American Journal of Clinical Dermatology

, Volume 4, Issue 6, pp 407–428 | Cite as

Progress in the Understanding of the Pathology and Pathogenesis of Cutaneous Drug Eruptions

Implications for Management
  • A. Neil Crowson
  • Tricia J. Brown
  • Cynthia M. Magro
Review Article


Cutaneous drug eruptions are among the most common adverse reactions to drug therapy. The etiology may reflect immunologic or nonimmunologic mechanisms, the former encompassing all of the classic Gell and Combs immune mechanisms. Cumulative and synergistic effects of drugs include those interactions of pharmacokinetic and pharmacodynamic factors reflecting the alteration by one drug of the effective serum concentration of another and the functions of drugs and their metabolites that interact to evoke cutaneous and systemic adverse reactions. Recent observations include the role of concurrent infection with lymphotropic viruses and drug effects that, through the enhancement of lymphoid blast transformation and/or lymphocyte survival and the contribution of intercurrent systemic connective tissue disease syndromes, promote enhanced lymphocyte longevity and the acquisition of progressively broadening autoantibody specificities. The latter are particularly apposite to drug-induced lupus erythematosus and to drug reactions in the setting of HIV infection.

Specific common types of cutaneous drug eruptions will be discussed in this review. Successful management of cutaneous drug eruptions relies upon the prompt discontinuation of the causative medication; most drug eruptions have a good prognosis after this is accomplished. Oral or topical corticosteroids can be administered to aid in the resolution of some types of eruptions. Antihistamines or anti-inflammatory agents may also be administered for some eruptions.


Toxic Epidermal Necrolysis Pemphigus Bullous Pemphigoid Drug Eruption Erythema Multiforme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



No sources of funding were used to assist in the preparation of this manuscript. The authors have no conflicts of interest that are directly relevant to the content of this manuscript.


  1. 1.
    Arndt KA, Jick H. Rates of cutaneous reactions to drugs: a report from the Boston Collaborative Drug Surveillance program. JAMA 1976; 235: 918–922PubMedGoogle Scholar
  2. 2.
    Bigby M, Jick S, Jick H, et al. Drug-induced cutaneous reactions: a report from the Boston Collaborative Drug Surveillance Program on 15 438 consecutive inpatients, 1975–1982. JAMA 1986; 256: 3358–3363PubMedGoogle Scholar
  3. 3.
    Jick H, Miettinen OS, Shapiro S, et al. Comprehensive drug surveillance. JAMA 1970; 213: 1455–1460PubMedGoogle Scholar
  4. 4.
    Hunziker T, Kunzi UP, Braunschweig S, et al. Comprehensive hospital drug monitoring (CHDM): adverse skin reactions, a 20-year survey. Allergy 1997; 52: 388–393PubMedGoogle Scholar
  5. 5.
    Mosmann TR, Coffman RL. TH1 and TH2 cells: different patterns oflymphokine secretion lead to different functional properties. Ann Rev Immunol 1989; 7: 145–173Google Scholar
  6. 6.
    Wierenga EA, Snoek M, Jansen HM, et al. Human atopic-specific types 1 and 2 T helper cell clones. J Immunol 1991; 147: 2942–2949PubMedGoogle Scholar
  7. 7.
    van der Heijden FL, Wierenga EA, Bos JD, et al. High frequency of Il-4-producing CD4+ allergen-specific T lymphocytes in atopic dermatitis 1esional skin. J Invest Dermatol 1991; 97: 389–394PubMedGoogle Scholar
  8. 8.
    Kay AB, Ying S, Varney V, et al. Messenger RNA expression of the cytokine genecluster, Interleukin 3 (IL-3), IL-4, IL-5, and granulocyte/macrophage colony-stimulating factor, in allergen-induced late-phase cutaneous reactions in atopic subjects. J Exp Med 1991; 173: 775–778PubMedGoogle Scholar
  9. 9.
    Mosmann TR, Sad S. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today 1996; 17: 138–146PubMedGoogle Scholar
  10. 10.
    Lopez AF, Sanderson CJ, Gamble JR, et al. Recombinant human interleukin 5 is a selective activator of human eosinophil function. J Exp Med 1988; 167: 219–224PubMedGoogle Scholar
  11. 11.
    Britschgi M, Seiner UC, Schmid S, et al. T-cell involvement in drug-induced acute generalized exanthematous pustulosis. J Clin Invest 2001; 107: 1433–1441PubMedGoogle Scholar
  12. 12.
    Britschgi M, Pichler WJ. Acute generalized exanthematous pustulosis, a clue to neutrophil-mediated inflammatory processes orchestrated by T cells. Curr Opin Allergy Clin Immunol 2002; 2: 325–332PubMedGoogle Scholar
  13. 13.
    Wintroub BU, Stern R. Cutaneous drug reactions: pathogenesis and clinical classification. J Am Acad Dermatol 1985; 13: 167–179PubMedGoogle Scholar
  14. 14.
    Magro CM, Crowson AN. Drug-induced immune-dysregulation as a cause of atypical cutaneous lymphoid infiltrates: a hypothesis. Hum Pathol 1996; 26: 125–132Google Scholar
  15. 15.
    Barranco VP. Clinically significant drug interactions in dermatology. J Am Acad Dermatol 1998; 38: 599–612PubMedGoogle Scholar
  16. 16.
    Crowson AN, Magro CM. The cutaneous pathology of lupus erythematosus. J Cutan Pathol 2001; 28: 1–23PubMedGoogle Scholar
  17. 17.
    Koopmans PP, van der Yen AJ, Vree TE, et al. Pathogenesis of hypersensitivity reactions to drugs in patients with HIV infection: allergic or toxic? AIDS 1995; 9: 217–222PubMedGoogle Scholar
  18. 18.
    Metry DW, Lahart CJ, Farmer KL, et al. Stevens-Johnson syndrome caused by the antiretroviral drug nevirapine. J Am Acad Dermatol 2001; 44: 354–357PubMedGoogle Scholar
  19. 19.
    Cohen AD, Friger M, Sarov B, et al. Which intercurrent infections are associated with maculopapular drug reactions? A case-control study. Int J Dermatol 2001; 40: 41–44PubMedGoogle Scholar
  20. 20.
    Aihara M, Sugita Y, Takahashi S, et al. Anticonvulsant hypersensitivity syndrome associated with reactivation of cytomegalovirus. Br J Dermatol 2001; 144: 1231–1234PubMedGoogle Scholar
  21. 21.
    Descamps V, Valance A, Edlinger C, et al. Association of human herpesvirus 6 infection with drug reaction with eosinophilia and systemic symptoms. Arch Dermatol 2001; 137: 301–304PubMedGoogle Scholar
  22. 22.
    Sullivan JR, Shear NH. The drug hypersensitivity syndrome: what is its pathogenesis? Arch Dermatol 2001; 137: 357–364PubMedGoogle Scholar
  23. 23.
    Shear NH. Diagnosing cutaneous adverse reactions to drugs. Arch Dermatol 1990; 126: 94–97PubMedGoogle Scholar
  24. 24.
    Rieder MJ. Mechanisms of unpredictable adverse drug reactions. Drug Saf 1994; 11: 196–212PubMedGoogle Scholar
  25. 25.
    Rieder MJ. In vivo and in vitro testing for adverse drug reactions. Pediatr Clin North Am 1997; 44: 93–111PubMedGoogle Scholar
  26. 26.
    Barbaud AM, Bene M-C, Schmutz J-L, et al. Role of delayed type hypersensitivity and adhesion molecules in amoxiciHin-induced morbilliform rashes. Arch Dermatol 1997; 133: 481–486PubMedGoogle Scholar
  27. 27.
    Bigby M. Rates of cutaneous reactions to drugs. Arch Dermatol 2001; 137: 765–770PubMedGoogle Scholar
  28. 28.
    Crowson AN, Magro CM. Recent advances in the pathology of cutaneous drug eruptions. Dermatol Clin 1999; 17: 537–560PubMedGoogle Scholar
  29. 29.
    Breathnach SM, Hintner H. Adverse drug reactions and the skin. Oxford: Blackwell Scientific Publication, 1992Google Scholar
  30. 30.
    Pichler W, Yawalkar N. Pathophysiology of drug-elicited exanthems. ACI Int 2000; 12: 166–170Google Scholar
  31. 31.
    Carr A, Vasek E, Munro V, et al. Immunohistochemical assessment of cutaneous drug hypersensitivity in patients with HIV infection. Clin Exp Immunol 1994; 97: 260–265PubMedGoogle Scholar
  32. 32.
    Yawalkar N, Shrikhande M, Hari Y, et al. Evidence for a role for IL-5 and eotaxin in activating and recruiting eosinophils in drug-induced cutaneous eruptions. J Allergy Clin Immunol 2000; 106: 1171–1176PubMedGoogle Scholar
  33. 33.
    Yawalkar N, Hart Y, Frutig K, et al. T cells isolated from positive epicutaneous test reactions to amoxicillinand ceftriaxone are drug specific and cytotoxic. J Invest Dermatol 2000; 115: 647–652PubMedGoogle Scholar
  34. 34.
    Posadas SJ, Leyva L, Torres MJ, et al. Subjects with anergic reactions to drugs show in vivo polarized patterns of cytokine expression depending on the chronology of the clinical reaction. J Allergy Clin Immunol 2000; 106: 769–776PubMedGoogle Scholar
  35. 35.
    Hari Y, Urwyler A, Hurni M, et al. Distinct serum cytokine levels in drug- and measles-induced exanthemata. Int Arch Anergy Immunol 1999; 120: 225–229Google Scholar
  36. 36.
    Pichler WJ, Yawalkar N, Britschgi M, et al. Cellular and molecular pathophysiology of cutaneous drug reactions. Am J Clin Dermatol 2002; 3: 229–238PubMedGoogle Scholar
  37. 37.
    Yawalkar N, Pichler WI. Pathogenesis of drug-induced exanthemata. Int Arch Allergy Immunol 2001; 124: 336–338PubMedGoogle Scholar
  38. 38.
    Yawalkar N, Hunger RE, Buri C, et al. A comparative study of the expression of cytotoxic proteins in anergic contact dermatitis and psoriasis: spongiotic skin lesions in allergic contact dermatitis are highly infiltrated by T cells expressing perforin and granzyme B. Am J Pathol 2001; 158: 803–808PubMedGoogle Scholar
  39. 39.
    Yawalkar N, Egli F, Hari Y, et al. Infiltration of cytotoxic T cells in drug-induced cutaneous eruptions. Clin Exp Allergy 2000; 30: 847–855PubMedGoogle Scholar
  40. 40.
    Crowson AN. Superficial and deep perivascular dermatitis. In: Barnhill R, Crowson AN, Busam K, Granter S, editors. Textbook of dermatopathology. New York: McGraw-Hin Co, 1998: 69–81Google Scholar
  41. 41.
    Greaves MW. Chronic urticaria. N Engl J Med 1995; 332: 1767–1772PubMedGoogle Scholar
  42. 42.
    Weedon D. Cutaneous drug reactions. In: Weedon D, editor. The skin. Edinburgh: Churchill Livingston, 1992: 559–569Google Scholar
  43. 43.
    Zurcher K, Krebs A. Cutaneous drug reactions. Basel: Karger, 1992Google Scholar
  44. 44.
    Weedon D. The lichenoid reaction pattern: skin pathology. Edinburgh: Churchill Livingstone, 1997: 29–63Google Scholar
  45. 45.
    Bong JL, Lucke TW, Douglas WS. Lichenoid drug eruption with proton pump inhibitors [letter]. BMJ 2000; 320 (7230): 283PubMedGoogle Scholar
  46. 46.
    Russell MA, Langley M, Truett AP, et al. Lichenoid dermatitis after the ingestion of gold-containing liquor. J Am Acad Dermatol 1997; 36: 841–844PubMedGoogle Scholar
  47. 47.
    Crowson AN, Magro CM. Lichenoid and subacute cutaneous lupus erythematosus-like dermatitis associated with antihistamine therapy. J Cutan Pathol 1999; 26: 95–99PubMedGoogle Scholar
  48. 48.
    Magro CM, Crowson AN. Lichenoid and granulomatous dermatitis: a novel cutaneous reaction pattern. Int J Dermatol 2000; 39: 126–133PubMedGoogle Scholar
  49. 49.
    Crowson AN, Magro CM. Subacute cutaneous lupus erythematosus in the setting of calcium channel blocker therapy. Hum Pathol 1997; 28: 67–73PubMedGoogle Scholar
  50. 50.
    Young PC, Montemarano AD, Lee N, et al. Hypersensitivity to paclitaxel manifested as bullous fixed drug eruption. J Am Acad Dermatol 1996; 34: 313–314PubMedGoogle Scholar
  51. 51.
    Sigal-Nahum M, Konqui A, Gaulier A, et al. Linear fixed drug eruption. Br J Dermatol 1988; 118: 849–851PubMedGoogle Scholar
  52. 52.
    Mahoob A, Haroon TS. Drugs causing fixed eruptions: a study of 450 cases. Int J Dermatol 1998; 37: 833–838Google Scholar
  53. 53.
    Korkij W, Soltani K. Fixed drug eruption: a brief review. Arch Dermatol 1984; 120: 520–524PubMedGoogle Scholar
  54. 54.
    Teraki Y, Moriya N, Shiohara T. Drug-induced expression of intracellular adhesion molecule-Ion lesional keratinocytes in fixed drug eruption. Am J Pathol 1994; 145: 550–560PubMedGoogle Scholar
  55. 55.
    Shiohara T, Nickoloff BJ, Sagawa Y, et al. Fixed drug eruption. Expression of epidermal keratinocyte intracellular adhesion molecule-1 (ICAM-1). Arch Dermatol 1989; 125: 1371–1376PubMedGoogle Scholar
  56. 56.
    Pelicano R, Lomuto M, Ciavarella G, et al. Fixed drug eruptions with feprazone are linked to HLA-B22. J Am Acad Dermatol 1997; 36: 782–784Google Scholar
  57. 57.
    Hamamoto Y, Ohmura A, Kinoshita E, et al. Fixed drug eruption due to clarithromycin. Clin Exp Dermatol 2001; 26: 48–49PubMedGoogle Scholar
  58. 58.
    Chan HL, Tan KC. Fixed drug eruption to three anticonvulsant drugs: an unusual case of polysensitivity. J Am Acad Dermatol 1997; 36: 259PubMedGoogle Scholar
  59. 59.
    Tham SN, Kwok YK, Chan HL. Cross-reactivity in fixed drug eruptions to tetracyclines. Arch Dermatol 1996; 132: 1134–1135PubMedGoogle Scholar
  60. 60.
    Alanko K, KanervaL, Mohell-Taloahti B, et al. Nonpigmented fixed drug eruption from pseudoephedrine. J Am Acad Dermatol 1996; 35: 647–648PubMedGoogle Scholar
  61. 61.
    Hindioglu U, Sahin S. Nonpigmented fixed drug eruption from pseudoephedrine hydrochloride. J Am Acad Dermatol 1998; 38: 499–500PubMedGoogle Scholar
  62. 62.
    Agnew KL, Oliver GF. Neutrophilic fixed drug eruption. Australas J Dermatol 2001; 42: 200–202PubMedGoogle Scholar
  63. 63.
    Selvaag E. Clinical drug photosensitivity: a retrospective analysis of reports to the Norwegian Adverse Drug Reactions Committee from the years 1970–1994. Photodermatol Photoimmunol Photomed 1997; 13: 21–23PubMedGoogle Scholar
  64. 64.
    Leenutaphong V, Manuskiatti W. Fenofibrate-induced photosensitivity. J Am Acad Dermatol 1996; 35: 775–777PubMedGoogle Scholar
  65. 65.
    Lowe NJ, Fakouhi TD, Sem RS, et al. Photoreactions with a f1uoroquinolone antimicrobial: evening versus morning dosing. Clin Pharmacol Ther 1994; 56: 587–591PubMedGoogle Scholar
  66. 66.
    Roujeau JC, Bioulac-Sage P, Bourseau C, et al. Acute generalized exanthematous pustulosis. Arch Dermatol 1991; 127: 1333–1338PubMedGoogle Scholar
  67. 67.
    Moreau A, Dompmartin A, Castel B, et al. Drug-induced generalized exanthematous pustulosis with positive patch tests. Int J Dermatol 1995; 34: 263–266PubMedGoogle Scholar
  68. 68.
    Katagiri K, Takayasu S. Drug induced acute generalized exanthematous pustulosis. J Dermatol 1996; 23: 623–627PubMedGoogle Scholar
  69. 69.
    Park WM, Kim JW, Kim CW. Acute generalized exanthematous pustulosis induced by itraconazole. J Am Acad Dermatol 1997; 36: 794–796PubMedGoogle Scholar
  70. 70.
    Blodgett TP, Camisa C, Gay D, et al. Acute generalized exanthematous pustulosis secondary to diltiazem therapy. Cutis 1997; 60: 45–47PubMedGoogle Scholar
  71. 71.
    Condon CA, Downs AMR, Archer CB. Terbinafine-induced acute generalized exanthematous pustulosis. Br J Dermatol 1998; 138: 706–723Google Scholar
  72. 72.
    Hall AP, Tate B. Acute generalized exanthematous pustulosis associated with oral terbinafine. Australas J Dermatol 2000; 41: 42–45PubMedGoogle Scholar
  73. 73.
    Bennett ML, Jorizzo JL, White WL. Generalized pustular eruptions associated with oral terbinafine. Int J Dermatol 1999; 38: 596–600PubMedGoogle Scholar
  74. 74.
    Rogalski C, Hurlimann A, Burg G, et al. Drug reaction to terbinafine simulating an acute generalized exanthematous pustulosis. Hautarzt 2001; 52: 444–448PubMedGoogle Scholar
  75. 75.
    Isogai Z, Sunohara A, Tsuiji T. Pustular drug eruption due to bacampicillin hydrochloride in a patient with psoriasis. J Dermatol 1998; 25: 612–615PubMedGoogle Scholar
  76. 76.
    Halevy S, Cohen A, Livni E. Acute generalized exanthematous pustulosis associated with polysensitivity to paracetamol and brornhexine: the diagnostic value of in vitro interferon-gamma release test. Clin Exp Dermatol 2000; 25: 652–654PubMedGoogle Scholar
  77. 77.
    Lazarov A, Livini E, Halevy S. Generalized pustular drug eruptions: confirmation by in vitro tests. J Eur Acad Dermatol Venereol 1998; 10: 36–41PubMedGoogle Scholar
  78. 78.
    Fye KH, Vrowley E, Berger TG, et al. Celecoxib-induced Sweet’s syndrome. J Am Acad Dermatol 2001; 45: 300–302PubMedGoogle Scholar
  79. 79.
    Thibault MJ, Billick RC, Srolovitz H. Minocycline-induced Sweet’s syndrome. J Am Acad Dermatol 1992; 27: 801–804PubMedGoogle Scholar
  80. 80.
    Fukutoku M, Shimizu S, Ogawa Y, et al. Sweet’s syndrome during therapy with granulocyte-colony stimulating factor in a patient with aplastic anemia. Br J Haematol 1994; 86: 645–648PubMedGoogle Scholar
  81. 81.
    Walker DC, Coehn PR. Trimethoprim-sulfamethoxazole-associated acute febrile neutrophilic dermatosis: case report and review of drug-induced Sweet’s syndrome. J Am Acad Dermatol 1996; 34: 918–923PubMedGoogle Scholar
  82. 82.
    Guimera FJ, Carcia-Bustinduy M, Noda A, et al. Diazepam-associated Sweet’s syndrome. Int J Dermatol 2000; 39: 795–800PubMedGoogle Scholar
  83. 83.
    Tefany FJ, Georgouras K. A neutrophilic reaction of Sweet’s syndrome type associated with the oral contraceptive. Australas J Dermatol 1991; 32: 55–59PubMedGoogle Scholar
  84. 84.
    Mensing H, Kowalzick L. Acute febrile neutrophilic dermatosis (Sweet’s syndrome) caused by minocycline. Dermatologica 1991; 182: 43–46PubMedGoogle Scholar
  85. 85.
    Richard MA, Grob JJ, Laurans R, et al. Sweet’s syndrome induced by granulocyte colony-stimulating factor in a woman with congenital neutropenia. J Am Acad Dermatol 1996; 35: 629–631PubMedGoogle Scholar
  86. 86.
    Krasovec M, Elsner P, Burg G. Generalized eczematous skin rash possibly due to HMG-CoA reductase inhibitors. Dermatology 1993; 186: 248–252PubMedGoogle Scholar
  87. 87.
    Bircher AJ, Flückiger R, Buchner SA. Eczematous infiltrated plaques to subcutaneous heparin: a type IV anergic reaction. Br J Dermatol 1990; 123: 507–514PubMedGoogle Scholar
  88. 88.
    Whittam LR, Hay RJ, Hughes RAC. Eczematous reactions to human immune globulin. Br J Dermatol 1997; 137: 467–484Google Scholar
  89. 89.
    Bastuji-Garin S, Rzany B, Stern RS, et al. Clinical classification of cases of toxic epidermal necrolysis, Stevens-Johnson syndrome, and erythema multiforme. Arch Dermatol 1993; 129: 92–96PubMedGoogle Scholar
  90. 90.
    Weedon D. Cutaneous drug reactions. In: Weedon D, editor. Skin pathology. Edinburgh: Churchill Livingstone, 1997: 559–569Google Scholar
  91. 91.
    Rosado A, Canto G, Veleiro B, et al. Toxic epidermal necrolysis after repeated injections of iohexol. AJR Am J Roentgenol 2001; 176: 262–263PubMedGoogle Scholar
  92. 92.
    Cohen LM, Skopicki DK, Harrist TJ, et al. Noninfectious vesiculobullous and vesiculopustular diseases. In: Elder D, Elenitsas R, Jaworsky C, Johnson B, editors. Lever’s histopathology of the skin. 8th ed. Philadelphia: Lippiocott Raven, 1997: 209–252Google Scholar
  93. 93.
    Smoller BR, Kohler S. Subepidermal vesicular dermatitis. In: Barnhill R, Crowson AN, Busam K, Granter S, editors. Textbook of dermatopathology. New York: McGraw-Hill Co, 1998: 147–171Google Scholar
  94. 94.
    Inachi S, Mizutani H, Shimizu M. Epidermal apoptic cell death in erythema multiforme and Stevens-Johnson syndrome. Arch Dermatol 1997; 133: 845–849PubMedGoogle Scholar
  95. 95.
    Le Cleach L, Delaire S, Boumsell L, et al. Blister-fluid T lymphocytes during toxic epidermal necrolysis are functional cytotoxic cells which express human natural killer (NK) inhibitory receptors. Clin Exp Dermatol 2000; 119: 225–230Google Scholar
  96. 96.
    Correia O, Delgado L, Roujeau JC, et al. Soluble interleukin 2 receptor and interleukin alpha in toxic epidermal necrolysis: a comparative analysis of serum and blister fluid samples. Arch Dermatol 2002; 138: 29–32PubMedGoogle Scholar
  97. 97.
    Viard I, Wehrli P, Bullani R, et al. Inhibition of toxic epidermal necrolysis by blockade of CD95 with human intravenous imunoglobulin. Science 1998; 282: 490–493PubMedGoogle Scholar
  98. 98.
    Wherli P, Viard I, Bullani R, et al. Death receptors in health and disease. J Invest Dermatol 2000; 115: 141–148Google Scholar
  99. 99.
    Stella M, Cassano P, Bollero D, et al. Toxic epidermal necrolysis treated with intravenous high-dose immunoglobulins: our experience. Dermatology 2001; 203: 45–49PubMedGoogle Scholar
  100. 100.
    Posadas SJ, Padial A, Torres MJ, et al. Delayed reactions to drugs show levels of perforin, granzyme Band Fas-L to be related to disease severity. J Allergy Clin Immunol 2002; 109: 155–161PubMedGoogle Scholar
  101. 101.
    Crowson AN, Magro CM. The role of microvascular injury in the pathogenesis of cutaneous lesions of dermatomyositis. Hum Pathol 1996; 27: 15–19PubMedGoogle Scholar
  102. 102.
    Ringheanu M, Laude TA. Toxic epidermal necrolysis in children: an update. Clin Pediatr (Phila) 2000; 39: 687–694Google Scholar
  103. 103.
    Revuz JE, Foujeau JC. Advances in toxic epidermal necrolysis. Semin Cutan Med Surg 1996; 15: 258–266PubMedGoogle Scholar
  104. 104.
    Rohrer IE, Ahmed R. Toxic epidermal necrolysis. Int J Dermatol 1991; 30: 457–466PubMedGoogle Scholar
  105. 105.
    Smoot III CE. Treatment issues in the care of patients with toxic epidermal necrolysis. Burns 1999; 25: 439–442PubMedGoogle Scholar
  106. 106.
    Halebian PH, Corder VJ, Madden MR, et al. Improved burn center survival of patients with toxic epidermal necrolysis managed without corticosteroids. Ann Surg 1986; 204: 503–512PubMedGoogle Scholar
  107. 107.
    Weston WL, Oranje A, Rasmussen JE, et al. Corticosteroids for erythema multiforme? Pediatr Dermatol 1989; 6: 229–250Google Scholar
  108. 108.
    Kelemen III JJ, Cioffi WG, McManus WF, et al. Burn center care for patients with toxic epidermal necrolysis. J Am Coll Surg 1995, 278Google Scholar
  109. 109.
    Kishimoto K, Imaatsuki K, Akiba H, et al. Subcorneal pustular dermatosis-type IgA pemphigus induced by thiol drugs. Eur J Dermatol 2001; 11: 41–44PubMedGoogle Scholar
  110. 110.
    Brenner S, Bialy-Golan A, Anhalt GJ. Recognition of pemphigus antigens in druginduced pemphigus vulgaris and pemphigus foliaceous. J Am Acad Dermatol 1997; 36: 919–923PubMedGoogle Scholar
  111. 111.
    Pisani M, Ruocco V. Drug-induced pemphigus. Clin Dermatol 1986; 4: 118–132PubMedGoogle Scholar
  112. 112.
    Ruocco V, Sacerdoti G. Pemphigus and bullous pemphigoid due to drugs. Int J Dermatol 1991; 30: 307–312PubMedGoogle Scholar
  113. 113.
    Bastuji-Garin S, Joly P, Picard-Dahan C, et al. Drugs associated with bullous pemphigoid: a case-control study. Arch Dermatol 1996; 132: 272–276PubMedGoogle Scholar
  114. 114.
    Van Joost T, van’t Veen AJ. Drug-induced cicatricial pemphigoid and acquired epidermolysis bullosa. Clin Dermatol 1993; 11: 521–527PubMedGoogle Scholar
  115. 115.
    Alcalay J, David M, Ingber A, et al. Bullous pemphigoid mimicking bullous erythema multiforme: an untoward side effect of penicillins. J Am Acad Dermatol 1988; 18: 345–349PubMedGoogle Scholar
  116. 116.
    Nie Z, Hashimoto K. IgA antibodies of cicatricial pemphigoid sera specifically react with C-terminus of BP180. J Invest Dermatol 1999; 112: 254–255PubMedGoogle Scholar
  117. 117.
    Kirtschig G, Mengel R, Mittag H, et al. Desquamative gingivitis and balanitis: linear IgA disease or cicatricial pemphigoid? Clin Exp Dermatol 1998; 23: 173–177PubMedGoogle Scholar
  118. 118.
    Leonard J, Haffenden GP, Ring NP, et al. Linear IgA disease in adults. Br J Dermatol 1982; 107: 301–316PubMedGoogle Scholar
  119. 119.
    Allen J, Thou S, Wakelin SH, et al. Linear IgA disease: a report of two dennal binding sera which recognize a pepsin-sensitive epitope (?NC-1 domain) of collagen type VII. Br J Dermatol 1997; 137: 526–533PubMedGoogle Scholar
  120. 120.
    Marinkovich MP, Taylor lB, Keene DR, et al. LAD-1, the linear IgA bullous dermatosis autoantigen is a novel 120-kDa anchoring filament protein synthesized by epidermal cells. J Invest Dermatol 1996; 106: 734–738PubMedGoogle Scholar
  121. 121.
    Yawalkar N, Reimers A, Hari Y, et al. Drug-induced linear IgA bullous dermatosis associated with ceftriaxone- and metronidazole-specific T cells. Dermatology 1999; 199: 25–30PubMedGoogle Scholar
  122. 122.
    Nousari HC, Kimyai-Asadi A, Caeiro JP, et al. Clinical, demographic, and immunohistologic features of vaocomycin-induced linear IgA bullous disease of the skin: report of 2 cases and review of the literature. Medicine (Baltimore) 1999; 78: 1–8Google Scholar
  123. 123.
    Paul C, Wolkenstein P, Prost C, et al. Drug-induced linear IgA disease: target antigens are heterogeneous. Br J Dermatol 1997; 136: 406–411PubMedGoogle Scholar
  124. 124.
    Wakelin SH, Allen J, Zhou S, et al. Drug-induced linear IgA disease with antibodies to collagen VII. Br J Dermatol 1998; 138: 310–314PubMedGoogle Scholar
  125. 125.
    Acostamadiedo JM, Perniciaro C, Rogers III RS. Phenytoin-induced linear IgA bullous disease. J Am Acad Dermatol 1998; 38: 352–356PubMedGoogle Scholar
  126. 126.
    Camilleri M, Pace JL. Linear IgA bullous dermatosis induced by piroxicam. Eur J Dermatol 1998; 10: 70–72Google Scholar
  127. 127.
    Cerottini J-P, Ricci C, Guggisberg D, et al. Drug-induced linear IgA bullous dermatosis probably induced by furosemide. J Am Acad Dermatol 1999; 41: 103–105PubMedGoogle Scholar
  128. 128.
    Friedman IS, RudikoffD, Phelps RG, et al. Captopril-triggered linear IgA bullous dermatosis. Int J Dermatol 1998; 37: 608–612PubMedGoogle Scholar
  129. 129.
    Kano Y, Kokaji T, Shiohara T. Linear IgA bullous dermatosis in a patient with acute lymphocytic leukemia: possible involvement of granulocyte clony-stimulating factor. Eur J Dermatol 1999; 9: 122–125PubMedGoogle Scholar
  130. 130.
    Wiadrowski TP, Reid CM. Drug-induced linear IgA bullous disease following antibiotics. Australas J Dermatol 2001; 42: 196–199PubMedGoogle Scholar
  131. 131.
    Konig C, Eickert A, Scharfetter-Kochanek K, et al. Linear IgA bullous dermatosis induced by atorvastatin. J Am Acad Dermatol 2001; 44: 689–692PubMedGoogle Scholar
  132. 132.
    Poh-Fitzpatrick MB. Porphyria, pseudoporphyria, pseudopseudoporphyria...? Arch Dermatol 1986; 122: 403–404PubMedGoogle Scholar
  133. 133.
    Magro CM, Crowson AN. Pseudo-poryphyria cutanea tarda associated with nabumetone (Relafen) therapy. J Cutan Pathol 1999; 26: 42–47PubMedGoogle Scholar
  134. 134.
    Varma S, Lanigan SW. Pseudoporphyria caused by nabumetone. Br J Dermatol 1998; 138: 549–550PubMedGoogle Scholar
  135. 135.
    Tsukazaki N, Watanabe M, Irifune H. Porphyria cutanea tarda and hepatitis C infection. Br J Dermatol 1998; 138: 1015–1017PubMedGoogle Scholar
  136. 136.
    Al-Khenaizan S, Schechter JF, Sasseville D. Pseudoporphyria induced by propionic acid derivatives. J Cutan Med Surg 1999; 3: 162–166PubMedGoogle Scholar
  137. 137.
    Le Goff P, Saraux A. Drug-induced lupus. Rev Rhum Engl Ed 1999; 66: 40–45PubMedGoogle Scholar
  138. 138.
    Pramatarov KD. Drug-induced lupus erythematosus. Clin Dermatol 1998; 16: 367–377PubMedGoogle Scholar
  139. 139.
    Crowson AN, Magro CM. Diltiazem and subacute cutaneous lupus erythematosuslike lesions [letter]. N Engl J Med 1995; 333: 1429PubMedGoogle Scholar
  140. 140.
    Goodrich A, Kohn S. Hydrochlorthiazide-induced lupus erythematosus: a new variant? J Am Acad Dermatol 1993; 28: 1001–1002PubMedGoogle Scholar
  141. 141.
    Bonsmann G, Schiller M, Luger TA, et al. Terbinafine-induced subacute cutaneous lupus erythematosus. J Am Acad Dermatol 2001; 44: 925–931PubMedGoogle Scholar
  142. 142.
    Murphy M, Barnes L. Terbinafine-induced lupus erythematosus. Br J Dermatol 1998; 138: 708–709PubMedGoogle Scholar
  143. 143.
    Ghate JV, Turner ML, Rudek MA, et al. Drug-induced lupus associated with COL-3. Arch Dermatol 2001; 137: 471–474PubMedGoogle Scholar
  144. 144.
    Rubin RL. Etiology and mechanisms of drug-induced lupus. Curr Opin Rheumatol 1999; 11: 357–363PubMedGoogle Scholar
  145. 145.
    Crosson J, Stillman MT. Minocycline-related lupus erythematosus with associated liver disease. J Am Acad Dermatol 1997; 36: 867–868PubMedGoogle Scholar
  146. 146.
    Magro CM, Crowson AN, Harrist TJ. The use of antibody to C5b-9 in the subclassification of lupus erythematosus. Br J Dermatol 1996; 134: 855–862PubMedGoogle Scholar
  147. 147.
    Mills JA. Systemic lupus erythematosus. N Engl J Med 1994; 330 (26): 1871–1879PubMedGoogle Scholar
  148. 148.
    Wollenberg A, Meurer M. Thiazide diuretic-induced subacute cutaneous lupus erythematosus [in German]. Hautarzt 1991; 42: 709–712PubMedGoogle Scholar
  149. 149.
    Gupta AK, Sibbald RG, Knowles SR, et al. Terbinafine therapy may be associated with the development of psoriasis de novo or its exacerbation: four case reports and a review of drug-induced psoriasis. J Am Acad Dermatol 1997; 36: 858–862PubMedGoogle Scholar
  150. 150.
    Webster GF, Knobler RL, Lublin FD, et al. Cutaneous ulcerations and pustular psoriasis flare caused by recombinant interferon beta injections in patients with mutliple sclerosis. J Am Acad Dermatol 1996; 34: 365–367PubMedGoogle Scholar
  151. 151.
    Valance A, Lebrun-Vignes B, Descamps V, et al. Icodextrin cutaneous hypersensitivity: report of 3 psoriasiform cases. Arch Dermatol 2001; 137: 309–310PubMedGoogle Scholar
  152. 152.
    Brenner S, Golan H, Lerman Y. Psoriasiform eruption and anticonvulsant drugs [letter]. Acta Derm Venereol 2000; 80: 382PubMedGoogle Scholar
  153. 153.
    WolfR, Ruocco V. Triggered psoriasis. Adv Exp Med Biol 1999; 455: 221–225Google Scholar
  154. 154.
    Sigurdsson V, Toonstra J, Hezemans-Boer M, et al. Erythroderma: a clinical and follow-up study of 102 patients, with special emphasis on survival. J Am Acad Dermatol 1996; 35: 53–57PubMedGoogle Scholar
  155. 155.
    Nicolis G, Helwig EB. Exfoliative dermatitis: a clinicopathologic study of 135 patients. Arch Dermatol 1973; 108: 788–797PubMedGoogle Scholar
  156. 156.
    King Jr LE, Dufresne Jr RG, Lovett GL, et al. Erythroderma: review of 82 cases. South Med J 1986; 79: 1210–1215PubMedGoogle Scholar
  157. 157.
    Sehgal VN, Srivastava G. Exfoliative dermatitis: a prospective study of 80 patients. Dermatologica 1986; 173: 278–284PubMedGoogle Scholar
  158. 158.
    Botella-Estrada R, Sanmartin O, Oliver V, et al. Erythroderma: a cliniopathological study of 56 cases. Arch Dermatol 1994; 130: 1503–1507PubMedGoogle Scholar
  159. 159.
    Sarkar R, Sharma RC, Koranne RV, et al. Erythrodenna in children: a clinicopathologic study. J Dermatol 1999; 26: 507–511PubMedGoogle Scholar
  160. 160.
    Pruszkowski A, Bodemer C, Fraitag S, et al. Neonatal and infantile erythrodermas: a retrospective study of 51 patients. Arch Dermatol 2001; 136: 875–880Google Scholar
  161. 161.
    Sanchez NP, Van Hale HM, Su WPD. Clinical and histopathologic spectrum of necrotizing vasculitis. Arch Dermatol 1985; 121: 220–224PubMedGoogle Scholar
  162. 162.
    Jorizzo JL. Classification of vasculitis. J Invest Dermatol 1993; 100: 106S–110SPubMedGoogle Scholar
  163. 163.
    Magro CM, Crowson AN. The cutaneous neutrophilic vascular injury syndromes: a review. Semin Diagn Pathol 2001; 18: 47–58PubMedGoogle Scholar
  164. 164.
    Kaneko K, Igarashi J, Suzuki Y, et al. Carbamazepine-induced thrombocytopenia and leocopenia complicated by Henoch-Schonlein purpura symptoms. Eur J Pediatr 1993; 52: 769–770Google Scholar
  165. 165.
    Kramer KE, Yaar M, Andersen W. Purpuric drug eruption secondary to itraconazole. J Am Acad Dermatol 1997; 37: 944–945Google Scholar
  166. 166.
    Crowson AN, Usmani A, Magro CM, et al. Immunoglobulin-A associated lymphocytic vasculopathy: a clinical and pathological entity resermling pigmentary purpura. J Cutan Pathol 2002; 29: 596–601PubMedGoogle Scholar
  167. 167.
    Chang MW, Miner JE, Moiin A, et al. Iododerma after computed tomographic scan with intravenous radiopaque contrast media. J Am Acad Dermatol 1997; 36: 1014–1016PubMedGoogle Scholar
  168. 168.
    Bel S, Bartralot R, Garcia D, et al. Vegentant bromoderma in an infant. Pediatr Dermatol 2001; 18: 336–338PubMedGoogle Scholar
  169. 169.
    Ricci C, Krasovec M, Frenk E. Amiodarone induced iododerma treated by cyclosporine. Ann Dermatol Venereol 1997; 124: 260–263PubMedGoogle Scholar
  170. 170.
    Boudoulas O, Siegle RJ, Grimwood RE. Oidoderma occurring after orally administered iopanoic acid. Arch Dermatol 1987; 123: 387–388PubMedGoogle Scholar
  171. 171.
    Miranda-Romero A, Sanchez-Sarmucety P, Esquivias Gomez IT, et al. Vegetating iododerma with fatal outcome. Dermatology 1999; 198: 295–297PubMedGoogle Scholar
  172. 172.
    Soria C, Allegue F, Espana A, et al. Vegetating iododerma with underlying systemic diseases: report of three cases. J Am Acad Dermatol 1990; 22: 418–422PubMedGoogle Scholar
  173. 173.
    Magro CM, Crowson AN, Mihm MC. Cutaneous manifestations of gastrointestinal disease. In: Elder DE, Johnson BE, Jaworsky C, Elenitsas R, editors. Lever’s histopathology of the skin. 8th ed. Philadelphia: JB Lippiocott Co, 1997: 353–368Google Scholar
  174. 174.
    Rongioletti F, Semino M, Drago F, et al. Blastomycosis-like pyoderma (pyoderma vegetans) responding to antibiotics and topical disodium chromoglycate. Int J Dermatol 1996; 35: 828–830PubMedGoogle Scholar
  175. 175.
    Rosenberg FR, Finbinder J, Walzer RA, et al. Vegetating idododerma: an immunologic mechanism. Arch Dermatol 1972; 105: 900–805PubMedGoogle Scholar
  176. 176.
    Porters JE, Zantlrnyl CF. Ioderma caused by amiodarone [letter]. Arch Dermatol 1975; 111: 1656PubMedGoogle Scholar

Copyright information

© Adis Data Information BV 2003

Authors and Affiliations

  • A. Neil Crowson
    • 1
  • Tricia J. Brown
    • 2
  • Cynthia M. Magro
    • 3
  1. 1.University of Oklahoma and Regional Medical LaboratoriesTulsaUSA
  2. 2.University of Oklahoma, Oklahoma CityOklahomaUSA
  3. 3.Department of PathologyOhio State UniversityColumbusUSA

Personalised recommendations