (2): 249–53PubMedCrossRefGoogle Scholar
  35. 35.
    Bunikowski R, Mielke M, Skarabis H, et al. Prevalence and role of serum IgE antibodies to the Staphylococcus aureus-derived superantigens SEA and SEB in children with atopic dermatitis. J Allergy Clin Immunol. 1999 Jan; 103 (1 Pt 1): 119–24PubMedCrossRefGoogle Scholar
  36. 36.
    Leung DY, Hank P, Strickland I, et al. The role of superantigens in human diseases: therapeutic implications for the treatment of skin diseases. Br J Dermatol. 1998 Dec; 139 Suppl. 53: 17–29PubMedCrossRefGoogle Scholar
  37. 37.
    Bunikowski R, Mielke ME, Skarabis H, et al. Evidence for a disease-promoting effect of Staphylococcus aureus-derived exotoxins in atopic dermatitis. J Allergy Clin Immunol. 2000; 105: 814–9PubMedCrossRefGoogle Scholar
  38. 38.
    Proft T, Fraser JD. Bacterial superantigens. Clin Exp Immunol. 2003 Sep; 133 (3): 299–306PubMedCrossRefGoogle Scholar
  39. 39.
    Carlsson R, Fischer H, Sjogren HO. Binding of staphylococcal enterotoxin A to accessory cells is a requirement for its ability to activate human T cells. J Immunol. 1988 Apr 15; 140 (8): 2484–8PubMedGoogle Scholar
  40. 40.
    Breuer K, Kapp A, Werfel T. Bacterial infections and atopic dermatitis. Allergy. 2001 Nov; 56 (11): 1034–41PubMedCrossRefGoogle Scholar
  41. 41.
    Nomura I, Tanaka K, Tomita H, et al. Evaluation of the staphylococcal exotoxins and their specific IgE in childhood atopic dermatitis. J Allergy Clin Immunol. 1999 Aug; 104 (2 Pt 1): 441–6PubMedCrossRefGoogle Scholar
  42. 42.
    Tomi NS, Kranke B, Aberer E. Staphylococcal toxins in patients with psoriasis, atopic dermatitis, and erythroderma, and in healthy controls. J Am Acad Dermatol. 2005; 53: 67–72PubMedCrossRefGoogle Scholar
  43. 43.
    Yagi S, Wakaki N, Ikeda N, et al. Presence of staphylococcal exfoliative toxin A in sera of patients with atopic dermatitis. Clin Exp Allergy. 2004; 34: 984–93PubMedCrossRefGoogle Scholar
  44. 44.
    Strange P, Skov L, Lisby S, et al. Staphylococcal enterotoxin B applied on intact normal and intact atopic skin induces dermatitis. Arch Dermatol. 1996 Jan; 132 (1): 27–33PubMedCrossRefGoogle Scholar
  45. 45.
    Skov L, Olsen JV, Giomo R, et al. Application of staphylococcal enterotoxin B on normal and atopic skin induces up-regulation of T cells by a superantigenmediated mechanism. J Allergy Clin Immunol. 2000 Apr; 105 (4): 820–6PubMedCrossRefGoogle Scholar
  46. 46.
    Michie CA, Davis T. Atopic dermatitis and staphylococcal superantigens. Lancet. 1996 Feb 3; 347 (8997): 324PubMedCrossRefGoogle Scholar
  47. 47.
    Wachs GN, Maibach HI. Co-operative double-blind trial of an antibiotic/corticoid combination in impetiginized atopic dermatitis. Br J Dermatol. 1976 Sep; 95 (3): 323–8PubMedCrossRefGoogle Scholar
  48. 48.
    Lever R, Hadley K, Downey D, et al. Staphylococcal colonization in atopic dermatitis and the effect of topical mupirocin therapy. Br J Dermatol. 1988 Aug; 119 (2): 189–98PubMedCrossRefGoogle Scholar
  49. 49.
    Saloga J, Leung DY, Reardon C, et al. Cutaneous exposure to the superantigen staphylococcal enterotoxin B elicits a T-cell-dependent inflammatory response. J Invest Dermatol. 1996 May; 106 (5): 982–8PubMedCrossRefGoogle Scholar
  50. 50.
    Herz U, Schnoy N, Borelli S, et al. A human-SCID mouse model for allergic immune response bacterial superantigen enhances skin inflammation and suppresses IgE production. J Invest Dermatol. 1998 Mar; 110 (3): 224–31PubMedCrossRefGoogle Scholar
  51. 51.
    Zollner TM, Munk ME, Keller T, et al. The superantigen exfoliative toxin induces cutaneous lymphocyte-associated antigen expression in peripheral human T lymphocytes. Immunol Lett. 1996 Jan; 49 (1-2): 111–6PubMedCrossRefGoogle Scholar
  52. 52.
    Leung DY, Gately M, Trumble A, et al. Bacterial superantigens induce T cell expression of the skin-selective homing receptor, the cutaneous lymphocyte-associated antigen, via stimulation of interleukin 12 production. J Exp Med. 1995 Feb 1; 181 (2): 747–53PubMedCrossRefGoogle Scholar
  53. 53.
    Abemalhy-Carver KJ, Sampson HA, Picker LJ, et al. Milk-induced eczema is associated with the expansion of T cells expressing cutaneous lymphocyte antigen. J Clin Invest. 1995 Feb; 95 (2): 913–8CrossRefGoogle Scholar
  54. 54.
    Leung DY, Boguniewicz M, Howell MD, et al. New insights into atopic dermatitis. J Clin Invest. 2004 Mar; 113 (5): 651–7PubMedGoogle Scholar
  55. 55.
    Mangan DF, Robertson B, Wahl SM. IL-4 enhances programmed cell death (apoptosis) in stimulated human monocytes. J Immunol. 1992 Mar 15; 148 (6): 1812–6PubMedGoogle Scholar
  56. 56.
    Bratton DL, May KR, Kailey JM, et al. Staphylococcal toxic shock syndrome toxin-1 inhibits monocyte apoptosis. J Allergy Clin Immunol. 1999 May; 103 (5 Pt 1): 895–900PubMedCrossRefGoogle Scholar
  57. 57.
    On LS, Goleva E, Hall C, et al. T regulatory cells in atopic dermatitis and subversion of their activity by superantigens. J Allergy Clin Immunol. 2004 Apr; 113 (4): 756–63CrossRefGoogle Scholar
  58. 58.
    Hofer MF, Harbeck RJ, Schlievert PM, et al. Staphylococcal toxins augment specific IgE responses by atopic patients exposed to allergen. J Invest Dermatol. 1999 Feb; 112 (2): 171–6PubMedCrossRefGoogle Scholar
  59. 59.
    Hofer MF, Lester MR, Schlievert PM, et al. Upregulation of IgE synthesis by staphylococcal toxic shock syndrome toxin-1 in peripheral blood mononuclear cells from patients with atopic dermatitis. Clin Exp Allergy. 1995 Dec; 25 (12): 1218–27PubMedCrossRefGoogle Scholar
  60. 60.
    Lester MR, Hofer MF, Renz H, et al. Modulatory effects of staphylococcal superantigen TSST-1 on IgE synthesis in atopic dermatitis. Clin Immunol Immunopathol. 1995 Dec; 77 (3): 332–8PubMedCrossRefGoogle Scholar
  61. 61.
    Neuber K, Steinrucke K, Ring J. Staphylococcal enterotoxin B affects in vitro IgE synthesis, interferon-gamma, interleukin-4 and interleukin-5 production in atopic eczema. Int Arch Allergy Immunol. 1995 May-Jun; 107 (1-3): 179–82PubMedCrossRefGoogle Scholar
  62. 62.
    Leung DY, Harbeck R, Bina P, et al. Presence of IgE antibodies to staphylococcal exotoxins on the skin of patients with atopic dermatitis: evidence for a new group of allergens. J Clin Invest. 1993 Sep; 92 (3): 1374–80PubMedCrossRefGoogle Scholar
  63. 63.
    Hanifin JM, Cooper KD, Ho VC, et al. Guidelines of care for atopic dermatitis, developed in accordance with the American Academy of Dermatology (AAD)/American Academy of Dermatology Association ‘Administrative Regulations for Evidence-Based Clinical Practice Guidelines’. J Am Acad Dermatol. 2004 Mar; 50 (3): 391–404PubMedCrossRefGoogle Scholar
  64. 64.
    Leung DY, Nicklas RA, Li JT, et al. Disease management of atopic dermatitis: an updated practice parameter. Joint Task Force on Practice Parameters. Ann Allergy Asthma Immunol. 2004 Sep; 93 (3 Suppl. 2): S1–21PubMedCrossRefGoogle Scholar
  65. 65.
    Boguniewicz M, Sampson H, Leung SB, et al. Effects of cefuroxime axetil on Staphylococcus aureus colonization and superantigen production in atopic dermatitis. J Allergy Clin Immunol. 2001 Oct; 108 (4): 651–2PubMedCrossRefGoogle Scholar
  66. 66.
    Abeck D, Mempel M. Staphylococcus aureus colonization in atopic dermatitis and its therapeutic implications. Br J Dermatol. 1998 Dec; 139 Suppl. 53: 13–6PubMedCrossRefGoogle Scholar
  67. 67.
    Yoshimura M, Namma S, Akamatsu H, et al. Antimicrobial effects of phototherapy and photochemotherapy in vivo and in vitro. Br J Dermatol. 1996 Oct; 135 (4): 528–32PubMedCrossRefGoogle Scholar
  68. 68.
    Stalder JF, Fleury M, Sourisse M, et al. Local steroid therapy and bacterial skin flora in atopic dermatitis. Br J Dermatol. 1994 Oct; 131 (4): 536–40PubMedCrossRefGoogle Scholar
  69. 69.
    Nilsson E, Henning C, Hjorleifsson ML. Density of the microflora in hand eczema before and after topical treatment with a potent corticosteroid. J Am Acad Dermatol. 1986 Aug; 15 (2 Pt 1): 192–7PubMedCrossRefGoogle Scholar
  70. 70.
    Nilsson EJ, Henning CG, Magnusson J. Topical corticosteroids and Staphylococcus aureus in atopic dermatitis. J Am Acad Dermatol. 1992 Jul; 27 (1): 29–34PubMedCrossRefGoogle Scholar
  71. 71.
    Pournaras CC, Lubbe J, Samat JH. Staphylococcal colonization in atopic dermatitis treatment with topical tacrolimus (FK506). J Invest Dermatol. 2001 Mar; 116 (3): 480–1PubMedCrossRefGoogle Scholar
  72. 72.
    Remitz A, Kyllonen H, Granlund H, et al. Tacrolimus ointment reduces staphylococcal colonization of atopic dermatitis lesions. J Allergy Clin Immunol. 2001 Jan; 107 (1): 196–7PubMedCrossRefGoogle Scholar
  73. 73.
    Polano MK, De Vries HR. Analysis of the results obtained in the treatment of atopic dermatitis with corticosteroid-and neomycin-containing ointments. Dermatologica. 1960 Apr; 120: 191–9PubMedCrossRefGoogle Scholar
  74. 74.
    Li L, Goleva E, Hall CF, et al. Superantigen-induced corticosteroid resistance of human T cells occurs through activation of the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK-ERK) pathway. J Allergy Clin Immunol. 2004 Nov; 114 (5): 1059–69PubMedCrossRefGoogle Scholar
  75. 75.
    Savage PB, Li C, Taotafa U, et al. Antibacterial properties of cationic steroid antibiotics. FEMS Microbiol Lett. 2002 Nov 19; 217 (1): 1–7PubMedCrossRefGoogle Scholar
  76. 76.
    Schlievert PM. Will therapeutic peptides be kryptonite for superantigens?. Nat Med. 2000 Apr; 6 (4): 378–9PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2006

Authors and Affiliations

  • Ivan D. Cardona
    • 1
  • Sang Hyun Cho
    • 2
  • Donald Y.M. Leung
    • 1
    • 3
  1. 1.Department of PediatricsNational Jewish Medical and Research CenterDenverUSA
  2. 2.Department of Dermatology, Our Lady of Mercy HospitalThe Catholic University of KoreaSeoulKorea
  3. 3.Department of PediatricsUniversity of Colorado Health Sciences CenterDenverUSA

Personalised recommendations