American Journal of Clinical Dermatology

, Volume 6, Issue 4, pp 225–237 | Cite as

Manifestations of Cutaneous Diabetic Microangiopathy

  • Binh T. Ngo
  • Kristie D. Hayes
  • Dominick J. DiMiao
  • Shashi K. Srinivasan
  • Christopher J. Huerter
  • Marc S. Rendell
Review Article


The etiologies of a variety of skin conditions associated with diabetes have not been fully explained. One possible etiological factor is diabetic microangiopathy, which is known to affect the eyes and kidneys in patients with diabetes. There are many mechanisms by which diabetes may cause microangiopathy. These include excess sorbitol formation, increased glycation end products, oxidative damage, and protein kinase C overactivity. All of these processes occur in the skin, and the existence of a cutaneous diabetic microangiopathy has been well demonstrated. These microangiopathic changes are associated with abnormalities of skin perfusion. Because the skin plays a thermoregulatory role, there is significant capillary redundancy in normal skin. In diabetic patients, loss of capillaries is associated with a decrease in perfusion reserve. This lost reserve is demonstrable under stressed conditions, such as thermal stimulation. The associated failure of microvascular perfusion to meet the requirements of skin metabolism may result in diverse skin lesions in patients with diabetes.

Many skin conditions peculiar to diabetes are fairly rare. Necrobiosis lipoidica diabeticorum (NLD) and diabetic bullae occur very infrequently as compared with diabetic retinopathy and nephropathy. Conversely, there is a correlation between diabetic microvascular disease and NLD. This correlation also exists with more common skin conditions, such as diabetic dermopathy. This relationship suggests that diabetic microangiopathy may contribute to these conditions even if it is not primarily causal.

Clinically, the major significance of diabetic cutaneous microangiopathy is seen in skin ulceration which is very common and has a major impact on diabetic patients. Many factors contribute to the development of diabetic foot ulcers. Neuropathy, decreased large vessel perfusion, increased susceptibility to infection, and altered biomechanics all play a role, but there is no doubt that inadequate small blood vessel perfusion is a major cause of the inability to heal small wounds that eventually results in ulcer formation.

The accessibility of skin capillaries makes cutaneous diabetic microangiopathy an attractive model for research on the evolution of microvascular disease in diabetic patients.



The authors have no conflict of interest to disclose and have provided no information on sources of funding relevant to the content of this review.


  1. 1.
    Weil AJ. Das verhalten der kleinsten Gefasse beim Diabetes mellitus. Klin Wochenschr. 1924; 3: 209CrossRefGoogle Scholar
  2. 2.
    Weiss E. Beobachtung and mikrophotographische Darstekllung der Hautkapillaren am lebenden Menschen. Dtsch Arch Klin Med. 1916; 119: 1, 1916Google Scholar
  3. 3.
    Jurgensen E. Mikrokapillarbeobachtungen und Puls der kleinsten Gefasse. Z Klin Med. 1918; 86: 410Google Scholar
  4. 4.
    Aagenaes O, Moe H. Light and electron microscopy study of skin capillaries of diabetics. Diabetes. 1961; 10: 253–9PubMedGoogle Scholar
  5. 5.
    Banson BB. Diabetic microangiopathy in human toes. Am J Pathol. 1964; 45: 41–58PubMedGoogle Scholar
  6. 6.
    McMillan DE, Breithaupt DL, Rosenau W, et al. Forearm skin capillaries of diabetic, potential diabetic and non-diabetic subjects changes seen by light microscope. Diabetes. 1966; 15: 251–7PubMedGoogle Scholar
  7. 7.
    Braverman IM, Keh-Yen A. Ultrastructural abnormalities of the microvasculature and elastic fibers in the skin of juvenile diabetics. J Invest Dermatol. 1984; 82: 270–4PubMedCrossRefGoogle Scholar
  8. 8.
    Braverman IM, Sibley J, Keh-Yen A. A study of the veil cells around normal, diabetic, and aged cutaneous microvessels. J Invest Dermatol. 1986; 86: 57–62PubMedCrossRefGoogle Scholar
  9. 9.
    Grassi W, Gasparini M, Cervini C. Nailfold computed videomicroscopy in morpho-functional assessment of diabetic microangiopathy. Acta Diabetol Lat. 1985; 22: 223–8PubMedCrossRefGoogle Scholar
  10. 10.
    Ditzel J. Functional microangiopathy of DM. Diabetes. 1968; 17: 388–97PubMedGoogle Scholar
  11. 11.
    Jorneskog G, Brismar K, Fagrell B. Skin capillary circulation severely impaired in toes of patients with IDDM, with and without late diabetic complications. Diabetologia. 1995; 38: 474–80PubMedCrossRefGoogle Scholar
  12. 12.
    Jorneskog G, Brismar K, Fagrell B. Skin capillary circulation is more impaired in the toes of diabetic than non-diabetic patients with peripheral vascular disease. Diabet Med. 1995; 12: 36–44PubMedCrossRefGoogle Scholar
  13. 13.
    Lawall H, Amann B, Rottmann M, et al. The role of microcirculatory techniques in patients with diabetic foot syndrome. Vasa. 2000; 29: 191–7PubMedCrossRefGoogle Scholar
  14. 14.
    Rendell M, Bergman T, O’Donnell G, et al. Microvascular blood flow, volume, and velocity measured by laser Doppler techniques in insulin dependent diabetes. Diabetes. 1989; 38: 819–24PubMedCrossRefGoogle Scholar
  15. 15.
    Rendell M, Bamisedun O. Diabetic cutaneous microangiopathy. Am J Med. 1992; 93: 611–8PubMedCrossRefGoogle Scholar
  16. 16.
    Mayrovitz HN, Larsen PB. Functional microcirculatory impairment: a possible source of reduced skin oxygen tension in human diabetes mellitus. Microvasc Res 1996; 52: 115–26PubMedCrossRefGoogle Scholar
  17. 17.
    Aso Y, Inukai T, Takemura Y. Evaluation of microangiopathy of the skin in patients with non-insulin-dependent diabetes mellitus by laser Doppler flowmetry; microvasodilatory responses to beraprost sodium. Diabetes Res Clin Pract. 1997; 36: 19–26PubMedCrossRefGoogle Scholar
  18. 18.
    Bommyr S, Svensson H, Lilja B, et al. Cutaneous vasomotor responses in young type I diabetic patients. J Diabetes Complications. 1997; 11: 21–6CrossRefGoogle Scholar
  19. 19.
    Charkoudian N, Vella A, Reed AS, et al. Cutaneous vascular function during acute hyperglycemia in healthy young adults. J Appl Physiol. 2002; 93: 1243–50PubMedGoogle Scholar
  20. 20.
    Hoffmann U, Franzeck UK, Bollinger A. Is there a cutaneous microangiopathy in diabetes mellitus?. Dtsch Med Wochensch. 1994; 119: 36–40CrossRefGoogle Scholar
  21. 21.
    Jaap AJ, Pym CA, Seamark C, et al. Microvascular function in type 2 (non-insulin-dependent) diabetes: improved vasodilation after one year of good glycaemic control. Diabet Med. 1995; 12: 1086–91PubMedCrossRefGoogle Scholar
  22. 22.
    Jorneskog G, Brismar K, Fagrell B. Pronounced skin capillary ischemia in the feet of diabetic patients with bad metabolic control. Diabetologia. 1998; 41: 410–5PubMedCrossRefGoogle Scholar
  23. 23.
    Tooke JE. Possible pathophysiological mechanisms for diabetic angiopathy in type 2 diabetes. J Diabetes Complications. 2000; 14: 197–200PubMedCrossRefGoogle Scholar
  24. 24.
    Nishikawa T, Edelstein D, Brownlee M. The missing link: a single unifying mechanism for diabetic complications. Kidney Int Suppl. 2000; 77: S26–30PubMedCrossRefGoogle Scholar
  25. 25.
    Laight DW, Carrier MJ, Anggard EE. Endothelial cell dysfunction and the pathogenesis of diabetic macroangiopathy. Diabetes Metab Res Rev. 1999; 15: 274–82PubMedCrossRefGoogle Scholar
  26. 26.
    Guerci B, Bohme P, Kearney-Schwartz A, et al. Endothelial dysfunction and type 2 diabetes: Part 2. Altered endothelial function and the effects of treatments in type 2 diabetes mellitus. Diabetes Metab. 2001; 27: 436–47PubMedGoogle Scholar
  27. 27.
    MacGregor LC, Rosecan LR, Laties AM, et al. Altered retinal metabolism in diabetes: I. Microanalysis of lipid, glucose, sorbitol, and myo-inositol in the choroid and in the individual layers of the rabbit retina. J Biol Chem. 1986; 261: 4046–51PubMedGoogle Scholar
  28. 28.
    Kador PF. The role of aldose reductase in the development of diabetic complications. Med Res Rev. 1988; 8: 325–52PubMedCrossRefGoogle Scholar
  29. 29.
    Gabbay KH. Hyperglycemia, polyol metabolism, and complications of DM. Annu Rev Med. 1975; 26: 521–36PubMedCrossRefGoogle Scholar
  30. 30.
    Chandra D, Ramana KV, Friedrich B, et al. Role of aldose reductase in TNF-alpha-induced apoptosis of vascular endothelial cells. Chem Biol Interact. 2003; 143-144: 605–12PubMedCrossRefGoogle Scholar
  31. 31.
    Park HK, Ahn CW, Lee GT, et al. (AC)(n) polymorphism of al dose reductase gene and diabetic microvascular complications in type 2 diabetes mellitus. Diabetes Res Clin Pract. 2002; 55: 151–7PubMedCrossRefGoogle Scholar
  32. 32.
    Ng DP, Conn J, Chung SS, et al. Aldose reductase (AC)(n) microsatellite polymorphism and diabetic microvascular complications in Caucasian type 1 diabetes mellitus. Diabetes Res Clin Pract. 2001; 52: 21–7PubMedCrossRefGoogle Scholar
  33. 33.
    Okayama N, Omi H, Okouchi M, et al. Mechanisms of inhibitory activity of the aldose reductase inhibitor, epalrestat, on high glucose-mediated endothelial injury: neutrophil-endothelial cell adhesion and surface expression of endothelial adhesion molecules. J Diabetes Complications. 2002; 16: 321–6PubMedCrossRefGoogle Scholar
  34. 34.
    Akamine EH, Hohman TC, Nigro D, et al. Minalrestat, an aldose reductase inhibitor, corrects the impaired microvascular reactivity in diabetes. J Pharmacol Exp Ther. 2003; 304: 1236–42PubMedCrossRefGoogle Scholar
  35. 35.
    Vlassara H, Palace MR. Diabetes and advanced glycation endproducts. J Intern Med. 2002; 251: 87–101PubMedCrossRefGoogle Scholar
  36. 36.
    Vlassara H. The AGE-receptor in the pathogenesis of diabetic complications. Diabetes Metab Res Rev. 2001; 17: 436–43PubMedCrossRefGoogle Scholar
  37. 37.
    Wautier JL, Guillausseau PJ. Advanced glycation end products, their receptors and diabetic angiopathy. Diabetes Metab. 2001; 27: 535–42PubMedGoogle Scholar
  38. 38.
    Brownlee M. Negative consequences of glycation. Metabolism. 2000; 49 (2 Suppl. 1): 9–13PubMedCrossRefGoogle Scholar
  39. 39.
    Aso Y, Inukai T, Tayama K. Serum concentrations of AGES are associated with the development of atherosclerosis as well as diabetic microangiopathy in patients with DM II. Acta Diabetol. 2000; 37: 87–92PubMedCrossRefGoogle Scholar
  40. 40.
    Yamamoto Y, Yamagishi S, Yonekura H, et al. Roles of the AGE-RAGE system in vascular injury in diabetes. Ann N Y Acad Sci. 2000; 902: 163–70PubMedCrossRefGoogle Scholar
  41. 41.
    Schmidt AM, Hod O, Chen JX, et al. Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice: a potential mechanism for the accelerated vasculopathy of diabetes. J Clin Invest. 1995; 96: 1395–403PubMedCrossRefGoogle Scholar
  42. 42.
    Lipinski B. Pathophysiology of oxidative stress in diabetes mellitus. J Diabetes Complications. 2001; 15: 203–10PubMedCrossRefGoogle Scholar
  43. 43.
    Kennedy AL, Lyons TJ. Glycation, oxidation, and lipoxidation in the development of diabetic complications. Metabolism. 1997; 46 (12 Suppl. 1): 14–21PubMedCrossRefGoogle Scholar
  44. 44.
    Giugliano D, Ceriello A, Paolisso G. Oxidative stress and diabetic vascular complications. Diabetes Care. 1996; 19: 257–67PubMedCrossRefGoogle Scholar
  45. 45.
    Tesfamariam B. Free radicals in diabetic endothelial cell dysfunction. Free Radic Biol Med. 1994; 16: 383–91PubMedCrossRefGoogle Scholar
  46. 46.
    Laight DW, Carrier MJ, Anggard EE. Antioxidants, diabetes and endothelial dysfunction. Cardiovasc Res. 2000; 47: 457–64PubMedCrossRefGoogle Scholar
  47. 47.
    Stehouwer CD, Lambert J, Donker AJ, et al. Endothelial dysfunction and pathogenesis of diabetic angiopathy. Cardiovasc Res. 1997; 34: 55–68PubMedCrossRefGoogle Scholar
  48. 48.
    King GL, Brownlee M. The cellular and molecular mechanisms of diabetic complications. Endocrinol Metab Clin North Am. 1996; 25: 255–70PubMedCrossRefGoogle Scholar
  49. 49.
    Booth G, Stalker TJ, Lefer AM, et al. Mechanisms of amelioration of glucose-induced endothelial dysfunction following inhibition of protein kinase C in vivo. Diabetes. 2002; 51: 1556–64PubMedCrossRefGoogle Scholar
  50. 50.
    Nakadate T, Yamamoto S, Aizu E, et al. H-7, a protein kinase C inhibitor, inhibits phorbol ester-caused omithine decarboxylase induction but fails to inhibit phorbol ester-caused suppression of epidermal growth factor binding in primary cultured mouse epidermal cells. Mot Pharmacol. 1989; 36: 917–24Google Scholar
  51. 51.
    Craven PA, De Rubertis FR. Protein kinase C is activated in glomeruli from streptozotocin diabetic rats: possible mediation by glucose. J Clin Invest. 1989; 83: 1667–75PubMedCrossRefGoogle Scholar
  52. 52.
    Iizuka H, Sakai H, Kinouchi M. Epidermal adenylate cyclase system is regulated by diacylglycerol-protein kinase C signal, but not by calcium signal. Br J Dermatol. 1990; 122: 459–67PubMedCrossRefGoogle Scholar
  53. 53.
    Le Panse R, Mitev V, Lebreton C, et al. Modulation of epidermal growth factor and keratinocyte growth factor effects on human keratinocyte growth by protein kinase C inhibitor, GF 109203X: comparison to fibroblast growth modulation. Biochem Biophys Res Commun. 1994; 204: 1081–7PubMedCrossRefGoogle Scholar
  54. 54.
    Xiong Y, Harmon CS. Interleukin-lbeta is differentially expressed by human dermal papilla cells in response to PKC activation and is a potent inhibitor of human hair follicle growth in organ culture. J Interferon Cytokine Res. 1997; 17: 151–7PubMedCrossRefGoogle Scholar
  55. 55.
    Todd C, Reynolds NJ. Up-regulation of p21 WAF1 by phorbol ester and calcium in human keratinocytes through a protein kinase C-dependent pathway. Am J Pathol. 1998; 153: 39–45PubMedCrossRefGoogle Scholar
  56. 56.
    Shiba T, Inoguchi T, Sportsman JR, et al. Correlation of diacylglycerol level and protein kinase C activity in rat retina to retinal circulation. Am J Physiol. 1993; 265 (5 Pt 1): E783–93PubMedGoogle Scholar
  57. 57.
    Sheetz MJ, King GL. Molecular understanding of hyperglycemia’s adverse effects for diabetic complications. JAMA. 2002; 288: 2579–88PubMedCrossRefGoogle Scholar
  58. 58.
    Ido Y, Chang KC, Lejeune WS, et al. Vascular dysfunction induced by AGE is mediated by VEGF via mechanisms involving reactive oxygen species, guanylate cyclase, and protein kinase C. Microcirculation. 2001; 8: 251–63PubMedGoogle Scholar
  59. 59.
    Melin H. An atrophic circumscribed skin lesion in the lower extremities of diabetics. Acta Med Scand. 1964; 176 Suppl. 423: 1–75PubMedGoogle Scholar
  60. 60.
    Danowski TX, Sabeh G, Sarver ME, et al. Shin spots and diabetes mellitus. Am J Med Sci. 1966; 251: 570–5PubMedCrossRefGoogle Scholar
  61. 61.
    Bauer M, Levan NE. Diabetic dermangiopathy: a spectrum including pretibial pigmented patches and necrobiosis lipoidica diabeticorum. Br J Dermatol. 1970; 83: 528–35PubMedCrossRefGoogle Scholar
  62. 62.
    Lithner F. Cutaneous reactions of the extremities of diabetics to local thermal trauma. Acta Med Scand. 1975; 198: 319–25PubMedCrossRefGoogle Scholar
  63. 63.
    Binkley GW, Giraldo B, Stoughton RB. Diabetic dermopathy: a clinical study. Cutis. 1967; 3: 955–8Google Scholar
  64. 64.
    Fisher ER, Danowski TS. Histologic, histochemical, and electron microscopic features of the shin spots of diabetes mellitus. Am J Clin Pathol. 1968; 50: 547–54PubMedGoogle Scholar
  65. 65.
    Shemer A, Begman R, Linn S, et al. Diabetic dermopathy and internal complications in diabetes mellitus. Int J Dermatol. 1998; 37: 113–5PubMedCrossRefGoogle Scholar
  66. 66.
    Ohtsuka T. Relationship between periungual erythema and nailfold capillary abnormalities in patients with connective tissue diseases. Fur J Dermatol. 1997; 7: 561–5Google Scholar
  67. 67.
    Greene RA, Scher RK. Nail changes associated with diabetes mellitus. J Am Acad Dermatol. 1987; 16: 1015–21PubMedCrossRefGoogle Scholar
  68. 68.
    Landau J, Davis E. The small blood vessels of the conjunctiva and nailbed in diabetes mellitus. Lancet. 1960; II: 731–4CrossRefGoogle Scholar
  69. 69.
    Yosipovitch G, Hodak E, Vardi P, et al. The prevalence of cutaneous manifestations in IDDM patients and their association with diabetes risk factors and microvascular complications. Diabetes Care. 1998; 21: 506–9PubMedCrossRefGoogle Scholar
  70. 70.
    Gitelson S, Wertheimer-Kaplinski N. Color of the face in diabetes mellitus: observations on a group of patients in Jerusalem. Diabetes. 1965; 14: 201–8PubMedGoogle Scholar
  71. 71.
    Von Noorden C, Isaac S. Die Zuckerkrankheit and ihre Behandlung Ed 8 Berlin, 1927; 279CrossRefGoogle Scholar
  72. 72.
    Lundbaek K. Long term diabetes. Ophthalmological section in collaboration with VA Jensen. Copenhage, E. Munksgaard/Lange, London, New York: Maxwell Springer Ltd, 1953Google Scholar
  73. 73.
    Huntley AC. Cutaneous manifestations of diabetes mellitus. Am Acad Dermatol. 1982; 7: 427–55CrossRefGoogle Scholar
  74. 74.
    Neumann E, Frithz A. Capillaropathy and capillaroneogenesis in the pathogenesis of rosacea. Int J Dermatol. 1998; 37: 263–6PubMedCrossRefGoogle Scholar
  75. 75.
    Lithner F. Purpura, pigmentation and yellow nails of the lower extremities in diabetes. Acta Med Scand. 1976; 199: 203–8PubMedCrossRefGoogle Scholar
  76. 76.
    Kaczander BE atLower extremity purpura. J Foot Surg; 1988; 27: 469–71PubMedGoogle Scholar
  77. 77.
    Kobayashi T, Kawada A, Hiruma M, et al. Prurigo pigmentosa, ketonemia and diabetes mellitus. Dermatology. 1996; 192: 78–80PubMedCrossRefGoogle Scholar
  78. 78.
    Lithner F. Cutaneous erythema, with or without necrosis, localized to the legs and feet: a lesion in elderly diabetics. Acta Med Scand. 1974; 196: 33–4Google Scholar
  79. 79.
    Lithner F, Heitala S-O. Skeletal lesions of the feet in diabetics and their relationship to cutaneous erythema with or without necrosis of the feet. Acta Med Scand. 1976; 200: 155–61PubMedCrossRefGoogle Scholar
  80. 80.
    Fitzcharles MA, Duby S, Wadell RW, et al. Limitation of joint mobility (cheiroar-thropathy) in adult noninsulin-dependent diabetic patients. Ann Rheum Dis. 1984; 43: 251–7PubMedCrossRefGoogle Scholar
  81. 81.
    Gertner E, Sukenik S, Gladman DD. HLA antigens and nailfold capillary microscopy studies in patients with insulin dependent and noninsulin dependent diabetes mellitus and limited joint mobility. J Rheumatol. 1990; 17: 137–9Google Scholar
  82. 82.
    Brik R, Berant M, Vardi P. The scleroderma-like syndrome of insulin-dependent diabetes mellitus. Diabetes Metab Rev. 1991; 7: 121–8CrossRefGoogle Scholar
  83. 83.
    Rosenbloom AL, Silverstein JH, Lezotte DC, et al. Limited joint mobility in childhood diabetes mellitus indicates risk for microvascular disease. N Engl J Med. 1981; 305: 191–4PubMedCrossRefGoogle Scholar
  84. 84.
    Cohn BA, Wheeler CE, Briggamon RA. Scleredema adultorum of Buschke and diabetes mellitus. Arch Dermatol. 1970; 101: 27–35PubMedCrossRefGoogle Scholar
  85. 85.
    Cole GW, Headley J, Skowsky R. Scleredema diabeticorum: a common and distinct cutaneous manifestation of diabetes mellitus. Diabetes Care. 1983; 6: 189–92PubMedCrossRefGoogle Scholar
  86. 86.
    Venencie PY, Powell FC, Su WP, et al. Scleredema: a review of thirty-three cases. J Am Acad Dermatol. 1984; 11 (1): 128–34PubMedCrossRefGoogle Scholar
  87. 87.
    Kunzelmann V, Schnelle C, Audring H, et al. Scleredema diabeticorum: report of 4 cases. Hautarzt. 1996; 47: 214–7PubMedCrossRefGoogle Scholar
  88. 88.
    Ikeda Y, Suehiro T, Abe T, et al. Severe diabetic scleredema with extension to the extremities and effective treatment using prostaglandin E1. Intern Med. 1998; 37: 861–4PubMedCrossRefGoogle Scholar
  89. 89.
    Sattar MA, Diab S, Sugathan TN, et al. Scleroderma diabeticorum: a minor but often unrecognized complication of diabetes mellitus. Diabet Med. 1988; 5: 465–8PubMedCrossRefGoogle Scholar
  90. 90.
    Lieberman LS, Rosenbloom AL, Riley WJ, et al. Reduced skin thickness with pump administration of insulin [letter]. N Eng J Med. 1980; 303: 940–1Google Scholar
  91. 91.
    McFadden N, Ree K, Soyland E, et al. Scleredema adultorum associated with a monoclonal gammopathy and generalized hyperpigmentation. Arch Dermatol. 1987; 123: 629–32PubMedCrossRefGoogle Scholar
  92. 92.
    Valente L, Velho GC, Farinha F, et al. Scleredema, acanthosis nigricans and IgA/ Kappa multiple myeloma. Ann Dermatol Venereol. 1997; 124: 537–9PubMedGoogle Scholar
  93. 93.
    Konohana A, Kawakubo Y, Tajima S, et al. Glycosaminoglycans and collagen in skin of a patient with diabetic scleredema. Keio J Med. 1985; 34: 221–6PubMedCrossRefGoogle Scholar
  94. 94.
    Varga J, Gotta S, Li L, et al. Scleredema adultorum: case report and demonstration of abnormal expression of extracellular matrix genes in skin fibroblasts in vivo and in vitro. Br J Dermatol. 1995; 132: 992–9PubMedCrossRefGoogle Scholar
  95. 95.
    Sibbald RG, Landoll SJ, Toth D. Skin and diabetes. Endocrinol Metab Clin North Am. 1996; 25: 463–72PubMedCrossRefGoogle Scholar
  96. 96.
    Moller DE, Flier JS. Insulin resistance-mechanisms, syndromes, and implications. N Engl J Med. 1991; 325: 938–48PubMedCrossRefGoogle Scholar
  97. 97.
    Schwartz RA. Acanthosis nigricans. J Am Acad Dermatol. 1994; 31: 1–19PubMedCrossRefGoogle Scholar
  98. 98.
    Davidson MB. Clinical implications of insulin resistance syndromes. Am J Med. 1995; 99: 420–6PubMedCrossRefGoogle Scholar
  99. 99.
    Stoddart ML, Blevins KS, Lee ET, et al. Association of acanthosis nigricans with hyperinsulinemia compared with other selected risk factors for type 2 diabetes in Cherokee Indians: the Cherokee Diabetes Study. Diabetes Care. 2002; 25: 1009–14PubMedCrossRefGoogle Scholar
  100. 100.
    Mukhtar Q, Cleverley G, Voorhees RE, et al. Prevalence of acanthosis nigricans and its association with hyperinsulinemia in New Mexico adolescents. J Adolesc Health. 2001; 28: 372–6PubMedCrossRefGoogle Scholar
  101. 101.
    Nguyen TT, Keil MF, Russell DL, et al. Relation of acanthosis nigricans to hyperinsulinemia and insulin sensitivity in overweight African American and white children. J Pediatr. 2001; 138: 453–4CrossRefGoogle Scholar
  102. 102.
    Stuart CA, Driscoll MS, Lundquist KF, et al. Acanthosis nigricans. J Basic Clin Physiol Pharmacol. 1998; 9: 407–18PubMedCrossRefGoogle Scholar
  103. 103.
    Burke JP, Hale DE, Hazuda HP, et al. A quantitative scale of acanthosis nigricans. Diabetes Care. 1999; 22: 1655–9PubMedCrossRefGoogle Scholar
  104. 104.
    Huntley A. Photoessay: the skin and diabetes mellitus diabetes and thick skin. Dermatol Online J. 1995 Dec; 1 (2)Google Scholar
  105. 105.
    Cruz PD, Hud JA. Excess insulin binding to insulin-like growth factor receptors: proposed mechanism for acanthosis nigricans. J Invest Dermatol. 1992; 98 (6 Suppl.): 82S–5SPubMedCrossRefGoogle Scholar
  106. 106.
    Torley D, Bellus GA, Munro CS. Genes, growth factors and acanthosis nigricans. Br J Dermatol. 2002; 147: 1096–101PubMedCrossRefGoogle Scholar
  107. 107.
    Akiyama M, Sawamura D, Shimizu H. The clinical spectrum of nonbullous congenital ichthyosiform erythroderma and lamellar ichthyosis. Clin Exp Dermatol. 2003; 28: 235–40PubMedCrossRefGoogle Scholar
  108. 108.
    Okulicz JF, Schwartz RA. Hereditary and acquired ichthyosis vulgaris. Int J Dermatol. 2003; 42: 95–8PubMedCrossRefGoogle Scholar
  109. 109.
    Smith F. The molecular genetics of keratin disorders. Am J Clin Dermatol. 2003; 4: 347–64PubMedCrossRefGoogle Scholar
  110. 110.
    DiGiovanna JJ, Robinson-Bostom L. Ichthyosis: etiology, diagnosis, and management. Am J Clin Dermatol. 2003; 4: 81–95PubMedCrossRefGoogle Scholar
  111. 111.
    Meurer M. Szeimies RM. Diabetes mellitus and skin diseases. Curr Probl Dermatol. 1991; 20: 11–23PubMedGoogle Scholar
  112. 112.
    Braverman IM. Skin signs of systemic disease. Philadelphia (PA): WB Saunders, 1981: 654–664Google Scholar
  113. 113.
    Muller SA, Winkelmann RK. Necrobiosis lipoidica diabeticorum. Arch Dermatol. 1966; 93: 272–81PubMedCrossRefGoogle Scholar
  114. 114.
    De Silva BD, Schofield OM, Walker JD. The prevalence of necrobiosis lipoidica diabeticorum in children with type 1 diabetes. Br J Dermatol. 1999; 141: 593–4PubMedCrossRefGoogle Scholar
  115. 115.
    Heng MC, Allen SG, Song MK, et al. Focal endothelial cell degeneration and proliferative endarteritis in trauma-induced early lesions of necrobiosis lipoidica diabeticorum. Am J Dermatopathol. 1991; 13: 108–14PubMedCrossRefGoogle Scholar
  116. 116.
    Verrotti A, Chiarelli F, Amerio P, et al. Necrobiosis lipoidica diabeticorum in children and adolescents: a clue for underlying renal and retinal disease. Pediatr Dermatol. 1995; 12: 220–3PubMedCrossRefGoogle Scholar
  117. 117.
    Kelly WF, Nicholas J, Adams J, et al. Necrobiosis lipoidica diabeticorum: association with background retinopathy, smoking, and proteinuria: a case controlled study. Diabet Med. 1993; 10: 725–8PubMedCrossRefGoogle Scholar
  118. 118.
    Bouhanick B, Verret JL, Gouello JP, et al. Necrobiosis lipoidica: treatment by hyperbaric oxygen and local corticosteroids. Diabetes Metab. 1998; 24: 156–9PubMedGoogle Scholar
  119. 119.
    Weisz G, Ramon Y, Waisman D, et al. Treatment of necrobiosis lipoidica diabeticorum by hyperbaric oxygen. Acta Derm Venereol. 1993; 73: 447–8PubMedGoogle Scholar
  120. 120.
    Quimby SR, Muller SA, Schroeter AL. The cutaneous immunopathology of necrobiosis lipoidica. Arch Dermatol. 1988; 124: 1364–71PubMedCrossRefGoogle Scholar
  121. 121.
    Magro CM, Crowson AN, Regauer S. Granuloma annulare and necrobiosis lipoidica tissue reactions as a manifestation of systemic disease. Hum Pathol. 1996; 27: 50–6PubMedCrossRefGoogle Scholar
  122. 122.
    Carter VH, Constantine VS. Kyrle’s disease. Arch Dermatol. 1968; 97: 624–39PubMedCrossRefGoogle Scholar
  123. 123.
    Poliak SC, Lebwohl MG, Parris A, et al. Reactive perforating collagenosis associated with diabetes mellitus. N Engl J Med. 1982; 306: 81–4PubMedCrossRefGoogle Scholar
  124. 124.
    Delmar M, Ruszczak Z, Imcke E, et al. Kyrle’s disease in juvenile diabetes mellitus and chronic renal failure. Z Hautkr. 1990; 65: 53–61Google Scholar
  125. 125.
    Briggs PL, Fraga S. Reactive perforating collagenosis of diabetes mellitus. J Am Acad Dermatol. 1995; 32: 521–3PubMedCrossRefGoogle Scholar
  126. 126.
    Pedragosa R, Knobel HJ, Huguet P, et al. Reactive perforating collagenosis in Hodgkin’s disease. Am J Dermatopathol. 1987; 9: 41–4PubMedCrossRefGoogle Scholar
  127. 127.
    Bank DE, Cohen PR, Kohn SR. Reactive perforating collagenosis in a setting of double disaster: acquired immunodeficiency syndrome and end-stage renal disease. J Am Acad Dermatol. 1989; 21: 371–4PubMedCrossRefGoogle Scholar
  128. 128.
    Faver IR, Daoud MS, Su WP. Acquired reactive perforating collagenosis: report of six cases and review of the literature. J Am Acad Dermatol. 1994; 30: 575–80PubMedCrossRefGoogle Scholar
  129. 129.
    Iwamoto I, Baba S, Suzuki H. Acquired reactive perforating collagenosis with IgA nephropathy. J Dermatol. 1998; 25: 597–600PubMedGoogle Scholar
  130. 130.
    Chae KS, Park YM, Cho SH, et al. Reactive perforating collagenosis associated with periampullary carcinoma. Br J Dermatol. 1998; 139: 548–50PubMedCrossRefGoogle Scholar
  131. 131.
    Millard PR, Young E, Harrison DE, et al. Reactive perforating collagenosis: light, ultrastructural and immunohistological studies. Histopathology. 1986; 10: 1047–56PubMedCrossRefGoogle Scholar
  132. 132.
    Morgan MB, Truitt CA, Taira J, et al. Fibronectin and the extracellular matrix in the perforating disorders of the skin. Am J Dermatopathol. 1998; 20: 1147–54Google Scholar
  133. 133.
    Rapini RP, Herbert AA, Drucker CR. Acquired perforating dermatosis: evidence for combined transepidermal elimination of both collagen and elastic fibers. Arch Dermatol. 1989; 125: 1074–8PubMedCrossRefGoogle Scholar
  134. 134.
    Herzinger T, Schirren CG, Sander CA, et al. Reactive perforating collagenosis: transepidermal elimination of type IV collagen. Clin Exp Dermatol. 1996; 21: 279–82PubMedCrossRefGoogle Scholar
  135. 135.
    Yanagihara M, Fujita T, Shirasaki A, et al. The pathogenesis of the transepithelial elimination of the collagen bundles in acquired reactive perforating collagenosis: a light and electron microscopical study. J Cutan Pathol. 1996; 23: 398–403PubMedCrossRefGoogle Scholar
  136. 136.
    Kawakami T, Saito R. Acquired reactive perforating collagenosis associated with diabetes mellitus: eight cases that meet Faver’s criteria. Br J Dermatol. 1999; 140: 521–4PubMedCrossRefGoogle Scholar
  137. 137.
    Kramer DW. Early or warning signs of impending gangrene in diabetes. Med J Rec. 1930; 132: 338–42Google Scholar
  138. 138.
    Cantwell AR, Martz W. Idiopathic bullae in diabetics. Bullosis diabeticorum. Arch Dermatol. 1967; 96: 42–4PubMedCrossRefGoogle Scholar
  139. 139.
    Bernstein JE, Medenica M, Soltani K, et al. Buttons eruption of diabetes mellitus. Arch Dermatol. 1979; 115: 324–5PubMedCrossRefGoogle Scholar
  140. 140.
    Rocca F, Pereyra E. Phlyctenar lesions in the feet of diabetic patients. Diabetes. 1963; 12: 220–2PubMedGoogle Scholar
  141. 141.
    Reiber GE, Boyko EJ, Smith DG. Lower extremity foot ulcers and amputations in diabetes: diabetes in America. 2nd ed. Bethesda (MD): National Diabetes Data Group, National Institutes of Health, 1995. NIH Publication 409-429Google Scholar
  142. 142.
    Moss SE, Klein R, Klein BE. The prevalence and incidence of lower extremity amputation in a diabetic population. Arch Intern Med. 1992; 152: 610–6PubMedCrossRefGoogle Scholar
  143. 143.
    Unwin N. Epidemiology of lower extremity amputation in centers in Europe, North America, and East Asia. Br J Surg. 2000; 87: 328–37CrossRefGoogle Scholar
  144. 144.
    Harrington C, Zagari MJ, Corea J, et al. A cost analysis of diabetic lower extremity ulcers. Diabetes Care. 2000; 23: 1333–8PubMedCrossRefGoogle Scholar
  145. 145.
    Apelqvist J, Ragnarson-Tennvall G, Persson U, et al. Diabetic foot ulcers in a multidisciplinary setting: an economic analysis of primary healing and healing with amputation. J Intern Med. 1994; 23: 463–71CrossRefGoogle Scholar
  146. 146.
    American Diabetes Association. Economic consequences of diabetes mellitus in the US in 1997. Diabetes Care. 1998; 21: 296–309CrossRefGoogle Scholar
  147. 147.
    Reiber GE, Pecoraro RE, Koepsell TD. Risk factors for amputation in patients with diabetes mellitus. Ann Intern Med. 1992; 117: 97–105PubMedGoogle Scholar
  148. 148.
    Caputo GM, Cavanagh PR, Ulbrecht JS, et al. Assessment and management of foot disease in patients with diabetes. N Engl J Med. 1994; 331: 854–60PubMedCrossRefGoogle Scholar
  149. 149.
    Boyko EJ, Ahroni JH, Stensel V, et al. A prospective study of risk factors for diabetic foot ulcer: the Seattle Diabetic Foot Study. Diabetes Care. 1999; 22: 1036–42PubMedCrossRefGoogle Scholar
  150. 150.
    Frykberg RG. Diabetic foot ulcers: current concepts. J Foot Ankle Surg. 1998; 37: 440–6PubMedCrossRefGoogle Scholar
  151. 151.
    Frykberg RG, Armstrong DG, Gimini J, et al. Diabetic foot disorders: a clinical practice guideline. American College of Foot and Ankle Surgeons. J Foot Ankle Surg. 2000; 39 (5 Suppl.): S1–60PubMedGoogle Scholar
  152. 152.
    Reiber GE, Vileikyte L, Boyko EJ, et al. Causal pathways for incident lower-extremity ulcers in patients with diabetes from two settings. Diabetes Care. 1999; 22: 157–62PubMedCrossRefGoogle Scholar
  153. 153.
    Boulton AJ. The diabetic foot: a global view. Diabetes Metab Res Rev. 2000; 16 Suppl. 1: S2–5PubMedCrossRefGoogle Scholar
  154. 154.
    Jeffcoate WJ, Harding KG. Diabetic foot ulcers. Lancet. 2003; 361: 1545–51PubMedCrossRefGoogle Scholar
  155. 155.
    Swartz MN. Clinical practice: cellulitis. N Engl J Med. 2004; 350: 904–12PubMedCrossRefGoogle Scholar
  156. 156.
    McNeely MJ, Boyko EJ, Ahroni JH, et al. The independent contributions of diabetic neuropathy and vasculopathy in foot ulceration: how great are the risks?. Diabetes Care. 1995; 18: 216–9PubMedCrossRefGoogle Scholar
  157. 157.
    Flynn MD, Tooke JE. Aetiology of diabetic foot ulceration: a role for the microcirculation?. Diabet Med. 1992; 9: 320–9PubMedCrossRefGoogle Scholar
  158. 158.
    Tooke JE, Brash PD. Microvascular aspects of diabetic foot disease. Diabet Med. 1996; 13 Suppl. 1: S26–9PubMedGoogle Scholar
  159. 159.
    Akbad CM, LoGerfo FW. Diabetes and peripheral vascular disease. J Vase Surg. 1999; 30: 373–84CrossRefGoogle Scholar
  160. 160.
    LoGerfo FW, Coffman JD. Vascular and microvascular disease of the foot in diabetes. N Engl J Med. 1984; 311: 1615–9PubMedCrossRefGoogle Scholar
  161. 161.
    Rendell MS, Milliken BK, Finnegan MF, et al. The skin blood flow response in wound healing. Microvasc Res. 1997; 53: 222–34PubMedCrossRefGoogle Scholar
  162. 162.
    Timar-Banu O, Beauregard H, Tousignant J, et al. Development of noninvasive and quantitative methodologies for the assessment of chronic ulcers and scars in humans. Wound Repair Regen. 2001; 9: 123–32PubMedCrossRefGoogle Scholar
  163. 163.
    Rendell M, Saxena S, Shah D. Cutaneous blood flow and peripheral resistance in type II diabetes as compared to intermittent claudication patients. Int J Angiology. 2003; 12: 166–71CrossRefGoogle Scholar
  164. 164.
    Nabums-Franssen M, Houben A, Tooke J, et al. The effect of polyneuropathy on foot microcirculation in Type 11 diabetes. Diabetologia. 2002; 45: 1164–71CrossRefGoogle Scholar
  165. 165.
    Rayman G, Williams SA, Spencer PD, et al. Impaired microvascular hyperaemic response to minor skin trauma in type I diabetes. BMJ. 1986; 292: 1295–8PubMedCrossRefGoogle Scholar
  166. 166.
    Greenhalgh EG. The role of growth factors in wound healing. J Trauma. 1996; 41: 159–67PubMedCrossRefGoogle Scholar
  167. 167.
    Steed DL. The role of growth factors in wound healing. Surg Clin North Am. 1997; 77: 575–86PubMedCrossRefGoogle Scholar
  168. 168.
    Ackerman NB, Brinkley FB. Oxygen tensions in normal and ischemic tissues during Hyperbaric therapy. JAMA. 1966; 198: 142–5Google Scholar
  169. 169.
    Hunt TK, Zederfeld B, Goldstick TK. Oxygen and healing. Am J Surg. 1969; 118: 521–5PubMedCrossRefGoogle Scholar
  170. 170.
    Niinikoski J. Effect of oxygen supply on wound healing and formation of experimental granulation tissue. Acta Physiol Scand. 1969; 334: 1–72Google Scholar
  171. 171.
    Knighton DR, Silver IA, Hunt TK. Regulation of wound healing angiogenesis: effect of oxygen gradients and inspired oxygen concentration. Surgery. 1981; 90: 262–70PubMedGoogle Scholar
  172. 172.
    Heng MC, Harker J, Csathy G, et al. Angiogenesis in necrotic ulcers treated with hyperbaric oxygen. Ostomy Wound Manage. 2000; 46 (9): 18–28, 30–2PubMedGoogle Scholar
  173. 173.
    Kalani M, Jomeskog G, Naded N, et al. Hyperbaric oxygen (HBO) therapy in treatment of diabetic foot ulcers: long-term follow-up. J Diabetes Complications. 2002; 16: 153–8PubMedCrossRefGoogle Scholar
  174. 174.
    Brakora MJ, Sheffield PJ. Hyperbaric oxygen therapy. Clin Podiatr Med Surg. 1995; 12: 105–17PubMedGoogle Scholar
  175. 175.
    Kivisaad J, Niinikoski J. Effects of hyperbaric oxygenation and prolonged hypoxia on the healing of open wounds. Acta Chir Scand. 1975; 141: 14–9Google Scholar
  176. 176.
    Boykin JV. Hyperbaric oxygen therapy: a physiological approach to selected problem wound healing. Wounds. 1996; 8: 183–98Google Scholar
  177. 177.
    Faglia E, Favales F, Aldeghi A, et al. Adjunctive systemic hyperbaric oxygen therapy in treatment of severe prevalently ischemic diabetic foot ulcer. Diabetes Care. 1996; 19: 1338–43PubMedCrossRefGoogle Scholar
  178. 178.
    Ciaravino ME, Friedell ML, Kammerlocher TC. Hyperbaric oxygen in treatment of nonhealing wounds. Ann Vase Surg. 1996; 10: 558–62CrossRefGoogle Scholar
  179. 179.
    Chantelau E. Hyperbaric oxygen therapy for diabetic foot ulcers. Diabetes Care. 1997; 20: 1207–8PubMedGoogle Scholar
  180. 180.
    Bakker DJ. Hyperbaric oxygen therapy and the diabetic foot. Diabetes Metab Res Rev. 2000; 16 Suppl. 1: S55–8PubMedCrossRefGoogle Scholar
  181. 181.
    Cianci P. Adjunctive Hyperbaric oxygen therapy in the treatment of the diabetic foot. J Am Podiatr Med Assoc. 1994; 84: 448–55PubMedGoogle Scholar
  182. 182.
    Baroni G, Porro T, Fuglia E, et al. Hyperbaric oxygen in diabetic gangrene treatment. Diabetes Care. 1978; 10: 81–6CrossRefGoogle Scholar
  183. 183.
    Hart GB, Lamb RC, Strauss MB. Gas gangrene I: a collective review. II. A 15-year experience hyperbaric oxygen. J Trauma. 1983; 23: 991–1000PubMedCrossRefGoogle Scholar
  184. 184.
    Stephens MB. Gas gangrene: potential for hyperbaric oxygen therapy. Postgrad Med. 1996; 99: 217–20, 224PubMedGoogle Scholar
  185. 185.
    Him M. Hyperbaric oxygen in the treatment of gas gangrene and perineal necrotizing fasciitis. Fur J Surg Suppl. 1993; (570): 1–36Google Scholar
  186. 186.
    Baker SR, Stacey MC, Singh G, et al. Aetiology of chronic leg ulcers. Fur J Vase Surg. 1992; 6: 245–51CrossRefGoogle Scholar
  187. 187.
    McNeil G, Paduano D. Patients with diabetes and venous stasis ulcers. J Wound Ostomy Continence Nurs. 1996; 23: 322–4PubMedCrossRefGoogle Scholar
  188. 188.
    Fu X, Sheng Z, Cherry GW, et al. Epidemiological study of chronic dermal ulcers in China. Wound Repair Regen. 1998; 6: 21–7PubMedCrossRefGoogle Scholar
  189. 189.
    London NJ, Donnelly R. ABC of arterial and venous disease: ulcerated lower limb. BMJ. 2000; 320: 1589–91PubMedCrossRefGoogle Scholar
  190. 190.
    Nelzen O, Bergqvist D, Lindhagen A. Long-term prognosis for patients with chronic leg ulcers: a prospective cohort study. Fur J Vase Endovasc Surg. 1997; 13: 500–8CrossRefGoogle Scholar
  191. 191.
    Malanin K, Havu VK, Kolad PJ. Dynamics of cutaneous laser Doppler flux with concentration of moving blood cells and blood cell velocity in legs with venous ulcers and in healthy legs. Angiology. 2004; 55: 37–42PubMedCrossRefGoogle Scholar
  192. 192.
    Geschwandtner ME, Ehringer H. Microcirculation in chronic venous insufficiency. Vase Med. 2001; 6: 169–79CrossRefGoogle Scholar
  193. 193.
    Loots MA, Lamme EN, Zeegelaar J, et al. Differences in cellular infiltrate and extracellular matrix of chronic diabetic and venous ulcers versus acute wounds. J Invest Dermatol. 1998; 111: 850–7PubMedCrossRefGoogle Scholar
  194. 194.
    Hahn J, Junger M, Friedrich B, et al. Cutaneous inflammation limited to the region of the ulcer in chronic venous insufficiency. Vasa. 1997; 26: 277–81PubMedGoogle Scholar
  195. 195.
    Junger M, Hahn U, Bert S, et al. Significance of cutaneous microangiopathy for the pathogenesis of dermatitis in venous congestion due to chronic venous insufficiency. Wien Med Wochenschr. 1994; 144: 206–10PubMedGoogle Scholar
  196. 196.
    Steins A, Hahn M, Junger M. Venous leg ulcers and microcirculation. Clin Hemorheol Microcirc. 2001; 24: 147–53PubMedGoogle Scholar
  197. 197.
    Billmann MK, Kohler CH, Varelas X, et al. Konservative befundadaptierte Therapie von superinfizierten chronischen ventis bedingten Ulcera cruds. Vasa. 2004; 33: 97–101PubMedCrossRefGoogle Scholar
  198. 198.
    Brem H, Kirsner RS, Falanga V. Protocol for the successful treatment of venous ulcers. Am J Surg. 2004; 188 (1 A): 1–8PubMedCrossRefGoogle Scholar
  199. 199.
    Barwell JR, Davies CE, Deacon J, et al. Comparison of surgery and compression with compression alone in chronic venous ulceration (ESCHAR study): randomised controlled trial. Lancet. 2004; 363 (9424): 1854–9PubMedCrossRefGoogle Scholar
  200. 200.
    Amann-Vesti BR, Ruesch C, Gitzelmann G, et al. Microangiopathy of split-skin grafts in venous ulcers. Dermatol Surg. 2004; 30: 399–402PubMedCrossRefGoogle Scholar
  201. 201.
    Kaplan RM, Criqui MH, Deneberg JO, et al. Quality of life inpatients with chronic venous disease: San Diego population study. J Vase Surg. 2003; 37: 1047–53CrossRefGoogle Scholar
  202. 202.
    Bernstein EF. Clinical characteristics of 500 consecutive patients presenting for laser removal of lower extremity spider veins. Dermatol Surg. 2001; 27: 31–3PubMedCrossRefGoogle Scholar
  203. 203.
    Popoff N. The digital vascular system. Arch Pathol. 1934; 18: 295–330Google Scholar
  204. 204.
    Rowell L. Reflex control of the cutaneous vasculature. J Invest Dermatol. 1959; 69: 154–66CrossRefGoogle Scholar
  205. 205.
    Rendell MS, Finnegan MF, Healy JC, et al. The relationship of laser Doppler skin blood flow measurements to the cutaneous microvascular anatomy. Microvasc Res. 1998; 55: 3–13PubMedCrossRefGoogle Scholar
  206. 206.
    Rowell LB. Cardiovascular adjustments to thermal stress. In: Shepherd IT, Abboud FM, editors. Handbook of physiology. Section 2: The Cardiovascular System. Vol 3, pt 2. Bethesda (MD): American Physiological Society, 1983: 967–1023Google Scholar
  207. 207.
    Taylor WF, Johnson JM, O’Leary D, et al. Effect of high local temperature on reflex cutaneous vasodilation. J Appl Physiol. 1984; 57: 191–6PubMedGoogle Scholar
  208. 208.
    Brem H, Sheehan P, Boulton AJ. Protocol for treatment of diabetic foot ulcers. Am J Surg. 2004 May; 187 (5A): 1S–10SPubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2005

Authors and Affiliations

  • Binh T. Ngo
    • 1
  • Kristie D. Hayes
    • 1
  • Dominick J. DiMiao
    • 1
  • Shashi K. Srinivasan
    • 1
  • Christopher J. Huerter
    • 2
  • Marc S. Rendell
    • 3
  1. 1.Division of Dermatology, Department of MedicineThe University of Nebraska School of MedicineOmahaUSA
  2. 2.Division of Dermatology, Department of MedicineCreighton University School of MedicineOmahaUSA
  3. 3.Division of Diabetes, Department of MedicineCreighton University School of MedicineOmahaUSA

Personalised recommendations